

The uWSGI project

uWSGI 项目致力于为构建一个全栈式的托管服务。

应用服务器（多种编程语言和协议），代理，进程管理器和监视器
全部都以通用 api 和通用配置风格实现了。

得益于它的可插式架构，它可以被拓展到其他更多的平台和语言。

目前你可以使用 C，C++ 和 Objective-C 来写插件。

名字中的 ”WSGI“ 部分是对 Python 标准中的同名一个东西的致敬，因为它
是这个项目的第一个开发的插件。

多功能，高性能，占用资源少和可靠性是这个项目的优势（也是唯一遵循的规则）。

包含的组件（更新到了最新的稳定发行版）

核心 Core （实现了配置，进程管理，创建 socket，监控，日志，共享内存，进程间通信，
集群成员和 uWSGI Subscription Server ）

请求插件 Request plugins （实现了多种语言和平台的应用服务器接口： WSGI，PSGI，Rack，Lua WSAPI，CGI，PHP，Go ...）

网关 Gateways （实现了负载均衡，代理和路由器）

The Emperor （实现了对大量实例的管理和监控）

循环引擎 Loop engines （实现了事件和并发，组件可以以 preforking，threaded，asynchronous/evented 和
green thread/coroutine 模式运行。支持包括 uGreen，Greenlet，Stackless 多种技术，
Gevent , Coro::AnyEvent, Tornado, Goroutines 和 Fibers）

注解

uWSGI 是一个发布周期非常快的活跃项目。所以代码和文档并不总是同步的。
我们尽最大的努力来保证文档的质量，但这很难。请原谅。
如果你遇到了麻烦，邮件列表是解决与 uWSGI 有关问题的最佳地方。
欢迎为文档（以及代码）贡献。

快速入门

	Python/WSGI 应用快速入门

	perl/PSGI 应用快速入门

	ruby/Rack 应用快速入门

	代码片段

目录表

	The Master FIFO

	Systemd

	Running uWSGI instances with Circus

教程

	The uWSGI Caching Cookbook

	Setting up Django and your web server with uWSGI and nginx

	Running uWSGI on Dreamhost shared hosting

	Running python webapps on Heroku with uWSGI

	Running Ruby/Rack webapps on Heroku with uWSGI

	Reliably use FUSE filesystems for uWSGI vassals (with Linux)

	Build a dynamic proxy using RPC and internal routing

	Setting up Graphite on Ubuntu using the Metrics subsystem

Articles

	Serializing accept(), AKA Thundering Herd, AKA the Zeeg Problem

	The Art of Graceful Reloading

	Fun with Perl, Eyetoy and RaspberryPi

	Offloading Websockets and Server-Sent Events AKA “Combine them with Django safely”

uWSGI 子系统

	The uWSGI Legion subsystem

	uWSGI Mules

	The uWSGI Spooler

	SNI - Server Name Identification (virtual hosting for SSL nodes)

	The GeoIP plugin

	uWSGI Transformations

	WebSocket support

	The Metrics subsystem

	The Chunked input API

Scaling with uWSGI

	The uWSGI cheaper subsystem – adaptive process spawning

	The uWSGI Emperor – multi-app deployment

	Auto-scaling with Broodlord mode

	Zerg mode

	Adding applications dynamically

	Scaling SSL connections (uWSGI 1.9)

让 uWSGI 更安全

	Setting POSIX Capabilities

	Running uWSGI in a Linux CGroup

	Using Linux KSM in uWSGI

	Jailing your apps using Linux Namespaces

	The old way: the –namespace option

	FreeBSD Jails

	The Forkpty Router

	The TunTap Router

盯着你的应用(Keeping an eye on your apps)

	Monitoring uWSGI with Nagios

	The embedded SNMP server

	Pushing statistics (from 1.4)

	Integration with Graphite/Carbon

	The uWSGI Stats Server

	The Metrics subsystem

异步和循环引擎 (Async and loop engines)

	uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9)

	The Gevent loop engine

	The Tornado loop engine

	uGreen – uWSGI Green Threads

	The asyncio loop engine (CPython >= 3.4, uWSGI >= 2.0.4)

支持的 Web 服务器

	Apache support

	Cherokee support

	Native HTTP support

	HTTPS support (from 1.3)

	The SPDY router (uWSGI 1.9)

	Lighttpd support

	Attaching uWSGI to Mongrel2

	Nginx support

语言支持

	Python support
	The uwsgi Python module

	uWSGI API - Python decorators

	Pump support

	Python Tracebacker

	Aliasing Python modules

	Application dictionary

	Virtualenv support

	Python 3

	Paste support

	Pecan support

	Using the uwsgi_admin Django app

	The PyPy plugin
	Introduction

	Install uWSGI with PyPy support

	The PyPy home

	The PyPy setup file

	WSGI support

	RPC support

	IPython trick

	uWSGI API status

	Options

	Notes

	Running PHP scripts in uWSGI
	Building

	Running PHP apps with nginx

	Advanced configuration

	Run PHP apps without a frontend server

	uWSGI API support

	Sessions over uWSGI caches (uWSGI >=2.0.4)

	Zend Opcode Cache (uWSGI >= 2.0.6)

	ForkServer (uWSGI >= 2.1)

	uWSGI Perl support (PSGI)
	Compiling the PSGI plugin

	Usage

	Tested PSGI frameworks/applications

	Multi-app support

	The auto reloader (from uWSGI 1.9.18)

	Notes

	Real world example, HTML::Mason

	Ruby support
	Ruby API support

	Building uWSGI for Ruby support

	A note regarding memory consumption

	A note regarding threads and fibers

	Running Rack applications on uWSGI

	Running Ruby on Rails applications on uWSGI

	Using Lua/WSAPI with uWSGI
	Building the plugin

	Why Lua ?

	Your first WSAPI application

	Concurrency

	Abusing coroutines

	Threading example

	A note on memory

	RPC and signals

	The Lua shell

	Using Lua as ‘configurator’

	uWSGI api status

	JVM in the uWSGI server (updated to 1.9)
	The JWSGI interface

	The Clojure/Ring JVM request handler

	Introduction

	Building the JVM support

	Exposing functions via the RPC subsystem

	Registering signal handlers

	The fork() problem and multithreading

	How does it work?

	Passing options to the JVM

	Loading classes (without main method)

	Request handlers

	Notes

	The Mono ASP.NET plugin
	Building uWSGI + Mono

	Starting the server

	Under the hood: the mono key

	Concurrency and fork() unfriendliness

	API access

	Tricks

	Running CGI scripts on uWSGI
	Enabling the plugin

	Configuring CGI mode

	Notes

	Examples

	The GCCGO plugin
	How it works

	Why not use plain Go?

	Building the plugin

	The first app

	uwsgi.gox

	Shared libraries VS monolithic binaries

	Goroutines

	Options

	uWSGI API

	Notes

	The Symcall plugin
	Step 1: preparing the environment

	Step 2: our first request handler:

	Step 3: building our code as a shared library

	Final step: map the symcall plugin to the mysym_function symbol

	Hooks and symcall unleashed: a TCL handler

	Considerations

	The XSLT plugin
	The request handler

	The routing instruction

	SSI (Server Side Includes) plugin
	Using it as a request handler

	Using SSI as a routing action

	Supported SSI commands

	Status

	uWSGI V8 support
	Building

	RPC

	Signal handlers

	Multitheading and multiprocess

	Mules

	The uWSGI API

	JSGI 3.0

	CommonJS

	The GridFS plugin
	Requirements and install

	Standalone quickstart

	The initial slash problem

	Multiple mountpoints (and servers)

	Replica sets

	Prefixes

	MIME types and filenames

	Timeouts

	MD5 and ETag headers

	Multithreading

	Combining with Nginx

	The ‘gridfs’ internal routing action

	Notes

	The GlusterFS plugin
	Step1: glusterfs installation

	Step2: the first cluster

	Step3: uWSGI

	High availability

	Multiple mountpoints

	Multiprocess VS multithread

	Internal routing

	Using capabilities (on Linux)

	Notes:

	The RADOS plugin
	Step1: Ceph cluster and content

	Step2: uWSGI

	High availability

	Multiple mountpoints

	HTTP methods

	Features

	Caching example

	Security note

	Notes

其他插件

	The Pty plugin

	SPNEGO authentication

	Configuring uWSGI with LDAP

弃用(Broken/deprecated)特性

	Integrating uWSGI with Erlang

	Management Flags

	uWSGI Go support (1.4 only)

发布说明

稳定版

	uWSGI 2.0.9

	uWSGI 2.0.8

	uWSGI 2.0.7

	uWSGI 2.0.6

	uWSGI 2.0.5

	uWSGI 2.0.4

	uWSGI 2.0.3

	uWSGI 2.0.2

	uWSGI 2.0.1

	uWSGI 2.0

	uWSGI 1.9.21

	uWSGI 1.9.20

	uWSGI 1.9.19

	uWSGI 1.9.18

	uWSGI 1.9.17

	uWSGI 1.9.16

	uWSGI 1.9.15

	uWSGI 1.9.14

	uWSGI 1.9.13

	uWSGI 1.9.12

	uWSGI 1.9.11

	uWSGI 1.9.10

	uWSGI 1.9.9

	uWSGI 1.9.8

	uWSGI 1.9.7

	uWSGI 1.9.6

	uWSGI 1.9.5

	uWSGI 1.9.4

	uWSGI 1.9.3

	uWSGI 1.9.2

	uWSGI 1.9.1

	uWSGI 1.9

长期支持版(LTS)

	uWSGI 1.4.10 (LTS)

联系信息

	Mailing list
	http://lists.unbit.it/cgi-bin/mailman/listinfo/uwsgi

	Gmane mirror
	http://dir.gmane.org/gmane.comp.python.wsgi.uwsgi.general

	IRC
	#uwsgi @ irc.freenode.org. The owner of the channel is unbit.

	Twitter
	http://twitter.com/unbit

	Commercial support
	http://unbit.com/

.

商业支持

你可以从 http://unbit.com 购买商业支持

捐助

uWSGI 的开发由意大利互联网服务提供商 Unbit [http://unbit.it/] 以及它的客户
支持。你可以购买商业支持和许可。如果你不是 Unbit 的客户或者你不想购买一个商业的
uWSGI 许可，你可以考虑捐助。显然你可以在你的捐助中随意询问想要的新特性。

我们将会把支持开发新特性的人加到 credit 里。

请看 old uWSGI site [http://projects.unbit.it/uwsgi/#Donateifyouwant] 来获取捐助链接。
你可以通过 GitTip [https://www.gittip.com/unbit/] 捐助。

索引和查询

	索引

	模块索引

	搜索页面

Python/WSGI 应用快速入门

这个快速入门指南将会向你展示如何部署简单的 WSGI 应用和普通 web 框架。

Python 在这里特指 CPython，如果你想用 PyPy 你需要使用专门的插件: The PyPy plugin,
Jython 的支持正在开发中。

注解

为了完成这个快速入门确保你的 uWSGI 的版本在 1.4 以上。任何旧的东西
都不会再维护并且使用它们是非常危险的。

安装带 Python 支持的 uWSGI

小技巧

当你开始学习 uWSGI 的时候，尝试从官方源代码构建：使用发行版提供的包可能会
让你非常头疼。当事情变得明朗一点的时候，你可以使用模块化构建(就像在你的发行版中提供的一样)。

uWSGI 是一个(巨大的) C 应用，所以你需要一个 C 编译器(比如 gcc 或者 clang)和 Python 开发版头文件。

在 Debian 系的发行版上一条

apt-get install build-essential python-dev

命令就够了。

你有多种方式来安装 uWSGI 的 Python 包：

	使用 pip

pip install uwsgi

	使用网络安装

curl http://uwsgi.it/install | bash -s default /tmp/uwsgi

(这将会把 uWSGI 二进制文件安装到 /tmp/uwsgi 下，你可以随意修改它)。

	通过下载源代码然后 make 安装

wget http://projects.unbit.it/downloads/uwsgi-latest.tar.gz
tar zxvf uwsgi-latest.tar.gz
cd <dir>
make

(make 完后你会在你的当前目录下得到一个 uwsig 的二进制文件)。

通过你的发行版的包管理器安装是不能面面俱到的(不可能让所有人都开心)，但是一般的规则都适用。

当你使用发行版提供的包来测试这个快速入门的时候，一件你可能想重视的事情就是很有可能
你的发行版是用模块化的方式构建的(每个特性都是一个不同的必须被加载的插件)。
为了完成这个快速入门，你必须在前面第一个例子的前面加上 --plugin python,http 选项，
以及当 HTTP 路由被移除时加上 --plugin python 选项(这可能对你没什么用，继续阅读就好)。

第一个 WSGI 应用

让我们从一个简单的 “Hello World” 例子开始吧(这是在 Python 2.x 中，Python 3.x 需要
返回字节字符串，看下面)：

def application(env, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 return ["Hello World"]

(保存为 foobar.py)。

正如你看到的，它由一个单独的 Python 函数组成。它的名字是 “application”，这是
默认的函数名，uWSGI 的 Python 加载器将会搜索这个名字(但你当然可以修改它)。

Python 3.x 版本如下：

def application(env, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 return [b"Hello World"]

把它部署到 HTTP 端口 9090

现在运行 uWSGI 来启动一个会把请求传递给你的 WSGI 应用的 HTTP 服务器/路由器。

uwsgi --http :9090 --wsgi-file foobar.py

这就是全部了。

注解

当你有前端 web 服务器时不要使用 –http 选项，使用 –http-socket。继续阅读快速入门来理解为什么要这么做。

添加并发和监控

你想做的第一件事可能就是增加并发(uWSGI 默认启动一个单独的进程和一个单独的线程)。

你可以通过 --processes 选项或者 --threads (或者两个选项都使用)来增加更多的进程或者线程。

uwsgi --http :9090 --wsgi-file foobar.py --master --processes 4 --threads 2

这将会产生 4 个进程(每个进程 2 个线程)，一个主进程(当你的进程死掉时会重新 spawn 一个新的)以及 HTTP 路由器(见前面)。

一个重要的任何就是监控。知道发生了什么在生产环境中是极其重要的。stats 子系统允许你
用 JSON 输出 uWSGI 的内部数据：

uwsgi --http :9090 --wsgi-file foobar.py --master --processes 4 --threads 2 --stats 127.0.0.1:9191

向你的应用发送几个请求然后 telnet 到 9191 端口，你将得到大量有趣的信息。你可能想要使用
“uwsgitop” (使用 pip install 你就能得到它)，这是一个类似 top 的工具，用于监控应用实例。

注意

将 stats 套接字(socket)绑定到私有地址(除非你知道你在做什么)，否则任何人都可以访问到它！

放到一个完整的 web 服务器后

即使 uWSGI HTTP 路由器(router)是一个可靠的高性能服务器，你可能还是想把你的应用放到一完整的 web 服务器后。

uWSGI 通常和 HTTP，FastCGI，SCGI 以及它自己特有的协议 “uwsgi” (呃，名字不应该这么取的) 通信。
性能最高的协议显然是 uwsgi，并且早已被 nginx 和 Cherokee 支持 (同时 Apache 也有许多可用的模块)。

一个普通的 nginx 配置如下：

location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
}

这个意思是说 “把每个请求传递到服务器绑定的端口 3031，并且使用 uwsgi 协议通信”。

现在我们可以 spawn 一个 uWSGI 进程来天然地以 uwsgi 协议通信：

uwsgi --socket 127.0.0.1:3031 --wsgi-file foobar.py --master --processes 4 --threads 2 --stats 127.0.0.1:9191

如果你运行 ps aux ，你将会看到少了一个进程。HTTP 路由器(router)已经从我们的 “workers” (分配给 uWSGI 的进程)
中被移除了，这些 worker 便是天然地用来以 uwsgi 协议形式通信的。

如果你的代理/web 服务器/路由器使用 HTTP 协议，你必须告诉 uWSGI 使用 HTTP 协议(这与通过
–http spawn 一个它自己的代理是不一样的)：

uwsgi --http-socket 127.0.0.1:3031 --wsgi-file foobar.py --master --processes 4 --threads 2 --stats 127.0.0.1:9191

开机自启动 uWSGI

如果你打算打开 vi 写一个 init.d 脚本来启动 uWSGI，坐下来冷静一下然后先确保
你的系统没有提供一个更好(更现代化)的方式。

没一个发行版会选择一个启动系统 (Upstart, Systemd...)，除此之外也有许多
进程管理工具(supervisord, god, monit, circus...)。

uWSGI 与上面列出的那些工具都集成得很好(我们希望如此)，但是如果你想部署大量应用的话，
看看 uWSGI 的 Emperor - 它或多或少是每个开发运维工程师的梦想。

部署 Django

Django 可能是使用得最多的 Python web 框架了。部署它非常简单(我们仍然使用 4 个进程，2 个线程的配置)。

假定你的 Django 项目在 /home/foobar/myproject 下：

uwsgi --socket 127.0.0.1:3031 --chdir /home/foobar/myproject/ --wsgi-file myproject/wsgi.py --master --processes 4 --threads 2 --stats 127.0.0.1:9191

(通过 --chdir 选项我们可以移动一个特定的目录)。在 Django 中为了正确的加载模块这是必须的。

啊！这是什么鬼？！是的，你是对的，你是对的。。。处理这么长的命令行是不实际的，又蠢又容易出错。
不要怕！ uWSGI 提供多种配置风格。在这个快速入门里我们将使用 .ini 文件。

[uwsgi]
socket = 127.0.0.1:3031
chdir = /home/foobar/myproject/
wsgi-file = myproject/wsgi.py
processes = 4
threads = 2
stats = 127.0.0.1:9191

更好一点了！

尽管运行它：

uwsgi yourfile.ini

如果 /home/foobar/myproject/myproject/wsgi.py (或者其他你的项目的名字) 这个文件不存在，你很有可能
使用的是老的版本的 Django (1.4 以下)。在这种情况下你需要配置更多一点的东西：

uwsgi --socket 127.0.0.1:3031 --chdir /home/foobar/myproject/ --pythonpath .. --env DJANGO_SETTINGS_MODULE=myproject.settings --module "django.core.handlers.wsgi:WSGIHandler()" --processes 4 --threads 2 --stats 127.0.0.1:9191

或者，使用 .ini 文件：

[uwsgi]
socket = 127.0.0.1:3031
chdir = /home/foobar/myproject/
pythonpath = ..
env = DJANGO_SETTINGS_MODULE=myproject.settings
module = django.core.handlers.wsgi:WSGIHandler()
processes = 4
threads = 2
stats = 127.0.0.1:9191

老版(1.4 以下)的 Django 发行版需要设置 evn, module 和 pythonpath (.. 使得我们可以访问
myproject.settings 模块)。

部署 Flask

Flask 是一个流行的 Python web 微框架。

保存下面这个例子到 myflaskapp.py :

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():
 return "I am app 1"

Flask 把它的 WSGI 函数(就是我们在之前快速入门里称作 “application” 即应用的东西)暴露成 “app”, 所以
我们需要告诉 uWSGI 去使用它。
我们仍然使用 4 个进程/2 个线程，以及 uwsgi socket :

uwsgi --socket 127.0.0.1:3031 --wsgi-file myflaskapp.py --callable app --processes 4 --threads 2 --stats 127.0.0.1:9191

(唯一增加的选项便是 --callable 选项)。

部署 web2py

又是一个流行的选择。你可以选择把 web2py 的发行版源代码解压到一个目录然后写一个 uWSGI 配置文件：

[uwsgi]
http = :9090
chdir = path_to_web2py
module = wsgihandler
master = true
processes = 8

注解

On recent web2py releases you may need to copy the wsgihandler.py script out of the handlers directory.

我们再次使用 HTTP 路由器(router)。用你的浏览器访问 9090 端口然后你就可以看到 web2py 的欢迎页面了。

点击管理页面然后...哎呀，它需要 HTTPS。不要担心，uWSGI 路由器(router)可支持 HTTPS (确保你
有 OpenSSL 开发版的头文件：安装它们然后重新构建 uWSGI，build 系统会自动检测到它)。

First of all generate your key and certificate:
首先生成你的秘钥(key)和证书(certificate)：

openssl genrsa -out foobar.key 2048
openssl req -new -key foobar.key -out foobar.csr
openssl x509 -req -days 365 -in foobar.csr -signkey foobar.key -out foobar.crt

现在你有两个文件(算上 foobar.csr 的话就是三个了), foobar.key 和 foobar.crt 。修改 uWSGI 配置：

[uwsgi]
https = :9090,foobar.crt,foobar.key
chdir = path_to_web2py
module = wsgihandler
master = true
processes = 8

重新运行 uWSGI 然后使用 https:// 用你的浏览器连接到 9090 端口。

Python 线程小贴士

如果你没有使用线程启动 uWSGI，Python 的 GIL 将不会被开启，所以你的应用产生的线程
将永远不会运行。你可能不会喜欢这个选择，但是记住 uWSGI 是一个语言无关的服务器，所以它的
大部分选择都是尽可能维持它 “agnostic”。

但是不用担心，基本上不存在不能通过选项来改变的由 uWSGI 开发者决定的选项。

如果你想维持 Python 的线程支持同时应用又不启动多个线程，只需要加上
--enable-threads 选项 (或者 enable-threads = true 在 ini 风格配置文件中)。

Virtualenvs

uWSGI 可以被配置成在某个特定的 virtualenv 中搜索 Python 模块。

只要添加 virtualenv = <path> 到你的选中中就可以了。

安全和可用性

永远 不要使用 root 来运行 uWSGI 实例。你可以用 uid 和 gid 选项来降低权限：

[uwsgi]
https = :9090,foobar.crt,foobar.key
uid = foo
gid = bar
chdir = path_to_web2py
module = wsgihandler
master = true
processes = 8

如果你需要绑定到一个特权端口(比如 HTTPS 的443)，使用共享套接字(shared sockets)。它们在权限降低之前被创建，可以
使用 =N 语法来引用，这里的 N 指 socket 编号(从0开始)：

[uwsgi]
shared-socket = :443
https = =0,foobar.crt,foobar.key
uid = foo
gid = bar
chdir = path_to_web2py
module = wsgihandler
master = true
processes = 8

web 应用开发一个最常见的问题就是 “stuck requests”(卡住的请求)。你所有的线程/worker 都被卡住(被请求堵塞)，
然后你的应用再也不能接受更多的请求。
为了避免这个问题你可以设置一个 harakiri 计时器。它是一个监视器(由主进程管理)，当
进程被卡住的时间超过特定的秒数后就销毁这个进程(慎重选择 harakiri 的值)。比如，你可能
想把卡住超过 30 秒的 worker 销毁掉：

[uwsgi]
shared-socket = :443
https = =0,foobar.crt,foobar.key
uid = foo
gid = bar
chdir = path_to_web2py
module = wsgihandler
master = true
processes = 8
harakiri = 30

另外，从 uWSGI 1.9 起，统计服务器会输出所有的请求变量，所以你可以(实时地)查看你的
实例在干什么(对于每个 worker，线程或者异步 core)。

Offloading

The uWSGI offloading subsystem 使得你可以在某些模式满足时释放你的 worker，并且把工作委托给一个纯 c 的线程。
这样例子比如有从文件系统传递静态文件，通过网络向客户端传输数据等等。

Offloading 非常复杂，但它的使用对用户来说是透明的。如果你想试试的话加上 --offload-threads <n>
选项，这里的 <n> 是 spawn 的线程数(以 CPU 数目的线程数启动是一个不错的值)。

当 offload threads 被启用时，所有可以被优化的部分都可以自动被检测到。

Bonus: 多版本 Python 使用同一个 uWSGI 二进制文件

正如我们已经看到的，uWSGI 由一个很小的核心和许多插件组成。插件可以被嵌入到二进制文件中
或者动态加载。当你为 Python 构建 uWSGI 的时候，许多插件包括 Python 在内的插件都被嵌入到了最终的二进制文件中。

当你使用多个 Python 版本但是没有为每一个版本构建一个二进制文件时这可能会造成问题。

最好的方法可能是弄一个没有内置语言特性的小二进制文件，然后每个 Python 版本有一个
插件，可以动态地加载。

在 uWSGI 的源代码目录中：

make PROFILE=nolang

这将会构建一个包含除了 Python 之外的所有默认内置插件的 uwsgi 二进制文件。

现在，在相同的目录下，我们开始构建 Python 插件：

PYTHON=python3.4 ./uwsgi --build-plugin "plugins/python python34"
PYTHON=python2.7 ./uwsgi --build-plugin "plugins/python python27"
PYTHON=python2.6 ./uwsgi --build-plugin "plugins/python python26"

你最后会得到这些文件： python34_plugin.so, python27_plugin.so, python26_plugin.so 。复制
这些文件到你的目录中。(uWSGI 默认在当前的工作目录中搜索插件。)

现在你只需要在你的配置文件中(在文件最上面)简单加上 plugins-dir 和 plugin 选项就可以了。

[uwsgi]
plugins-dir = <path_to_your_plugin_directory>
plugin = python26

这将会从你复制插件到的那个目录中加载 python26_plugin.so 插件。

那么现在...

有了这些很少的概念你就已经可以进入到生产中了，但是 uWSGI 是一个拥有上百个特性和配置的生态系统。
如果你想成为一个更好的系统管理员，继续阅读完整的文档吧。

perl/PSGI 应用快速入门

下面的说明将会引导你安装运行一个基于 perl 的目的在于运行 PSGI apps 的 uWSGI 发行版。

安装带 Perl 支持的 uWSGI

为了构建 uWSGI 你需要一个 c 编译器(gcc 和 clang 都支持)以及 python 二进制文件(它只会用于运行 uwsgiconfig.py
脚本来执行一些比较复杂的步骤)。
为了构建带有 perl 支持的 uWSGI 二进制文件我们也需要 perl 开发版的头文件(在 debian 系发行版上是
libperl-dev 这个包)。

你可以手动构建 uWSGI：

python uwsgiconfig.py --build psgi

这和下面一样：

UWSGI_PROFILE=psgi make

或者使用网络安装：

curl http://uwsgi.it/install | bash -s psgi /tmp/uwsgi

这将会在 /tmp/uwsgi (你可以随便改变成你想要的路径) 目录下创建一个 uWSGI 二进制文件。

使用发行版包需要注意的地方

你的发行版很有可能已经包含了一个 uWSGI 的包集合。这些 uWSGI 包趋向于高度模块化，
所以除了 core 你还需要安装需要的插件。
在你的配置中插件必须被加载。在学习阶段我们强烈建议不要使用发行版的包，简单地跟着文档和教程走就可以了。

一旦你对 “uWSGI 方式” 感到习惯了，你可以为你的部署选择最好的途径。

你的第一个 PSGI 应用

把它以 myapp.pl 文件名保存

my $app = sub {
 my $env = shift;
 return [
 '200',
 ['Content-Type' => 'text/html'],
 ["<h1>Hello World</h1>"],
];
};

然后以 http 模式运行 uWSGI：

uwsgi --http :8080 --http-modifier1 5 --psgi myapp.pl

(如果 uwsgi 不在你当前的 $PATH 里的话记着替换它)

或者如果你使用了模块化安装(比如你的发行版里的包)

uwsgi --plugins http,psgi --http :8080 --http-modifier1 5 --psgi myapp.pl

注解

当你有一个前段 web 服务器的时候不要使用 -http 选项，使用 –http-socket。继续阅读这个快速入门你就会明白为什么要这么做

‘–http-modifier1 5’ 是什么鬼？？？

uWSGI 支持多种语言和平台。当服务器收到一个请求时它必须知道“路由”它到哪里去。

每一个 uWSGI 插件都有一个分配的数字(modifier)，perl/psgi 的数字是 5。所以 –http-modifier1 5
表示“路由到 psgi 插件”。

虽然 uWSGI 有一个更“友好”的 internal routing system ，但使用
modifier 仍然是最快的方式，所以尽可能地使用他们。

使用一个完整的 web 服务器：nginx

提供的 http 路由器仅仅就是一个路由器(是的，难以置信)。你可以使用它作为负载均衡器或者代理，
但是如果你需要一个完整的 web 服务器(比如为了高性能地提供静态文件访问或者那些 web 服务器更适合的工作)，
使用 uwsig http 路由器有风险(记住把 –plugins http,psgi 改成 –plugins psgi 如果你是模块化安装的话)，
你应该把你的应用放在 nginx 后面。

为了和 nginx 通信，uWSGI 可以使用多种协议：http，uwsgi，fastcgi，scgi...

性能最高的是 uwsgi。Nginx 提供了开箱即用的 uwsgi 协议支持。

使用 uwsgi socket 运行你的 psgi 应用：

uwsgi --socket 127.0.0.1:3031 --psgi myapp.pl

然后在你的 nginx 配置中加一个 location 节：

location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_modifier1 5;
}

重启你的 nginx 服务器，然后它就会启动请求到你的 uWSGI 实例之间的代理。

注意你不需要把你的 uWSGI 配置一个特殊的 modifier，nginx 将会使用 uwsgi_modifier1 5; 指令。

如果你的代理/web 服务器/路由器 使用 HTTP，你需要告诉 uWSGI 使用 http 协议(这与 –http 不同，后者
会自己 spawn 一个代理):

uwsgi --http-socket 127.0.0.1:3031 --http-socket-modifier1 5 --psgi myapp.pl

正如你看到的我们需要指定 modifier1，因为 http 协议不能附带这种信息。

添加并发

你可以通过多进程，多线程或者各种异步模式来给你的应用添加并发。

要 spawn 更多的进程，使用 –processes 选项

uwsgi --socket 127.0.0.1:3031 --psgi myapp.pl --processes 4

要使用更多的线程，使用 –threads

uwsgi --socket 127.0.0.1:3031 --psgi myapp.pl --threads 8

或者两者都用

uwsgi --socket 127.0.0.1:3031 --psgi myapp.pl --threads 8 --processes 4

在 perl 世界中一个非常常见的非堵塞/协程库就是 Coro::AnyEvent 。uWSGi 简单
包含 coroae 插件就可以使用它了。

要编译一个带有 coroae 支持的 uWSGI 二进制文件只需运行：

UWSGI_PROFILE=coroae make

或者

curl http://uwsgi.it/install | bash -s coroae /tmp/uwsgi

你将会得到一个带有 psgi 和 coroae 插件的 uWSGI 二进制文件。

现在用 Coro::AnyEvent 模式来运行你的应用：

uwsgi --socket 127.0.0.1:3031 --psgi myapp.pl --coroae 1000 --processes 4

它会运行 4 个进程，每个进程可以管理 1000 个协程(或者 Coro 微线程)。

增加鲁棒性：主进程

非常推荐的做法是在生成环境中的应用全部都运行主进程。

它会持续地监控你的进程/线程，并且会像 The uWSGI Stats Server 一样将会添加更多有趣的特性。

要使用主进程只需要加上 –master 选项

uwsgi --socket 127.0.0.1:3031 --psgi myapp.pl --processes 4 --master

使用配置文件

uWSGI 提供了好几百个选项。通过命令行去处理它们是愚蠢的，所以尽量使用配置文件。
uWSGI 支持多种标准(xml, .ini, json, yaml...)。从一个标准变成另一个非常简单。
所有你在命令行中可以使用的选项只要去掉 -- 前缀就可以用在配置文件中。

[uwsgi]
socket = 127.0.0.1:3031
psgi = myapp.pl
processes = 4
master = true

或者 xml：

<uwsgi>
 <socket>127.0.0.1:3031</socket>
 <psgi>myapp.pl</psgi>
 <processes>4</processes>
 <master/>
</uwsgi>

要用配置文件来运行 uWSGI，只需要通过参数来指定它就可以了：

uwsgi yourconfig.ini

如果出于某种原因你的配置文件不能以正常的拓展名(.ini, .xml, .yml, .js)结尾，
你可以用下面这种方式来强制 uWSGI 使用指定的解析器：

uwsgi --ini yourconfig.foo

uwsgi --xml yourconfig.foo

uwsgi --yaml yourconfig.foo

等等

你甚至可以使用管道流式配置(使用 - 强制从标准输入读取)：

perl myjsonconfig_generator.pl | uwsgi --json -

自动启动 uWSGI

如果你打算写一些 init.d 脚本来启动 uWSGI，坐下来冷静一下，然后检查你的系统是否
真的没有提供更好的(现代化)的方式。

每一个发行版会选择一个启动系统 (Upstart, Systemd...) 除此之外也许多
进程管理工具 (supervisord, god...) 。

uWSGI will integrate very well with all of them (we hope), but if you plan to deploy a big number of apps check the uWSGI Emperor
uWSGI 与上面列出的那些工具都集成得很好(我们希望如此)，但是如果你想部署大量应用的话，看
看 uWSGI 的 Emperor 。它是每个运维开发的梦想。

安全和可用性

永远 不要使用 root 来运行 uWSGI 实例。你可以用 uid 和 gid 选项来降低权限：

[uwsgi]
socket = 127.0.0.1:3031
uid = foo
gid = bar
chdir = path_toyour_app
psgi = myapp.pl
master = true
processes = 8

web 应用开发一个最常见的问题就是 “stuck requests”(卡住的请求)。你所有的线程/worker 都被卡住(被请求堵塞)，
然后你的应用再也不能接受更多的请求。

为了避免这个问题你可以设置一个 harakiri 计时器。它是一个监视器(由主进程管理)，
当进程被卡住的时间超过特定的秒数后就销毁这个进程。

[uwsgi]
socket = 127.0.0.1:3031
uid = foo
gid = bar
chdir = path_toyour_app
psgi = myapp.pl
master = true
processes = 8
harakiri = 30

上面的配置会将卡住超过 30 秒的 worker 销毁。慎重选择 harakiri 的值 !!!

另外，从 uWSGI 1.9 起，统计服务器会输出所有的请求变量，所以你可以(实时地)查看你的
实例在干什么(对于每个 worker，线程或者异步 core)。

打开 stats server 很简单：

[uwsgi]
socket = 127.0.0.1:3031
uid = foo
gid = bar
chdir = path_toyour_app
psgi = myapp.pl
master = true
processes = 8
harakiri = 30
stats = 127.0.0.1:5000

只需要把它绑定到一个地址(UNIX domain sockt 或者 TCP)然后(你也可以使用 telnet)连接它，然后就会
返回你的实例的一个 JSON 数据。

uwsgitop 应用(你可以在官方的 github 仓库中找到它)就是一个使用 stats
server 的例子，它和 top 这种实时监控的工具类似(彩色的!!!)

Offloading

The uWSGI offloading subsystem 使得你可以在某些模式满足时释放你的 worker，并且把工作委托给一个纯 c 的线程。
这样例子比如有从文件系统传递静态文件，通过网络向客户端传输数据等等。

Offloading 非常复杂，但它的使用对用户来说是透明的。如果你想试试的话加上 --offload-threads <n> 选项，
这里的 <n> 是 spawn 的线程数(以 CPU 数目的线程数启动是一个不错的值)。

当 offload threads 被启用时，所有可以被优化的部分都可以自动被检测到。

那么现在...

有了这些很少的概念你就已经可以进入到生产中了，但是 uWSGI 是一个拥有上百个特性和配置的生态系统。
如果你想成为一个更好的系统管理员，继续阅读完整的文档吧。

ruby/Rack 应用快速入门

下面这份使用说明将会引导你安装，运行一个基于 Ruby 的 uWSGI 应用。旨在运行 Rack 应用。

安装带 Ruby 支持的 uWSGI

为了编译 uWSGI 你需要一个 C 编译器(gcc 和 clang 都支持)和一个 Python 解释器(用于运行 uwsgiconfig.py 脚本, 这个脚本
将会执行各种各样的编译步骤)。

为了编译带 Ruby 支持的 uWSGI 二进制文件，我们还需要 Ruby 开发版头文件(在 Debian
系的发行版上即 ruby-deb 包)。

你可以手动构建 uWSGI – 所有这些方式都是等价的：

make rack
UWSGI_PROFILE=rack make
make PROFILE=rack
python uwsgiconfig.py --build rack

如果你够懒的话，你可以一次性下载编译安装一个 uWSGI + Ruby 二进制文件：

curl http://uwsgi.it/install | bash -s rack /tmp/uwsgi

或者一种更 “Ruby 友好“ 的方法：

gem install uwsgi

所有这些方法都构建了一个”大一统“的 uWSGI 二进制文件。
uWSGI 项目由许多插件组成。你可以选择构建核心的服务器，然后为每个特性构建单独的插件(需要的时候就加载)。
或者你可以构建一个单独的带有所有你需要的特性的二进制文件。后者被称为 ‘monolithic’ 。

这个快速入门假定你编译了一个大一统的二进制文件(所以你不需要加载插件)。
如果你更喜欢使用你的包管理器(从官方源构建 uWSGI)，请看下面。

Note for distro packages

你的发行版很有可能已经包含了一个 uWSGI 的包集合。
这些 uWSGI 包更倾向于高度模块化(以及偶尔会严重过时)，
所以出了核心你还需要安装需要的插件。插件必须在你的 uWSGI 配置中加载。
在学习阶段我们强烈建议不要使用包管理器提供的包，而是简单跟着文档和教程走就可以了。

一旦你适应了这种 ”uWSGI 方式“，你就可以选择最适合你开发的方法了。

比如说，这个教程会使用到 “http” 和 “rack” 插件。
如果你使用的是模块化编译确保你用 --plugins http,rack 选项加载了它们。

你的第一个 Rack 应用

Rack 是编写 Ruby web 应用的标准方式。

这是一个标准的 Rack Hello world 脚本(把它取名为 app.ru)：

class App

 def call(environ)
 [200, {'Content-Type' => 'text/html'}, ['Hello']]
 end

end

run App.new

.ru 后缀名表示 “rackup”, 它是 Rack 包包含的一个开发工具。
Rackup 使用了一些 DSL, 所以想在 uWSGI 中使用它的话你需要安装 rack gem：

gem install rack

现在我们准备好使用 uWSGI 了：

uwsgi --http :8080 --http-modifier1 7 --rack app.ru

(记着如果 uwsgi 不在 $PATH 里的话把 ‘uwsgi’ 替换成成相应的路径)

或者如果你使用了模块化安装的话(比如你的发行版提供的包)

uwsgi --plugins http,rack --http :8080 --http-modifier1 7 --rack app.ru

通过这个命令我们 spawn 了一个 HTTP 代理，它会每一个请求转发到一个进程(叫 ‘worker’) ，worker 会
处理它然后返回一个回复给 HTTP 路由(然后它再发送给客户端)。

如果你问为什么要 spawn 两个进程，那是因为这是在生产环境中最常见的架构(一个前端 web 服务器和一个后端应用服务器)。

如果你真的不想 spawn HTTP 代理而是直接强制 worker 回应 HTTP 请求的话改下命令行就可以了：

uwsgi --http-socket :8080 --http-socket-modifier1 7 --rack app.ru

现在你就有了一个单一的进程来处理请求(但是记住这样会把应用服务器暴露在公网中，这通常
是很危险的，而且也很少用)。

‘–http-modifier1 7’ 是什么鬼？

uWSGI 支持多种语言和平台。当服务器收到一个请求时它得知道把它”路由”到哪里去。

每个 uWSGI 插件都有一个给定的数字(即 modifiers), ruby/rack 是 7 。所以 --http-modifier1 7 表示 “路由到 rack 插件”。

虽然 uWSGI 也有一个更人性化的 internal routing system , 但是
使用 modifiers 是处理速度最快的方式，所有尽量使用它们。

使用完整的 web 服务器: nginx

uWSGI 提供的 HTTP 路由器只是一个路由器。
你可以把它当成负载均衡器或者代理来使用，但是如果你需要一个完整的 web 服务器(为了高效地提供静态文件服务或者
其他类似的 web 服务器擅长的任务),
使用 uwsgi HTTP 路由器有风险(如果你使用了模块化构建的话记着把 –plugins http,rack 改成 –plugins rack)，
你应该把你的应用放在 Nginx 后面。

为了和 Nginx 通讯，uWSGI 可以使用多种协议：HTTP, uwsgi, FastCGI, SCGI 等等。

性能最好的是 uwsgi 协议。Ngxin 包含了 uwsgi 协议，开箱即用。

在 uwsgi socket 上运行你的 rack 应用：

uwsgi --socket 127.0.0.1:3031 --rack app.ru

然后在你的 nginx 配置添加 location 节：

location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_modifier1 7;
}

重启你的 nginx 服务器，然后它应该就开始为你的 uWSGI 实例反向代理请求了。

注意你并不需要配置 uWSGI 来使用特定的 modifier, nginx 将会直接使用 uwsgi_modifier1 5; 。

添加并发

在前面的例子中我们构建了一个一次只能处理一个请求的栈。

为了增加并发我们需要增加更多的进程。
如果你希望有一个魔法方程来计算正确的进程数目，呃，不好意思我们没有。
你需要实验监控你的应用来找到正确的值。
考虑到每一个单独的进程都是你的应用的一份完全的复制，所以内存使用需要被考虑在内。

要添加更多的进程使用 –processes <n> 选项就可以了：

uwsgi --socket 127.0.0.1:3031 --rack app.ru --processes 8

这将会 spawn 8 个进程。

混合编译时这个插件会自动编译进去。

添加更多的线程：

uwsgi --socket 127.0.0.1:3031 --rack app.ru --rbthreads 4

或者线程 + 进程

uwsgi --socket 127.0.0.1:3031 --rack app.ru --processes --rbthreads 4

有一些其他的(通常更高级/复杂)方法来增加并发(比如 ‘fibers’)，但大多数情况下你会
以原先的多进程或者多线程告终。如果你感兴趣的话可以查阅 Rack 的完整文档。

增加鲁棒性：主进程

强烈建议在生产环境中始终使用 uWSGI 主进程。

它会持续地监视你的进程/线程，然后它还会像 The uWSGI Stats Server 一样添加一些有趣的特性。

要使用主进程只要简单地加上 --master 就可以了

uwsgi --socket 127.0.0.1:3031 --rack app.ru --processes 4 --master

使用配置文件

uWSGI 提供了好几百个选项(但你通常用到的不会超过几十个)。通过命令行去处理它们是愚蠢的，所以尽量使用配置文件。

uWSGI 支持多种标准(xml, .ini, json, yaml...)。从一个标准变成另一个非常简单。
所有你在命令行中可以使用的选项只要去掉 – 前缀就可以用在配置文件中。

[uwsgi]
socket = 127.0.0.1:3031
rack = app.ru
processes = 4
master = true

或者 xml:

<uwsgi>
 <socket>127.0.0.1:3031</socket>
 <rack>app.ru</rack>
 <processes>4</processes>
 <master/>
</uwsgi>

要用配置文件来运行 uWSGI，只需要通过参数来指定它就可以了：

uwsgi yourconfig.ini

如果出于某种原因你的配置文件不能以正常的拓展名(.ini, .xml, .yml, .js)结尾，
你可以用下面这种方式来强制 uWSGI 使用指定的解析器：

uwsgi --ini yourconfig.foo

uwsgi --xml yourconfig.foo

uwsgi --yaml yourconfig.foo

等等。

你甚至可以使用管道流式配置(使用 - 强制从标准输入读取)：

ruby myjsonconfig_generator.rb | uwsgi --json -

当你使用多进程时的 fork() 问题

uWSGI is “Perlish” in a way, there is nothing we can do to hide that. Most of its choices (starting from “There’s more than one way to do it”) came from the Perl world (and more generally from classical UNIX sysadmin approaches).

有时候其他语言/平台上使用这些方法会导致不在意料中的行为发生。

当你开始学习 uWSGI 的时候一个你可能会面对的”问题”之一就是它的 fork() 使用。

默认情况下 uWSGI 在第一个 spawned 的进程里加载你的应用，然后在这个进程里面调用 fork() 多次。

这意味这你的应用被单独加载一次然后被复制。

虽然这个方法加速了服务器的启动，但有些应用可能会因为这个技术造成一些问题(特别是这些在启动的
时候初始化数据库连接的，因为连接的文件描述符会在字进程中继承)。

如果你确定应不应该使用 uWSGI 野蛮的预-fork方式，那就使用 --lazy-apps 选项禁用掉它。
它将会强制你的应用在每个 worker 里都会完整加载一次。

部署 Sinatra

让我们忘掉 fork(), 然后回到有趣的事情上来。这次我们要部署一个 Sinatra 应用。

require 'sinatra'

get '/hi' do
 "Hello World"
end

run Sinatra::Application

保存为 config.ru 然后像前面那样运行：

[uwsgi]
socket = 127.0.0.1:3031
rack = config.ru
master = true
processes = 4
lazy-apps = true

uwsgi yourconf.ini

呃，你或许早就发现和前面例子中 app.ru 基本没有发生什么改变。

这是因为基本上所有的现代的 Rack 应用都把它自己暴露成一个 .ru 文件(通常叫 config.ru), 所以
加载应用不需要多种选项(就像 Python/WSGI 世界里的例子一样)。

部署 RubyOnRails >= 3

从 3.0 开始，Rails 完全兼容 Rack，并且提供了一个你可以直接加载的 cofnig.ru 文件(就像我们在
Sinatra 中做的那样)。

与 Sinatra 唯一的不同就是你的项目的布局/约定你的当前目录包含了项目，所以让我们添加一个 chdir 的选项：

[uwsgi]
socket = 127.0.0.1:3031
rack = config.ru
master = true
processes = 4
lazy-apps = true
chdir = <path_to_your_rails_app>
env = RAILS_ENV=production

uwsgi yourconf.ini

除了 chdir 之外我们还加上了 ‘env’ 选项，设置了 RAILS_ENV 环境变量。

从 4.0 起，Rails 支持多线程(仅在 ruby 2.0 中)：

[uwsgi]
socket = 127.0.0.1:3031
rack = config.ru
master = true
processes = 4
rbthreads = 2
lazy-apps = true
chdir = <path_to_your_rails_app>
env = RAILS_ENV=production

部署旧版的 RubyOnRails

旧版的 Rails 不是完全兼容 Rack。基于这个原因所以 uWSGI 有一个专门的选项来加载旧版 Rails 应用(你
也需要 ‘thin’ gem)。

[uwsgi]
socket = 127.0.0.1:3031
master = true
processes = 4
lazy-apps = true
rails = <path_to_your_rails_app>
env = RAILS_ENV=production

所以，简单来说就是，指定 rails 选项，然后把 rails 应用目录传给它，而不是传一个 Rackup 文件。

Bundler 和 RVM

Bundler 是事实上的标准 Ruby 依赖管理工具。你主要在 Gemfile 文本文件中申明
你的应用需要的 gems，然后用 bundler 来安装它们。

要让 uWSGI 帮你使用 bundler 安装你只需要添加：

rbrequire = rubygems
rbrequire = bundler/setup
env = BUNDLE_GEMFILE=<path_to_your_Gemfile>

(前一个 require 在 rubty 1.9/2.x 中不需要。)

这些行主要强制 uWSGI 加载 bundler 引擎然后使用由 BUNDLE_GEMFILE 环境变量
指定的 Gemfile 文件。

当使用 Bundler 的时候(就像现代的框架一样)你通常的开发配置会这样：

[uwsgi]
socket = 127.0.0.1:3031
rack = config.ru
master = true
processes = 4
lazy-apps = true
rbrequire = rubygems
rbrequire = bundler/setup
env = BUNDLE_GEMFILE=<path_to_your_Gemfile>

除了 Bundler，RVM 是另外一个常用的工具。

它允许你有多个版本(独立的)的 Ruby 安装(以及它们的 gem 集合)在一个单独的系统中。

要让 uWSGI 使用某特定 RVM 版本的 gem 集合只需要使用 -gemset 选项：

[uwsgi]
socket = 127.0.0.1:3031
rack = config.ru
master = true
processes = 4
lazy-apps = true
rbrequire = rubygems
rbrequire = bundler/setup
env = BUNDLE_GEMFILE=<path_to_your_Gemfile>
gemset = ruby-2.0@foobar

请注意对于每一个 Ruby 版本(是 Ruby 的版本，不是 gemset 的)你需要一个 uWSGI 二进制文件(或者一个插件，如果你使用了模块化构建的话)。

如果你感兴趣，这是用来在 rvm 构建多版本的 Ruby 并各自带有 uWSGI 核心以及一个插件的命令列表：

build the core
make nolang
build plugin for 1.8.7
rvm use 1.8.7
./uwsgi --build-plugin "plugins/rack rack187"
build for 1.9.2
rvm use 1.9.2
./uwsgi --build-plugin "plugins/rack rack192"
and so on...

然后如果你想使用 ruby 1.9.2 并使用 @oops gemset:

[uwsgi]
plugins = ruby192
socket = 127.0.0.1:3031
rack = config.ru
master = true
processes = 4
lazy-apps = true
rbrequire = rubygems
rbrequire = bundler/setup
env = BUNDLE_GEMFILE=<path_to_your_Gemfile>
gemset = ruby-1.9.2@oops

自动启动

如果你打算打开 vi 写一个 init.d 脚本来启动 uWSGI，
坐下来冷静一下然后先确保你的系统没有提供一个更好(更现代化)的方式。

没一个发行版会选择一个启动系统 (Upstart, Systemd...) ，
除此之外也有许多 进程管理工具(supervisord, god, monit, circus...)。

uWSGI 与上面列出的那些工具都集成得很好(我们希望如此)，但是如果你想部署大量应用的话，
看看 uWSGI 的 Emperor - 它或多或少是每个开发运维工程师的梦想。

安全和可用性

永远 不要使用 root 来运行 uWSGI 实例。你可以用 uid 和 gid 选项来降低权限：

[uwsgi]
socket = 127.0.0.1:3031
uid = foo
gid = bar
chdir = path_toyour_app
rack = app.ru
master = true
processes = 8

web 应用开发一个最常见的问题就是 “stuck requests”(卡住的请求)。你所有的线程/worker 都被卡住(被请求堵塞)， 然后你的应用再也不能接受更多的请求。

为了避免这个问题你可以设置一个 harakiri 计时器。它是一个监视器(由主进程管理)，当进程被卡住的时间超过特定的秒数后就销毁这个进程。

[uwsgi]
socket = 127.0.0.1:3031
uid = foo
gid = bar
chdir = path_toyour_app
rack = app.ru
master = true
processes = 8
harakiri = 30

上面的配置会将卡住超过 30 秒的 worker 销毁。慎重选择 harakiri 的值!

另外，从 uWSGI 1.9 起，统计服务器会输出所有的请求变量，所以你可以(实时地)查看你的实例在干什么(对于每个 worker，
线程或者异步 core)。

打开 stats server 很简单：

[uwsgi]
socket = 127.0.0.1:3031
uid = foo
gid = bar
chdir = path_to_your_app
rack = app.ru
master = true
processes = 8
harakiri = 30
stats = 127.0.0.1:5000

只需要把它绑定到一个地址(UNIX domain sockt 或者 TCP)然后(你也可以使用 telnet)连接它，
然后就会返回你的实例的一个 JSON 数据。

uwsgitop 应用(你可以在官方的 github 仓库中找到它)就是一个使用 stats server 的例子，
它和 top 这种实时监控的工具类似(彩色的!!!)

内存使用

低内存消耗是真个 uWSGI 项目的一个买点之一。

不幸的是默认的苛刻内存使用可能(注意：是可能)会导致性能问题。

uWSGI Rack 插件默认在每个请求完成后调用 Ruby GC(垃圾回收器)。
如果你想减少 gc 的频率只需要添加上 --rb-gc-freq <n> 选项，
n 是多少个请求完成后才调用 GC。

如果你计划对 uWSGI 做基准测试(或者与其他的解决方案比较)请注意它的 GC 使用。

Ruby 有时可能会真的是一头内存怪兽，所以我们更倾向于默认的苛刻内存使用，
而不是为了得到 hello-world 类的基准测试(benchmarkers)高分。

Offloading

The uWSGI The uWSGI offloading subsystem 使得你可以在某些模式满足时立即释放你的 worker，
并且把工作委托给一个纯 c 的线程。
这样例子包括从文件系统传递静态文件，通过网络向客户端传输数据等等。

Offloading 非常复杂，但它的使用对终端用户来说是透明的。
如果你想试试的话加上 --offload-threads <n> 选项，
这里的 <n> 是 spawn 的线程数(以 CPU 数目的线程数启动是一个不错的值)。

当 offload threads 被启用时，所有可以被优化的部分都可以自动被检测到。

那么现在...

有了这些很少的概念你就已经可以进入到生产中了，
但是 uWSGI 是一个拥有上百个特性和配置的生态系统。 如果你想成为一个更好的系统管理员，继续阅读完整的文档吧。

欢迎！

代码片段

这是一些最”有趣”的 uWSGI 特性使用的合集。

X-Sendfile emulation

甚至你的前端代理/web 服务器不支持 X-Sendfile (或者不能访问到你的静态资源)你可以使用 uWSGI 内部的
offloading(你的进程/线程把服务静态文件的实际工作交给 offload 线程) 来模拟它。

[uwsgi]
...
; load router_static plugin (compiled in by default in monolithic profiles)
plugins = router_static
; spawn 2 offload threads
offload-threads = 2
; files under /private can be safely served
static-safe = /private
; collect the X-Sendfile response header as X_SENDFILE var
collect-header = X-Sendfile X_SENDFILE
; if X_SENDFILE is not empty, pass its value to the "static" routing action (it will automatically use offloading if available)
response-route-if-not = empty:${X_SENDFILE} static:${X_SENDFILE}

强制 HTTPS

这会强制在你的整个网站上使用 HTTPS。

[uwsgi]
...
; load router_redirect plugin (compiled in by default in monolithic profiles)
plugins = router_redirect
route-if-not = equal:${HTTPS};on redirect-permanent:https://${HTTP_HOST}${REQUEST_URI}

只是对 /admin 强制 https：

[uwsgi]
...
; load router_redirect plugin (compiled in by default in monolithic profiles)
plugins = router_redirect
route = ^/admin goto:https
; stop the chain
route-run = last:

route-label = https
route-if-not = equal:${HTTPS};on redirect-permanent:https://${HTTP_HOST}${REQUEST_URI}

最后你可能还想要发送 HSTS(HTTP Strict Transport Security) http 头。

[uwsgi]
...
; load router_redirect plugin (compiled in by default in monolithic profiles)
plugins = router_redirect
route-if-not = equal:${HTTPS};on redirect-permanent:https://${HTTP_HOST}${REQUEST_URI}
route-if = equal:${HTTPS};on addheader:Strict-Transport-Security: max-age=31536000

Python 自动重新加载(Python auto-reloading)(仅限于在开发中使用！)

在生产环境中你可以检测文件/目录的改动，然后自动重新加载(touch-reload, fs-reload...)。

在开发的时候有一个检测所有加载的/使用的 python 模块改动会非常方便。但是请仅仅在开发过程
中使用它。

检测是通过一个线程以设定的频率扫描模块列表实现的：

[uwsgi]
...
py-autoreload = 2

这将会以每隔两秒的频率检测 python 模块的改动，然后有改动的话就重新启动实例。

再次说明：

警告

只能在开发中使用它，不要在线上环境使用。

Full-Stack CGI setup

This example spawned from a uWSGI mainling-list thread.
这个例子产生自一个 uWSGI 邮件列表。

我的静态文件在 /var/www 目录下，cgi 在 /var/cgi 下，Cgi 通过 /cgi-bin 路径可以访问到。
所以 /var/cig/foo.lua 会在访问 /cgi-bin/foo.lua 时运行。

[uwsgi]
workdir = /var
ipaddress = 0.0.0.0

; start an http router on port 8080
http = %(ipaddress):8080
; enable the stats server on port 9191
stats = 127.0.0.1:9191
; spawn 2 threads in 4 processes (concurrency level: 8)
processes = 4
threads = 2
; drop privileges
uid = nobody
gid = nogroup

; serve static files in /var/www
static-index = index.html
static-index = index.htm
check-static = %(workdir)/www

; skip serving static files ending with .lua
static-skip-ext = .lua

; route requests to the CGI plugin
http-modifier1 = 9
; map /cgi-bin requests to /var/cgi
cgi = /cgi-bin=%(workdir)/cgi
; only .lua script can be executed
cgi-allowed-ext = .lua
; .lua files are executed with the 'lua' command (it avoids the need of giving execute permission to files)
cgi-helper = .lua=lua
; search for index.lua if a directory is requested
cgi-index = index.lua

在不同的 url 路径下使用多个 flask 应用

让我们写三个 flask 应用：

#app1.py
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World! i am app1"

#app2.py
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World! i am app2"

#app3.py
from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World! i am app3"

每个会被相应地挂载到 /app1, /app2, /app3

在 uWSGI 中要把一个应用挂载到一个特定的”key”，需要使用 –mount 选项：

`
--mount <mountpoint>=<app>
`

在我们的例子中我们想要挂载三个 python 应用，每一个以相应的 WSGI 脚本名字作为 key：

[uwsgi]
plugin = python
mount = /app1=app1.py
mount = /app2=app2.py
mount = /app3=app3.py
; generally flask apps expose the 'app' callable instead of 'application'
callable = app

; tell uWSGI to rewrite PATH_INFO and SCRIPT_NAME according to mount-points
manage-script-name = true

; bind to a socket
socket = /var/run/uwsgi.sock

现在直接把你的 webserver.proxy 指向你的实例 socket (不需要任何其他的配置)

Note: 每个应用默认会启动一个新的 python 解释器(这意味着每个应用的名字空间是相互隔离的)。
如果你希望所有的应用都运行同一个 python 虚拟机上的话，使用 –single-interpreter 选项。

Another note: 你可能已经看到 “modifier1 30” 这个明显的陷阱了。它已经被弃用了，而且它相当丑陋。uWSGI 有许多的方式来重写请求的变量。

Final note: 第一个加载的应用默认为是缺省挂载应用。当没有挂载点匹配时那个应用便会起作用。

在 OSX 上使用 rbenv (也应该能在其他的平台上工作)

安装 rbenv

brew update
brew install rbenv ruby-build

(不要在 .bash_profile 中设置 magic line，因为我们不想污染系统环境并且导致 uWSGI 异常)

获取一个 uWSGI 源码包，然后编译成 ‘nolang’ 版本(即一个没有编译任何语言插件进去的版本)

wget http://projects.unbit.it/downloads/uwsgi-latest.tar.gz
tar zxvf uwsgi-latest.tar.gz
cd uwsgi-xxx
make nolang

现在开始安装你需要的 ruby 版本

rbenv install 1.9.3-p551
rbenv install 2.1.5

然后安装你需要的 gems(即 sinatra):

set the current ruby env
rbenv local 1.9.3-p551
get the path of the gem binary
rbenv which gem
/Users/roberta/.rbenv/versions/1.9.3-p551/bin/gem
/Users/roberta/.rbenv/versions/1.9.3-p551/bin/gem install sinatra
from the uwsgi sources directory, build the rack plugin for 1.9.3-p551, naming it rack_193_plugin.so
the trick here is changing PATH to find the right ruby binary during the build procedure
PATH=/Users/roberta/.rbenv/versions/1.9.3-p551/bin:$PATH ./uwsgi --build-plugin "plugins/rack rack_193"
set ruby 2.1.5
rbenv local 2.1.5
rbenv which gem
/Users/roberta/.rbenv/versions/2.1.5/bin/gem
/Users/roberta/.rbenv/versions/2.1.5/bin/gem install sinatra
PATH=/Users/roberta/.rbenv/versions/2.1.5/bin:$PATH ./uwsgi --build-plugin "plugins/rack rack_215"

现在切换到另外一个 ruby，只需要改变插件就可以了：

[uwsgi]
plugin = rack_193
rack = config.ru
http-socket = :9090

或者

[uwsgi]
plugin = rack_215
rack = config.ru
http-socket = :9090

请确保插件存储在当前的工作目录中，或者直接设置插件目录，或者指定绝对路径，就像这样：

[uwsgi]
plugin = /foobar/rack_215_plugin.so
rack = config.ru
http-socket = :9090

The Master FIFO

Available from uWSGI 1.9.17.

Generally you use UNIX signals to manage the master, but we are running out of signal numbers and (more importantly) not needing to mess with PIDs
greatly simplifies the implementation of external management scripts.

So, instead of signals, you can tell the master to create a UNIX named pipe (FIFO) that you may use to issue commands to the master.

To create a FIFO just add --master-fifo <filename> then start issuing commands to it.

echo r > /tmp/yourfifo

You can send multiple commands in one shot.

add 3 workers and print stats
echo +++s > /tmp/yourfifo

Available commands

	‘0’ to ‘9’ - set the fifo slot (see below)

	‘+’ - increase the number of workers when in cheaper mode (add --cheaper-algo manual for full control)

	‘-‘ - decrease the number of workers when in cheaper mode (add --cheaper-algo manual for full control)

	‘B’ - ask Emperor for reinforcement (broodlord mode, requires uWSGI >= 2.0.7)

	‘C’ - set cheap mode

	‘c’ - trigger chain reload

	‘E’ - trigger an Emperor rescan

	‘f’ - re-fork the master (dangerous, but very powerful)

	‘l’ - reopen log file (need –log-master and –logto/–logto2)

	‘L’ - trigger log rotation (need –log-master and –logto/–logto2)

	‘p’ - pause/resume the instance

	‘P’ - update pidfiles (can be useful after master re-fork)

	‘Q’ - brutally shutdown the instance

	‘q’ - gracefully shutdown the instance

	‘R’ - send brutal reload

	‘r’ - send graceful reload

	‘S’ - block/unblock subscriptions

	‘s’ - print stats in the logs

	‘W’ - brutally reload workers

	‘w’ - gracefully reload workers

FIFO slots

uWSGI supports up to 10 different FIFO files. By default the first specified is bound (mapped as ‘0’).

During the instance’s lifetime you can change from one FIFO to another by simply sending the number of the FIFO slot to use.

[uwsgi]
master-fifo = /tmp/fifo0
master-fifo = /tmp/fifo1
master-fifo = /var/run/foofifo
processes = 2
...

By default /tmp/fifo0 will be allocated, but after sending:

echo 1 > /tmp/fifo0

the /tmp/fifo1 file will be bound.

This is very useful to map FIFO files to specific instance when you (ab)use the ‘fork the master’ command (the ‘f’ one).

echo 1fp > /tmp/fifo0

After sending this command, a new uWSGI instance (inheriting all of the bound sockets) will be spawned, the old one will be put in “paused” mode (the ‘p’ command).

As we have sent the ‘1’ command before ‘f’ and ‘p’ the old instance will now accept commands on /tmp/fifo1 (the slot 1), and the new one will use the default one (‘0’).

There are lot of tricks you can accomplish, and lots of ways to abuse the forking of the master.

Just take into account that corner-case problems can occur all over the place, especially if you use the most complex features of uWSGI.

Notes

	The FIFO is created in non-blocking modes and recreated by the master every time a client disconnects.

	You can override (or add) commands using the global array uwsgi_fifo_table via plugins or C hooks.

	Only the uid running the master has write access to the fifo.

Systemd

uWSGI is a new-style daemon for systemd [http://www.freedesktop.org/wiki/Software/systemd].

It can notify status change and readyness.

When uWSGI detects it is running under systemd, the notification system is enabled.

Adding the Emperor to systemd

The best approach to integrate uWSGI apps with your init system is using the Emperor.

Your init system will talk only with the Emperor that will rule all of the apps itself.

Create a systemd service file (you can save it as /etc/systemd/system/emperor.uwsgi.service)

[Unit]
Description=uWSGI Emperor
After=syslog.target

[Service]
ExecStart=/root/uwsgi/uwsgi --ini /etc/uwsgi/emperor.ini
Restart=always
KillSignal=SIGQUIT
Type=notify
StandardError=syslog
NotifyAccess=all

[Install]
WantedBy=multi-user.target

Then run it

systemctl start emperor.uwsgi.service

And check its status.

systemctl status emperor.uwsgi.service

You will see the Emperor reporting the number of governed vassals to systemd (and to you).

emperor.uwsgi.service - uWSGI Emperor
 Loaded: loaded (/etc/systemd/system/emperor.uwsgi.service)
 Active: active (running) since Tue, 17 May 2011 08:51:31 +0200; 5s ago
Main PID: 30567 (uwsgi)
 Status: "The Emperor is governing 1 vassals"
 CGroup: name=systemd:/system/emperor.uwsgi.service
 ├ 30567 /root/uwsgi/uwsgi --ini /etc/uwsgi/emperor.ini
 ├ 30568 /root/uwsgi/uwsgi --ini werkzeug.ini
 └ 30569 /root/uwsgi/uwsgi --ini werkzeug.ini

You can stop the Emperor (and all the apps it governs) with

systemctl stop emperor.uwsgi.service

A simple emperor.ini could look like this (www-data is just an anonymous user)

NOTE: DO NOT daemonize the Emperor (or the master) unless you know what you are doing!!!

[uwsgi]
emperor = /etc/uwsgi/vassals
uid = www-data
gid = www-data

If you want to allow each vassal to run under different privileges, remove the uid and gid options from the emperor configuration (and please read the Emperor docs!)

Logging

Using the previous service file all of the Emperor messages go to the syslog. You can avoid it by removing the StandardError=syslog directive.

If you do that, be sure to set a --logto option in your Emperor configuration, otherwise all of your logs will be lost!

Putting sockets in /run/

On a modern system, /run/ is mounted as a tmpfs and is the right place to put sockets and pidfiles into. You can have systemd create a uwsgi directory to put them into by creating a systemd-tmpfiles configuration file (you can save it as /etc/tmpfiles.d/emperor.uwsgi.conf):

d /run/uwsgi 0755 www-data www-data -

Socket activation

Starting from uWSGI 0.9.8.3 socket activation is available. You can setup systemd to spawn uWSGI instances only after the first socket connection.

Create the required emperor.uwsgi.socket (in /etc/systemd/system/emperor.uwsgi.socket). Note that the *.socket file name must match the *.service file name.

[Unit]
Description=Socket for uWSGI Emperor

[Socket]
Change this to your uwsgi application port or unix socket location
ListenStream=/tmp/uwsgid.sock

[Install]
WantedBy=sockets.target

Then disable the service and enable the socket unit.

systemctl disable emperor.uwsgi.service
systemctl enable emperor.uwsgi.socket

Running uWSGI instances with Circus

Circus (http://circus.readthedocs.org/en/0.7/) is a process manager written in
Python. It is very similar to projects like Supervisor, but with several
additional features. Although most, if not all, of it’s functionalities have a
counterpart in uWSGI, Circus can be used as a library allowing you to build
dynamic configurations (and extend uWSGI patterns). This aspect is very
important and may be the real selling point of Circus.

Socket activation

Based on the venerable inetd pattern, Circus can bind to sockets and pass them to children.

Start with a simple Circus config (call it circus.ini):

[circus]
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
stats_endpoint = tcp://127.0.0.1:5557

[watcher:dummy]
cmd = uwsgi --http-socket fd://$(circus.sockets.foo) --wsgi-file yourapp.wsgi
use_sockets = True
send_hup = True
stop_signal = QUIT

[socket:foo]
host = 0.0.0.0
port = 8888

run it with

circusd circus.ini

(Better) Socket activation

If you want to spawn instances on demand, you will likely want to shut them
down when they are no longer used. To accomplish that use the –idle uWSGI
option.

[circus]
check_delay = 5
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
stats_endpoint = tcp://127.0.0.1:5557

[watcher:dummy]
cmd = uwsgi --master --idle 60 --http-socket fd://$(circus.sockets.foo) --wsgi-file yourapp.wsgi
use_sockets = True
warmup_delay = 0
send_hup = True
stop_signal = QUIT

[socket:foo]
host = 0.0.0.0
port = 8888

This time we have enabled the master process. It will manage the –idle option, shutting down the instance if it is
inactive for more than 60 seconds.

The uWSGI Caching Cookbook

This is a cookbook of various caching techniques using uWSGI internal routing, The uWSGI caching framework and uWSGI Transformations

The examples assume a modular uWSGI build. You can ignore the ‘plugins’ option, if you are using a monolithic build.

Recipes are tested over uWSGI 1.9.7. Older versions may not work.

Let’s start

This is a simple perl/PSGI Dancer app we deploy on an http-socket with 4 processes.

use Dancer;

get '/' => sub {
 "Hello World!"
};

dance;

This is the uWSGI config. Pay attention to the log-micros directive. The objective of uWSGI in-memory caching is generating a response
in less than 1 millisecond (yes, this is true), so we want to get the response time logging in microseconds (thousandths of a millisecond).

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

Run the uWSGI instance in your terminal and just make a bunch of requests to it.

curl -D /dev/stdout http://localhost:9090/

If all goes well you should see something similar in your uWSGI logs:

[pid: 26586|app: 0|req: 1/1] 192.168.173.14 () {24 vars in 327 bytes} [Wed Apr 17 09:06:58 2013] GET / => generated 12 bytes in 3497 micros (HTTP/1.1 200) 4 headers in 126 bytes (0 switches on core 0)
[pid: 26586|app: 0|req: 2/2] 192.168.173.14 () {24 vars in 327 bytes} [Wed Apr 17 09:07:14 2013] GET / => generated 12 bytes in 1134 micros (HTTP/1.1 200) 4 headers in 126 bytes (0 switches on core 0)
[pid: 26586|app: 0|req: 3/3] 192.168.173.14 () {24 vars in 327 bytes} [Wed Apr 17 09:07:16 2013] GET / => generated 12 bytes in 1249 micros (HTTP/1.1 200) 4 headers in 126 bytes (0 switches on core 0)
[pid: 26586|app: 0|req: 4/4] 192.168.173.14 () {24 vars in 327 bytes} [Wed Apr 17 09:07:17 2013] GET / => generated 12 bytes in 953 micros (HTTP/1.1 200) 4 headers in 126 bytes (0 switches on core 0)
[pid: 26586|app: 0|req: 5/5] 192.168.173.14 () {24 vars in 327 bytes} [Wed Apr 17 09:07:18 2013] GET / => generated 12 bytes in 1016 micros (HTTP/1.1 200) 4 headers in 126 bytes (0 switches on core 0)

while cURL will return:

HTTP/1.1 200 OK
Server: Perl Dancer 1.3112
Content-Length: 12
Content-Type: text/html
X-Powered-By: Perl Dancer 1.3112

Hello World!

The first request on a process took about 3 milliseconds (this is normal as lot of code is executed for the first request), but the following run in about 1 millisecond.

Now we want to store the response in the uWSGI cache.

The first recipe

We first create a uWSGI cache named ‘mycache’ with 100 slots of 64 KiB each (new options are at the end of the config) and for each request for ‘/’ we search in it for a specific item named ‘myhome’.

This time we load the router_cache plugin too (though it is built-in by default in monolithic servers).

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; at each request for / check for a 'myhome' item in the 'mycache' cache
; 'route' apply a regexp to the PATH_INFO request var
route = ^/$ cache:key=myhome,name=mycache

Restart uWSGI and re-run the previous test with cURL. Sadly nothing will change. Why?

Because you did not instruct uWSGI to store the plugin response in the cache. You need to use the cachestore routing action...

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; at each request for / check for a 'myhome' item in the 'mycache' cache
; 'route' apply a regexp to the PATH_INFO request var
route = ^/$ cache:key=myhome,name=mycache
; store each successfull request (200 http status code) for '/' in the 'myhome' item
route = ^/$ cachestore:key=myhome,name=mycache

Now re-run the test, and you should see requests going down to a range of 100-300 microseconds. The gain depends on various factors, but you should gain at least 60% in response time.

The log line reports -1 as the app id:

[pid: 26703|app: -1|req: -1/2] 192.168.173.14 () {24 vars in 327 bytes} [Wed Apr 17 09:24:52 2013] GET / => generated 12 bytes in 122 micros (HTTP/1.1 200) 2 headers in 64 bytes (0 switches on core 0)

This is because when a response is served from the cache your app/plugin is not touched (in this case, no perl call is involved).

You will note less headers too:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 12

Hello World!

This is because only the body of a response is cached. By default the generated response is set as text/html but you can change it
or let the MIME type engine do the work for you (see later).

Cache them all !!!

We want to cache all of our requests. Some of them returns images and css, while the others are always text/html

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; load the mime types engine
mime-file = /etc/mime.types

; at each request starting with /img check it in the cache (use mime types engine for the content type)
route = ^/img/(.+) cache:key=/img/$1,name=mycache,mime=1

; at each request ending with .css check it in the cache
route = \.css$ cache:key=${REQUEST_URI},name=mycache,content_type=text/css

; fallback to text/html all of the others request
route = .* cache:key=${REQUEST_URI},name=mycache
; store each successfull request (200 http status code) in the 'mycache' cache using the REQUEST_URI as key
route = .* cachestore:key=${REQUEST_URI},name=mycache

Multiple caches

You may want/need to store items in different caches. We can chnage the previous recipe to use three different caches
for images, css and html responses.

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100

; create a cache for images with dynamic size (images can be big, so do not waste memory)
cache2 = name=images,items=20,bitmap=1,blocks=100

; a cache for css (20k per-item is more than enough)
cache2 = name=stylesheets,items=30,blocksize=20000

; load the mime types engine
mime-file = /etc/mime.types

; at each request starting with /img check it in the 'images' cache (use mime types engine for the content type)
route = ^/img/(.+) cache:key=/img/$1,name=images,mime=1

; at each request ending with .css check it in the 'stylesheets' cache
route = \.css$ cache:key=${REQUEST_URI},name=stylesheets,content_type=text/css

; fallback to text/html all of the others request
route = .* cache:key=${REQUEST_URI},name=mycache

; store each successfull request (200 http status code) in the 'mycache' cache using the REQUEST_URI as key
route = .* cachestore:key=${REQUEST_URI},name=mycache
; store images and stylesheets in the corresponding caches
route = ^/img/ cachestore:key=${REQUEST_URI},name=images
route = ^/css/ cachestore:key=${REQUEST_URI},name=stylesheets

Important, every matched ‘cachestore’ will overwrite the previous one. So we are adding .* as the first rule.

Being more aggressive, the Expires HTTP header

You can set an expiration for each cache item. If an item has an expire, it will be translated to HTTP Expires headers.
This means that once you have sent a cache item to the browser, it will not request it until it expires!

We use the previous recipe simply adding different expires to the items.

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100

; create a cache for images with dynamic size (images can be big, so do not waste memory)
cache2 = name=images,items=20,bitmap=1,blocks=100

; a cache for css (20k per-item is more than enough)
cache2 = name=stylesheets,items=30,blocksize=20000

; load the mime types engine
mime-file = /etc/mime.types

; at each request starting with /img check it in the 'images' cache (use mime types engine for the content type)
route = ^/img/(.+) cache:key=/img/$1,name=images,mime=1

; at each request ending with .css check it in the 'stylesheets' cache
route = \.css$ cache:key=${REQUEST_URI},name=stylesheets,content_type=text/css

; fallback to text/html all of the others request
route = .* cache:key=${REQUEST_URI},name=mycache

; store each successfull request (200 http status code) in the 'mycache' cache using the REQUEST_URI as key
route = .* cachestore:key=${REQUEST_URI},name=mycache,expires=60
; store images and stylesheets in the corresponding caches
route = ^/img/ cachestore:key=${REQUEST_URI},name=images,expires=3600
route = ^/css/ cachestore:key=${REQUEST_URI},name=stylesheets,expires=3600

images and stylesheets are cached for 1 hour, while html response are cached for 1 minute

Monitoring Caches

The stats server exposes cache information.

There is an ncurses-based tool (https://pypi.python.org/pypi/uwsgicachetop) using that information.

Storing GZIP variant of an object

Back to the first recipe. We may want to store two copies of a response. The “clean” one and a gzipped one for clients supporting gzip encoding.

To enable the gzip copy you only need to choose a name for the item and pass it as the ‘gzip’ option of the cachestore action.

Then check for HTTP_ACCEPT_ENCODING request header. If it contains the ‘gzip’ word you can send it the gzip variant.

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; if the client support GZIP give it the gzip body
route-if = contains:${HTTP_ACCEPT_ENCODING};gzip cache:key=gzipped_myhome,name=mycache,content_encoding=gzip
; else give it the clear version
route = ^/$ cache:key=myhome,name=mycache

; store each successfull request (200 http status code) for '/' in the 'myhome' item in gzip too
route = ^/$ cachestore:key=myhome,gzip=gzipped_myhome,name=mycache

Storing static files in the cache for fast serving

You can populate a uWSGI cache on server startup with static files for fast serving them. The option –load-file-in-cache is the right tool for the job

[uwsgi]
plugins = 0:notfound,router_cache
http-socket = :9090
cache2 = name=files,bitmap=1,items=1000,blocksize=10000,blocks=2000
load-file-in-cache = files /usr/share/doc/socat/index.html
route-run = cache:key=${REQUEST_URI},name=files

You can specify all of the –load-file-in-cache directive you need but a better approach would be

[uwsgi]
plugins = router_cache
http-socket = :9090
cache2 = name=files,bitmap=1,items=1000,blocksize=10000,blocks=2000
for-glob = /usr/share/doc/socat/*.html
 load-file-in-cache = files %(_)
endfor =
route-run = cache:key=${REQUEST_URI},name=files

this will store all of the html files in /usr/share/doc/socat.

Items are stored with the path as the key.

When a non-existent item is requested the connection is closed and you should get an ugly

-- unavailable modifier requested: 0 --

This is because the internal routing system failed to manage the request, and no request plugin is available to manage the request.

You can build a better infrastructure using the simple ‘notfound’ plugin (it will always return a 404)

[uwsgi]
plugins = 0:notfound,router_cache
http-socket = :9090
cache2 = name=files,bitmap=1,items=1000,blocksize=10000,blocks=2000
for-glob = /usr/share/doc/socat/*.html
 load-file-in-cache = files %(_)
endfor =
route-run = cache:key=${REQUEST_URI},name=files

You can store file in the cache as gzip too using –load-file-in-cache-gzip

This option does not allow to set the name of the cache item, so to support client iwith and without gzip support we can use 2 different caches

[uwsgi]
plugins = 0:notfound,router_cache
http-socket = :9090
cache2 = name=files,bitmap=1,items=1000,blocksize=10000,blocks=2000
cache2 = name=compressedfiles,bitmap=1,items=1000,blocksize=10000,blocks=2000
for-glob = /usr/share/doc/socat/*.html
 load-file-in-cache = files %(_)
 load-file-in-cache-gzip = compressedfiles %(_)
endfor =
; take the item from the compressed cache
route-if = contains:${HTTP_ACCEPT_ENCODING};gzip cache:key=${REQUEST_URI},name=compressedfiles,content_encoding=gzip
; fallback to the uncompressed one
route-run = cache:key=${REQUEST_URI},name=files

Caching for authenticated users

If you authenticate users with http basic auth, you can differentiate caching for each one using the ${REMOTE_USER} request variable:

[uwsgi]
; load the PSGI plugin as the default one
plugins = 0:psgi,router_cache
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; check if the user is authenticated
route-if-not = empty:${REMOTE_USER} goto:cacheme
route-run = break:

; the following rules are executed only if REMOTE_USER is defined
route-label = cacheme
route = ^/$ cache:key=myhome_for_${REMOTE_USER},name=mycache
; store each successfull request (200 http status code) for '/'
route = ^/$ cachestore:key=myhome_for_${REMOTE_USER},name=mycache

Cookie-based authentication is generally more complex, but the vast majority of time a session id is passed as a cookie.

You may want to use this session_id as the key

[uwsgi]
; load the PHP plugin as the default one
plugins = 0:php,router_cache
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; check if the user is authenticated
route-if-not = empty:${cookie[PHPSESSID]} goto:cacheme
route-run = break:

; the following rules are executed only if the PHPSESSID cookie is defined
route-label = cacheme
route = ^/$ cache:key=myhome_for_${cookie[PHPSESSID]},name=mycache
; store each successfull request (200 http status code) for '/'
route = ^/$ cachestore:key=myhome_for_${cookie[PHPSESSID]},name=mycache

Obviously a malicious user could build a fake session id and could potentially fill your cache. You should always check
the session id. There is no single solution, but a good example for file-based php session is the following one:

[uwsgi]
; load the PHP plugin as the default one
plugins = 0:php,router_cache
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; create a cache with 100 items (default size per-item is 64k)
cache2 = name=mycache,items=100
; check if the user is authenticated
route-if-not = empty:${cookie[PHPSESSID]} goto:cacheme
route-run = break:

; the following rules are executed only if the PHPSESSID cookie is defined
route-label = cacheme
; stop if the session file does not exist
route-if-not = isfile:/var/lib/php5/sessions/sess_${cookie[PHPSESSID]} break:
route = ^/$ cache:key=myhome_for_${cookie[PHPSESSID]},name=mycache
; store each successfull request (200 http status code) for '/'
route = ^/$ cachestore:key=myhome_for_${cookie[PHPSESSID]},name=mycache

Caching to files

Sometimes, instead of caching in memory you want to store static files.

The transformation_tofile plugin allows you to store responses in files:

[uwsgi]
; load the PHP plugin as the default one
plugins = 0:psgi,transformation_tofile,router_static
; load the Dancer app
psgi = myapp.pl
; enable the master process
master = true
; spawn 4 processes
processes = 4
; bind an http socket to port 9090
http-socket = :9090
; log response time with microseconds resolution
log-micros = true

; check if a file exists
route-if = isfile:/var/www/cache/${hex[PATH_INFO]}.html static:/var/www/cache/${hex[PATH_INFO]}.html
; otherwise store the response in it
route-run = tofile:/var/www/cache/${hex[PATH_INFO]}.html

the hex[] routing var take a request variable content and encode it in hexadecimal. As PATH_INFO tend to contains / it is a better approach than storing
full path names (or using other encoding scheme like base64 that can include slashes too)

Setting up Django and your web server with uWSGI and nginx

This tutorial is aimed at the Django user who wants to set up a production web
server. It takes you through the steps required to set up Django so that it
works nicely with uWSGI and nginx. It covers all three components, providing a
complete stack of web application and server software.

Django [http://djangoproject.com/] Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design.

nginx [http://nginx.org/] (pronounced engine-x) is a free, open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy server.

Some notes about this tutorial

Note

This is a tutorial. It is not intended to provide a reference guide,
never mind an exhaustive reference, to the subject of deployment.

nginx and uWSGI are good choices for Django deployment, but they are not the
only ones, or the ‘official’ ones. There are excellent alternatives to both, and
you are encouraged to investigate them.

The way we deploy Django here is a good way, but it is not the only way;
for some purposes it is probably not even the best way.

It is however a reliable and easy way, and the material covered here will
introduce you to concepts and procedures you will need to be familiar with
whatever software you use for deploying Django. By providing you with a working
setup, and rehearsing the steps you must take to get there, it will offer you a
basis for exploring other ways to achieve this.

Note

This tutorial makes some assumptions about the system you are using.

It is assumed that you are using a Unix-like system, and that it features
an aptitude-like package manager. However if you need to ask questions like
“What’s the equivalent of aptitude on Mac OS X?”, you’ll be able to find that
kind of help fairly easily.

While this tutorial assumes Django 1.4 or later, which will automatically create
a wsgi module in your new project, the instructions will work with earlier
versions. You will though need to obtain that Django wsgi module yourself, and
you may find that the Django project directory structure is slightly different.

Concept

A web server faces the outside world. It can serve files (HTML, images, CSS,
etc) directly from the file system. However, it can’t talk directly to Django
applications; it needs something that will run the application, feed it requests
from web clients (such as browsers) and return responses.

A Web Server Gateway Interface - WSGI - does this job. WSGI [http://wsgi.org/] is a Python standard.

uWSGI is a WSGI implementation. In this tutorial we will set up uWSGI so that it
creates a Unix socket, and serves responses to the web server via the WSGI
protocol. At the end, our complete stack of components will look like this:

the web client <-> the web server <-> the socket <-> uwsgi <-> Django

Before you start setting up uWSGI

virtualenv

Make sure you are in a virtualenv for the software we need to install (we will
describe how to install a system-wide uwsgi later):

virtualenv uwsgi-tutorial
cd uwsgi-tutorial
source bin/activate

Django

Install Django into your virtualenv, create a new project, and cd into the
project:

pip install Django
django-admin.py startproject mysite
cd mysite

About the domain and port

In this tutorial we will call your domain example.com. Substitute your own
FQDN or IP address.

Throughout, we’ll be using port 8000 for the web server to publish on, just like
the Django runserver does by default. You can use whatever port you want of
course, but I have chosen this one so it doesn’t conflict with anything a web
server might be doing already.

Basic uWSGI installation and configuration

Install uWSGI into your virtualenv

pip install uwsgi

Of course there are other ways to install uWSGI, but this one is as good as
any. Remember that you will need to have Python development packages installed.
In the case of Debian, or Debian-derived systems such as Ubuntu, what you need
to have installed is pythonX.Y-dev, where X.Y is your version of Python.

Basic test

Create a file called test.py:

test.py
def application(env, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 return [b"Hello World"] # python3
 #return ["Hello World"] # python2

注解

Take into account that Python 3 requires bytes().

Run uWSGI:

uwsgi --http :8000 --wsgi-file test.py

The options mean:

	http :8000: use protocol http, port 8000

	wsgi-file test.py: load the specified file, test.py

This should serve a ‘hello world’ message directly to the browser on port 8000.
Visit:

http://example.com:8000

to check. If so, it means the following stack of components works:

the web client <-> uWSGI <-> Python

Test your Django project

Now we want uWSGI to do the same thing, but to run a Django site instead of the
test.py module.

If you haven’t already done so, make sure that your mysite project actually works:

python manage.py runserver 0.0.0.0:8000

And if it that works, run it using uWSGI:

uwsgi --http :8000 --module mysite.wsgi

	module mysite.wsgi: load the specified wsgi module

Point your browser at the server; if the site appears, it means uWSGI is able to
serve your Django application from your virtualenv, and this stack operates
correctly:

the web client <-> uWSGI <-> Django

Now normally we won’t have the browser speaking directly to uWSGI. That’s a job
for the webserver, which will act as a go-between.

Basic nginx

Install nginx

sudo apt-get install nginx
sudo /etc/init.d/nginx start # start nginx

And now check that the nginx is serving by visiting it in a web browser on port
80 - you should get a message from nginx: “Welcome to nginx!”. That means these
components of the full stack are working together:

the web client <-> the web server

If something else is already serving on port 80 and you want to use nginx
there, you’ll have to reconfigure nginx to serve on a different port. For this
tutorial though, we’re going to be using port 8000.

Configure nginx for your site

You will need the uwsgi_params file, which is available in the nginx
directory of the uWSGI distribution, or from
https://github.com/nginx/nginx/blob/master/conf/uwsgi_params

Copy it into your project directory. In a moment we will tell nginx to refer to
it.

Now create a file called mysite_nginx.conf, and put this in it:

mysite_nginx.conf

the upstream component nginx needs to connect to
upstream django {
 # server unix:///path/to/your/mysite/mysite.sock; # for a file socket
 server 127.0.0.1:8001; # for a web port socket (we'll use this first)
}

configuration of the server
server {
 # the port your site will be served on
 listen 8000;
 # the domain name it will serve for
 server_name .example.com; # substitute your machine's IP address or FQDN
 charset utf-8;

 # max upload size
 client_max_body_size 75M; # adjust to taste

 # Django media
 location /media {
 alias /path/to/your/mysite/media; # your Django project's media files - amend as required
 }

 location /static {
 alias /path/to/your/mysite/static; # your Django project's static files - amend as required
 }

 # Finally, send all non-media requests to the Django server.
 location / {
 uwsgi_pass django;
 include /path/to/your/mysite/uwsgi_params; # the uwsgi_params file you installed
 }
}

This conf file tells nginx to serve up media and static files from the
filesystem, as well as handle requests that require Django’s intervention. For a
large deployment it is considered good practice to let one server handle
static/media files, and another handle Django applications, but for now, this
will do just fine.

Symlink to this file from /etc/nginx/sites-enabled so nginx can see it:

sudo ln -s ~/path/to/your/mysite/mysite_nginx.conf /etc/nginx/sites-enabled/

Deploying static files

Before running nginx, you have to collect all Django static files in the static
folder. First of all you have to edit mysite/settings.py adding:

STATIC_ROOT = os.path.join(BASE_DIR, "static/")

and then run

python manage.py collectstatic

Basic nginx test

Restart nginx:

sudo /etc/init.d/nginx restart

To check that media files are being served correctly, add an image called
media.png to the /path/to/your/project/project/media directory, then
visit http://example.com:8000/media/media.png - if this works, you’ll know at
least that nginx is serving files correctly.

It is worth not just restarting nginx, but actually stopping and then starting
it again, which will inform you if there is a problem, and where it is.

nginx and uWSGI and test.py

Let’s get nginx to speak to the “hello world” test.py application.

uwsgi --socket :8001 --wsgi-file test.py

This is nearly the same as before, except this time one of the options is
different:

	socket :8001: use protocol uwsgi, port 8001

nginx meanwhile has been configured to communicate with uWSGI on that port, and
with the outside world on port 8000. Visit:

http://example.com:8000/

to check. And this is our stack:

the web client <-> the web server <-> the socket <-> uWSGI <-> Python

Meanwhile, you can try to have a look at the uswgi output at
http://example.com:8001 - but quite probably, it won’t work because your browser
speaks http, not uWSGI, though you should see output from uWSGI in your
terminal.

Using Unix sockets instead of ports

So far we have used a TCP port socket, because it’s simpler, but in fact it’s
better to use Unix sockets than ports - there’s less overhead.

Edit mysite_nginx.conf, changing it to match:

server unix:///path/to/your/mysite/mysite.sock; # for a file socket
server 127.0.0.1:8001; # for a web port socket (we'll use this first)

and restart nginx.

Run uWSGI again:

uwsgi --socket mysite.sock --wsgi-file test.py

This time the socket option tells uWSGI which file to use.

Try http://example.com:8000/ in the browser.

If that doesn’t work

Check your nginx error log(/var/log/nginx/error.log). If you see something like:

connect() to unix:///path/to/your/mysite/mysite.sock failed (13: Permission
denied)

then probably you need to manage the permissions on the socket so that nginx is
allowed to use it.

Try:

uwsgi --socket mysite.sock --wsgi-file test.py --chmod-socket=666 # (very permissive)

or:

uwsgi --socket mysite.sock --wsgi-file test.py --chmod-socket=664 # (more sensible)

You may also have to add your user to nginx’s group (which is probably
www-data), or vice-versa, so that nginx can read and write to your socket
properly.

It’s worth keeping the output of the nginx log running in a terminal window so
you can easily refer to it while troubleshooting.

Running the Django application with uwsgi and nginx

Let’s run our Django application:

uwsgi --socket mysite.sock --module mysite.wsgi --chmod-socket=664

Now uWSGI and nginx should be serving up not just a “Hello World” module, but
your Django project.

Configuring uWSGI to run with a .ini file

We can put the same options that we used with uWSGI into a file, and then ask
uWSGI to run with that file. It makes it easier to manage configurations.

Create a file called `mysite_uwsgi.ini`:

mysite_uwsgi.ini file
[uwsgi]

Django-related settings
the base directory (full path)
chdir = /path/to/your/project
Django's wsgi file
module = project.wsgi
the virtualenv (full path)
home = /path/to/virtualenv

process-related settings
master
master = true
maximum number of worker processes
processes = 10
the socket (use the full path to be safe
socket = /path/to/your/project/mysite.sock
... with appropriate permissions - may be needed
chmod-socket = 664
clear environment on exit
vacuum = true

And run uswgi using this file:

uwsgi --ini mysite_uwsgi.ini # the --ini option is used to specify a file

Once again, test that the Django site works as expected.

Install uWSGI system-wide

So far, uWSGI is only installed in our virtualenv; we’ll need it installed
system-wide for deployment purposes.

Deactivate your virtualenv:

deactivate

and install uWSGI system-wide:

sudo pip install uwsgi

Or install LTS (long term support).
pip install http://projects.unbit.it/downloads/uwsgi-lts.tar.gz

The uWSGI wiki describes several installation procedures [http://projects.unbit.it/uwsgi/wiki/Install]. Before installing
uWSGI system-wide, it’s worth considering which version to choose and the most
apppropriate way of installing it.

Check again that you can still run uWSGI just like you did before:

uwsgi --ini mysite_uwsgi.ini # the --ini option is used to specify a file

Emperor mode

uWSGI can run in ‘emperor’ mode. In this mode it keeps an eye on a directory of
uWSGI config files, and will spawn instances (‘vassals’) for each one it finds.

Whenever a config file is amended, the emperor will automatically restart the
vassal.

create a directory for the vassals
sudo mkdir /etc/uwsgi
sudo mkdir /etc/uwsgi/vassals
symlink from the default config directory to your config file
sudo ln -s /path/to/your/mysite/mysite_uwsgi.ini /etc/uwsgi/vassals/
run the emperor
uwsgi --emperor /etc/uwsgi/vassals --uid www-data --gid www-data

You may need to run uWSGI with sudo:

sudo uwsgi --emperor /etc/uwsgi/vassals --uid www-data --gid www-data

The options mean:

	emperor: where to look for vassals (config files)

	uid: the user id of the process once it’s started

	gid: the group id of the process once it’s started

Check the site; it should be running.

Make uWSGI startup when the system boots

The last step is to make it all happen automatically at system startup time.

Edit /etc/rc.local and add:

/usr/local/bin/uwsgi --emperor /etc/uwsgi/vassals --uid www-data --gid www-data

before the line “exit 0”.

And that should be it!

Further configuration

It is important to understand that this has been a tutorial, to get you
started. You do need to read the nginx and uWSGI documentation, and study
the options available before deployment in a production environment.

Both nginx and uWSGI benefit from friendly communities, who are able to offer
invaluable advice about configuration and usage.

nginx

General configuration of nginx is not within the scope of this tutorial though
you’ll probably want it to listen on port 80, not 8000, for a production
website.

You also ought to consider at having a separate server for non-Django
serving, of static files for example.

uWSGI

uWSGI supports multiple ways to configure it. See uWSGI’s documentation [https://uwsgi-docs.readthedocs.org] and
examples [http://projects.unbit.it/uwsgi/wiki/Example].

Some uWSGI options have been mentioned in this tutorial; others you ought to
look at for a deployment in production include (listed here with example
settings):

env = DJANGO_SETTINGS_MODULE=mysite.settings # set an environment variable
pidfile = /tmp/project-master.pid # create a pidfile
harakiri = 20 # respawn processes taking more than 20 seconds
limit-as = 128 # limit the project to 128 MB
max-requests = 5000 # respawn processes after serving 5000 requests
daemonize = /var/log/uwsgi/yourproject.log # background the process & log

Running uWSGI on Dreamhost shared hosting

Note: the following tutorial gives suggestions on how to name files with the objective of hosting multiple applications
on your account. You are obviously free to change naming schemes.

The tutorial assumes a shared hosting account, but it works on the VPS offer too (even if on such a system you have lot more freedom and you could use
better techniques to accomplish the result)

Preparing the environment

Log in via ssh to your account and move to the home (well, you should be already there after login).

Download a uWSGI tarball (anything >= 1.4 is good, but for maximum performance use >= 1.9), explode it and build it
normally (run make).

At the end of the procedure copy the resulting uwsgi binary to your home (just to avoid writing longer paths later).

Now move to the document root of your domain (it should be named like the domain) and put a file named uwsgi.fcgi in it with that content:

#!/bin/sh
/home/XXX/uwsgi /home/XXX/YYY.ini

change XXX with your account name and YYY with your domain name (it is only a convention, if you know what you are doing feel free to change it)

Give the file ‘execute’ permission

chmod +x uwsgi.fcgi

Now in your home create a YYY.ini (remember to change YYY with your domain name) with that content

[uwsgi]
flock = /home/XXX/YYY.ini
account = XXX
domain = YYY

protocol = fastcgi
master = true
processes = 3
logto = /home/%(account)/%(domain).uwsgi.log
virtualenv = /home/%(account)/venv
module = werkzeug.testapp:test_app
touch-reload = %p
auto-procname = true
procname-prefix-spaced = [%(domain)]

change the first three lines accordingly.

Preparing the python virtualenv

As we want to run the werkzeug test app, we need to install its package in a virtualenv.

Move to the home:

virtualenv venv
venv/bin/easy_install werkzeug

The .htaccess

Move again to the document root to create the .htaccess file that will instruct Apache to forward request to uWSGI

RewriteEngine On
RewriteBase /
RewriteRule ^uwsgi.fcgi/ - [L]
RewriteRule ^(.*)$ uwsgi.fcgi/$1 [L]

Ready

Go to your domain and you should see the Werkzeug test page. If it does not show you can check uWSGI logs in the file you specified with the
logto option.

The flock trick

As the apache mod_fcgi/mod_fastcgi/mod_fcgid implemenetations are very flaky on process management, you can easily end with lot of copies
of the same process running. The flock trick avoid that. Just remember that the flock option is very special as you cannot use
placeholder or other advanced techniques with it. You can only specify the absolute path of the file to lock.

Statistics

As always remember to use uWSGI internal stats system

first, install uwsgitop

venv/bin/easy_install uwsgitop

Enable the stats server on the uWSGI config

[uwsgi]
flock = /home/XXX/YYY.ini
account = XXX
domain = YYY

protocol = fastcgi
master = true
processes = 3
logto = /home/%(account)/%(domain).uwsgi.log
virtualenv = /home/%(account)/venv
module = werkzeug.testapp:test_app
touch-reload = %p
auto-procname = true
procname-prefix-spaced = [%(domain)]

stats = /home/%(account)/stats_%(domain).sock

(as we have touch-reload in place, as soon as you update the ini file your instance is reloaded, and you will be able to suddenly use uwsgitop)

venv/bin/uwsgitop /home/WWW/stats_YYY.sock

(remember to change XXX and YYY accordingly)

Running Perl/PSGI apps (requires uWSGI >= 1.9)

Older uWSGI versions does not work well with plugins other than the python one, as the fastcgi implementation has lot of limits.

Starting from 1.9, fastCGI is a first-class citizen in the uWSGI project, so all of the plugins work with it.

As before, compile the uWSGI sources but this time we will build a PSGI monolithic binary:

UWSGI_PROFILE=psgi make

copy the resulting binary in the home as uwsgi_perl

Now edit the previously created uwsgi.fcgi file changing it to

#!/bin/sh
/home/XXX/uwsgi_perl /home/XXX/YYY.ini

(again, change XXX and YYY accordingly)

Now upload an app.psgi file in the document root (this is your app)

my $app = sub {
 my $env = shift;
 return [
 '200',
 ['Content-Type' => 'text/plain'],
 ["Hello World"]
];
};

and change the uWSGI ini file accordingly

[uwsgi]
flock = /home/XXX/YYY.ini
account = XXX
domain = YYY

psgi = /home/%(account)/%(domain)/app.psgi
fastcgi-modifier1 = 5

protocol = fastcgi
master = true
processes = 3
logto = /home/%(account)/%(domain).uwsgi.log
virtualenv = /home/%(account)/venv
touch-reload = %p
auto-procname = true
procname-prefix-spaced = [%(domain)]

stats = /home/%(account)/stats_%(domain).sock

The only difference from the python one, is the usage of ‘psgi’ instead of ‘module’ and the addition of fastcgi-modifier1
that set the uWSGI modifier to the perl/psgi one

Running Ruby/Rack apps (requires uWSGI >= 1.9)

By default you can use passenger on Dreamhost servers to host ruby/rack applications, but you may need a more advanced application servers
for your work (or you may need simply more control over the deployment process)

As the PSGI one you need a uWSGI version >= 1.9 to get better (and faster) fastcgi support

Build a new uWSGI binary with rack support

UWSGI_PROFILE=rack make

and copy it in the home as ‘’uwsgi_ruby’‘

Edit (again) the uwsgi.fcgi file changing it to

#!/bin/sh
/home/XXX/uwsgi_rack /home/XXX/YYY.ini

and create a Rack application in the document root (call it app.ru)

class RackFoo

 def call(env)
 [200, { 'Content-Type' => 'text/plain'}, ['ciao']]
 end

end

run RackFoo.new

Finally change the uWSGI .ini file for a rack app:

[uwsgi]
flock = /home/XXX/YYY.ini
account = XXX
domain = YYY

rack = /home/%(account)/%(domain)/app.ru
fastcgi-modifier1 = 7

protocol = fastcgi
master = true
processes = 3
logto = /home/%(account)/%(domain).uwsgi.log
virtualenv = /home/%(account)/venv
touch-reload = %p
auto-procname = true
procname-prefix-spaced = [%(domain)]

stats = /home/%(account)/stats_%(domain).sock

Only differences from the PSGI one, is the use of ‘rack’ instead of ‘psgi’, and the modifier1 mapped to 7 (the ruby/rack one)

Serving static files

It is unlikely you will need to serve static files on uWSGI on a dreamhost account. You can directly use apache for that
(eventually remember to change the .htaccess file accordingly)

Running python webapps on Heroku with uWSGI

Prerequisites: a Heroku account (on the cedar platform), git (on the local system) and the heroku toolbelt.

Note: you need a uWSGI version >= 1.4.6 to correctly run python apps. Older versions may work, but are not supported.

Preparing the environment

On your local system prepare a directory for your project:

mkdir uwsgi-heroku
cd uwsgi-heroku
git init .
heroku create

the last command will create a new heroku application (you can check it on the web dashboard).

For our example we will run the Werkzeug WSGI testapp, so we need to install the werkzeug package in addition to uWSGI.

First step is creating a requirements.txt file and tracking it with git.

The content of the file will be simply

uwsgi
werkzeug

Let’s track it with git

git add requirements.txt

Creating the uWSGI config file

Now we can create our uWSGI configuration file. Basically all of the features can be used on heroku

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
die-on-term = true
module = werkzeug.testapp:test_app
memory-report = true

as you can see this is a pretty standard configuration. The only heroku-required options are –http-socket and –die-on-term.

The first is required to bind the uWSGI socket to the port requested by the Heroku system (exported via the environment variable PORT we can access with $(PORT))

The second one (–die-on-term) is required to change the default behaviour of uWSGI when it receive a SIGTERM (brutal realod, while Heroku expect a shutdown)

The memory-report option (as we are in a memory contrained environment) is a good thing.

Remember to track the file

git add uwsgi.ini

Preparing for the first commit/push

We now need the last step: creating the Procfile.

The Procfile is a file describing which commands to start. Generally (with other deployment systems) you will use it for every
additional process required by your app (like memcached, redis, celery...), but under uWSGI you can continue using its advanced facilities to manage them.

So, the Procfile, only need to start your uWSGI instance:

web: uwsgi uwsgi.ini

Track it

git add Procfile

And finally let’s commit all:

git commit -a -m "first commit"

and push it (read: deploy) to Heroku:

git push heroku master

The first time it will requires a couple of minutes as it need to prepare your virtualenv and compile uWSGI.

Following push will be much faster.

Checking your app

Running heroku logs you will be able to access uWSGI logs. You should get all of your familiar information, and eventually
some hint in case of problems.

Using another version of python

Heroku supports different python versions. By default (currently, february 2013), Python 2.7.3 is enabled.

If you need another version just create a runtime.txt in your repository with a string like that:

python-2.7.2

to use python 2.7.2

Remember to add/commit that in the repository.

Every time you change the python version, a new uWSGI binary is built.

Multiprocess or Multithread ?

It obviosuly depend on your app. But as we are on a memory-limited environment you can expect better memory usage with threads.

In addition to this, if you plan to put production-apps on Heroku be sure to understand how Dynos and their proxy works
(it is very important. really)

Async/Greethreads/Coroutine ?

As always, do not trust people suggesting you to ALWAYS use some kind of async mode (like gevent). If your app
is async-friendly you can obviously use gevent (it is built by default in recent uWSGI releases), but if you do not know that, remain
with multiprocess (or multithread).

Harakiri

As said previously, if you plan to put production-apps on heroku, be sure to understand how dynos and their proxy works. Based on that,
try to always set the harakiri parameters to a good value for your app. (do not ask for a default value, IT IS APP-DEPENDENT)

Static files

Generally, serving static files on Heroku is not a good idea (mainly from a design point of view). You could obviously have that need.
In such a case remember to use uWSGI facilities for that, in particular offloading is the best way to leave your workers free while you serve big files (in addition to this remember that your static files must be tracked with git)

Adaptive process spawning

None of the supported algorithm are good for the Heroku approach and, very probably, it makes little sense to use a dynamic process
number on such a platform.

Logging

If you plan to use heroku on production, remember to send your logs (via udp for example) on an external server (with persistent storage).

Check the uWSGI available loggers. Surely one will fit your need. (pay attention to security, as logs will fly in clear).

UPDATE: a udp logger with crypto features is on work.

Alarms

All of the alarms plugin should work without problems

The Spooler

As your app runs on a non-persistent filesystem, using the Spooler is a bad idea (you will easily lose tasks).

Mules

They can be used without problems

Signals (timers, filemonitors, crons...)

They all works, but do not rely on cron facilities, as heroku can kill/destroy/restarts your instances in every moment.

External daemons

The –attach-daemon option and its –smart variants work without problems. Just remember you are on a volatile filesystem and you are not
free to bind on port/addresses as you may wish

Monitoring your app (advanced/hacky)

Albeit Heroku works really well with newrelic services, you always need to monitor the internals of your uWSGI instance.

Generally you enable the stats subsystem with a tool like uwsgitop as the client.

You can simply add uwsgitop to you requirements.txt

uwsgi
uwsgitop
werkzeug

and enable the stats server on a TCP port (unix sockets will not work as the instance running uwsgitop is not on the same server !!!):

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
die-on-term = true
module = werkzeug.testapp:test_app
memory-report = true
stats = :22222

Now we have a problem: how to reach our instance ?

We need to know the LAN address of the machine where our instance is phisically running. To accomplish that, a raw trick is running
ifconfig on uWSGI startup:

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
die-on-term = true
module = werkzeug.testapp:test_app
memory-report = true
stats = :22222
exec-pre-app = /sbin/ifconfig eth0

Now thanks to the heroku logs command you can know where your stats server is

heroku run uwsgitop 10.x.x.x:22222

change x.x.x with the discovered address and remember that you could not be able to bind on port 22222, so change it accordingly.

Is it worthy to make such a mess to get monitoring ? If you are testing your app before going to production, it could be a good idea,
but if you plan to buy more dynos, all became so complex that you’d better to use some heroku-blessed technique (if any)

Running Ruby/Rack webapps on Heroku with uWSGI

Prerequisites: a Heroku account (on the cedar platform), git (on the local system) and the heroku toolbelt (or the old/deprecated heroku gem)

Note: you need a uWSGI version >= 1.4.8 to correctly run ruby/rack apps. Older versions may work, but are not supported.

Preparing the environment (a Sinatra application)

On your local system prepare the structure for your sinatra application

mkdir uwsgi-heroku
cd uwsgi-heroku
git init .
heroku create --stack cedar

the last command will create a new heroku application (you can check it on the web dashboard).

Next step is creating our Gemfile (this file containes the gem required by the application)

source 'https://rubygems.org'

gem "uwsgi"
gem "sinatra"

we now need to run bundle install to create the Gemfile.lock file

let’s track the two with git:

git add Gemfile
git add Gemfile.lock

Finally create a config.ru file containing the Sinatra sample app

require 'sinatra'

get '/hi' do
 return "ciao"
end

run Sinatra::Application

and track it

git add config.ru

Creating the uWSGI config file

We are now ready to create the uWSGI configuration (we will use the .ini format in a file called uwsgi.ini).

The minimal setup for heroku is the following (check the comments in the file for an explanation)

[uwsgi]
; bind to the heroku required port
http-socket = :$(PORT)
; force the usage of the ruby/rack plugin for every request (7 is the official numbero for ruby/rack)
http-socket-modifier1 = 7
; load the bundler subsystem
rbrequire = bundler/setup
; load the application
rack = config.ru
; when the app receives the TERM signal let's destroy it (instead of brutal reloading)
die-on-term = true

but a better setup will be

[uwsgi]
; bind to the heroku required port
http-socket = :$(PORT)
; force the usage of the ruby/rack plugin for every request (7 is the official numbero for ruby/rack)
http-socket-modifier1 = 7
; load the bundler subsystem
rbrequire = bundler/setup
; load the application
rack = config.ru
; when the app receives the TERM signal let's destroy it (instead of brutal reloading)
die-on-term = true
; enable the master process
master = true
; spawn 4 processes to increase concurrency
processes = 4
; report memory usage after each request
memory-report = true
; reload if the rss memory is higher than 100M
reload-on-rss = 100

Let’s track it

git add uwsgi.ini

Deploying to heroku

We need to create the last file (required by Heroku). It is the Procfile, that instruct the Heroku system on which process to start for a web application.

We want to spawn uwsgi (installed as a gem via bundler) using the uwsgi.ini config file

web: bundle exec uwsgi uwsgi.ini

track it

git add Procfile

And let’s commit all:

git commit -a -m "first attempt"

And push to heroku:

git push heroku master

If all goes well, you will see your page under your app url on the /hi path

Remember to run heroku logs to check if all is ok.

fork() for dummies

uWSGI allows you to choose how to abuse the fork() syscall in your app.

By default the approach is loading the application in the master process and then fork() to the workers
that will inherit a copy of the master process.

This approach speedup startup and can potentially consume less memory. The truth is that often (for the way ruby garbage collection works)
you will get few memory gain. The real advantage in in performance as the vast majority of time during application startup is spent
in (slowly) searching for files. With the fork() early approach you can avoid repeating that slow procedure one time for worker.

Obviously the uWSGI mantra is “do whatever you need, if you can’t, it is a uWSGI bug” so if your app is not fork()-friendly
you can add the lazy-apps = true option that will load your app one time per-worker.

The ruby GC

By default uWSGI, calls the ruby Garbage collector after each request. This ensure an optimal use of memory (remember on Heroku, your memory is limited) you should not touch
the default approach, but if you experience a drop in performance you may want to tune it using the ruby-gc-freq = n option
where n is the number of requests after the GC is called.

Concurrency

Albeit uWSGI supports lot of different paradigms for concurrency, the multiprocess one is suggested for the vast majority of ruby/rack apps.

Basically all popular ruby-frameworks rely on that. Remember that your app is limited so spawn a number of processes
that can fit in your Heroku dyno.

Starting from uWSGI 1.9.14, native ruby 1.9/2.x threads support has been added. Rails4 (only in production mode !!!) supports them:

[uwsgi]
...
; spawn 8 threads per-process
threads = 8
; maps them as ruby threads
rbthreads = true
; do not forget to set production mode for rails4 apps !!!
env = RAILS_ENV=production
...

Harakiri

If you plan to put production-apps on heroku, be sure to understand how dynos and their proxy works. Based on that, try to always set the harakiri parameters to a good value for your app. (do not ask for a default value, IT IS APP-DEPENDENT)

Harakiri, is the maximum time a single request can run, before being destroyed by the master

Static files

Generally, serving static files on Heroku is not a good idea (mainly from a design point of view). You could obviously have that need. In such a case remember to use uWSGI facilities for that, in particular offloading is the best way to leave your workers free while you serve big files (in addition to this remember that your static files must be tracked with git)

Try to avoid serving static files from your ruby/rack code. It will be extremely slow (compared to the uWSGI facilities) and can hold your worker busy
for the whole transfer of the file

Adaptive process spawning

None of the supported algorithms are good for the Heroku approach and, very probably, it makes little sense to use a dynamic process number on such a platform.

Logging

If you plan to use heroku on production, remember to send your logs (via udp for example) on an external server (with persistent storage).

Check the uWSGI available loggers. Surely one will fit your need. (pay attention to security, as logs will fly in clear).

UPDATE: a udp logger with crypto features is on work.

Alarms

All of the alarms plugin should work without problems

The Spooler

As your app runs on a non-persistent filesystem, using the Spooler is a bad idea (you will easily lose tasks).

Mules

They can be used without problems

Signals (timers, filemonitors, crons...)

They all works, but do not rely on cron facilities, as heroku can kill/destroy/restarts your instances in every moment.

External daemons

The –attach-daemon option and its –smart variants work without problems. Just remember you are on a volatile filesystem and you are not free to bind on port/addresses as you may wish

Reliably use FUSE filesystems for uWSGI vassals (with Linux)

Requirements: uWSGI 1.9.18, Linux kernel with FUSE and namespaces support.

FUSE is a technology allowing the implementation of filesystems in user space (hence the name: Filesystem in Userspace).
There are hundreds of high-quality FUSE filesystems, so having your application relying on them is a common situation.

FUSE filesystems are normal system processes, so as any process in the system, they can crash (or you may involuntarily kill them).
In addition to this, if you host multiple applications, each one requiring a FUSE mount point, you may want to avoid polluting the main mount points namespace and, more important,
avoid having unused mount points in your system (i.e. an instance is completely removed and you do not want its FUSE mount point to be still available in the system).

The purpose of this tutorial is to configure an Emperor and a series of vassals, each one mounting a FUSE filesystem.

A Zip filesystem

fuse-zip [https://code.google.com/p/fuse-zip/] is a FUSE process exposing a zip file as a filesystem.

Our objective is to store whole app in a zip archive and instruct uWSGI to mount it as a filesystem (via FUSE) under /app.

The Emperor

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-clone = fs,pid

The trick here is to use Linux namespaces to create vassals in a new pid and filesystem namespace.

The first one (fs) allows mount point created by the vassal to be available only to the vassal (without messing with the main system), while the pid
allows the uWSGI master to be the “init” process (pid 1) of the vassal. Being “pid 1” means that when you die all your children die too. In our scenario (where our vassal launches a FUSE process on startup) it means that when
the vassal is destroyed, the FUSE process is destroyed too, as well as its mount point.

A Vassal

[uwsgi]
uid = user001
gid = user001

; mount FUSE filesystem under /app (but only if it is not a reload)
if-not-reload =
 exec-as-user = fuse-zip -r /var/www/app001.zip /app
endif =

http-socket = :9090
psgi = /app/myapp.pl

Here we use the -r option of the fuse-zip command for a read-only mount.

Monitoring mount points

The problem with the current setup is that if the fuse-zip process dies, the instance will no more be able to access /app until it is respawned.

uWSGI 1.9.18 added the --mountpoint-check option. It forces the master to constantly verify the specified filesystem. If it fails, the whole instance will be brutally destroyed.
As we are under The Emperor, soon after the vassal is destroyed it will be restarted in a clean state (allowing the FUSE mount point to be started again).

[uwsgi]
uid = user001
gid = user001

; mount FUSE filesystem under /app (but only if it is not a reload)
if-not-reload =
 exec-as-user = fuse-zip -r /var/www/app001.zip /app
endif =

http-socket = :9090
psgi = /app/myapp.pl

mountpoint-check = /app

Going Heavy Metal: A CoW rootfs (unionfs-fuse)

unionfs-fuse [http://podgorny.cz/moin/UnionFsFuse] is a user-space implementation of a union filesystem.
A union filesystem is a stack of multiple filesystems, so directories with same name are merged into a single view.

Union filesystems are more than this and one of the most useful features is copy-on-write (COW or CoW).
Enabling CoWs means you will have an immutable/read-only mount point base and all of the modifications to it will go to another mount point.

Our objective is to have a read-only rootfs shared by all of our customers, and a writable mount point (configured as CoW) for each customer, in which every modification will be stored.

The Emperor

Previous Emperor configuration can be used, but we need to prepare our
filesystems.

The layout will be:

/ufs (where we initially mount our unionfs for each vassal)
/ns
 /ns/precise (the shared rootfs, based on Ubuntu Precise Pangolin)
 /ns/lucid (an alternative rootfs for old-fashioned customers, based on Ubuntu Lucid Lynx)
 /ns/saucy (another shared rootfs, based on Ubuntu Saucy Salamander)

 /ns/cow (the customers' writable areas)
 /ns/cow/user001
 /ns/cow/user002
 /ns/cow/userXXX
 ...

We create our rootfs:

debootstrap precise /ns/precise
debootstrap lucid /ns/lucid
debootstrap saucy /ns/saucy

And we create the .old_root directory in each one (it is required for pivot_root, see below):

mkdir /ns/precise/.old_root
mkdir /ns/lucid/.old_root
mkdir /ns/saucy/.old_root

Be sure to install the required libraries into each of them (especially the libraries required for your language).

The uwsgi binary must be executable in this rootfs, so you have to invest a bit of time in it (a good approach is having a language plugin
compiled for each distribution and placed into a common directory, for example, each rootfs could have an /opt/uwsgi/plugins/psgi_plugin.so file and so on).

A Vassal

Here things get a bit more complicated. We need to launch the unionfs process (as root, as it must be our new rootfs) and then call pivot_root (a more advanced chroot available on Linux).

Hooks are the best way to run custom commands (or functions) at various uWSGI startup phases.

In our example we will run FUSE processes at the “pre-jail” phase, and deal with mount points at the “as-root” phase (that happens after pivot_root).

[uwsgi]
; choose the approach that suits you best (plugins loading)
; this will be used for the first run ...
plugins-dir = /ns/precise/opt/uwsgi/plugins
; and this after a reload (where our rootfs is already /ns/precise)
plugins-dir = /opt/uwsgi/plugins
plugin = psgi

; drop privileges
uid = user001
gid = user001

; chdir to / to avoid problems after pivot_root
hook-pre-jail = callret:chdir /
; run unionfs-fuse using chroot (it is required to avoid deadlocks) and cow (we mount it under /ufs)
hook-pre-jail = exec:unionfs-fuse -ocow,chroot=/ns,default_permissions,allow_other /precise=RO:/cow/%(uid)=RW /ufs

; change the rootfs to the unionfs one
; the .old_root directory is where the old rootfs is still available
pivot_root = /ufs /ufs/.old_root

; now we are in the new rootfs and in 'as-root' phase
; remount the /proc filesystem
hook-as-root = mount:proc none /proc
; bind mount the original /dev in the new rootfs (simplifies things a lot)
hook-as-root = mount:none /.old_root/dev /dev bind
; recursively un-mount the old rootfs
hook-as-root = umount:/.old_root rec,detach

; common bind
http-socket = :9090

; load the app (fix it according to your requirements)
psgi = /var/www/myapp.pl

; constantly check for the rootfs (seems odd but is is very useful)
mountpoint-check = /

If your app will try to write to its filesystem, you will see that all
of the created/updated files are available in its /cow directory.

Notes

Some FUSE filesystems do not commit writes until they are unmounted.
In such a case unmounting on vassal shutdown is a good trick:

[uwsgi]
; vassal options ...
...
; umount on exit
exec-as-user-atexit = fusermount -u /app

Build a dynamic proxy using RPC and internal routing

Work in progress (requires uWSGI 1.9.14, we use PyPy as the engine)

step 1: build your mapping function

we use the hostname as the mapping (you can use whatever you need)

import uwsgi

def my_mapper(hostname):
 return "127.0.0.1:3031"

uwsgi.register_rpc('the_mapper', my_mapper)

save it as myfuncs.py

step 2: building a routing table

[uwsgi]
; enable the pypy engine
pypy-home = /opt/pypy
; execute the myfuncs.py file (the 'the_mapper' rpc function will be registered)
pypy-exec = myfuncs.py

; bind to a port
http-socket = :9090

; let's define our routing table

; at every request (route-run execute the action without making check, use it instead of --route .*) run the_mapper passing HTTP_HOST as argument
; and place the result in the MYNODE variable
route-run = rpcvar:MYNODE the_mapper ${HTTP_HOST}
; print the MYNODE variable (just for fun)
route-run = log:${MYNODE}
; proxy the request to the choosen backend node
route-run = http:${MYNODE}

; enable offloading for automagic non-blocking behaviour
; a good value for offloading is the number of cpu cores
offload-threads = 2

Setting up Graphite on Ubuntu using the Metrics subsystem

This tutorial will guide you in installing a multi-app server, with each application sending metrics to a central graphite/carbon server.

Graphite is available here: http://graphite.wikidot.com/

The uWSGI Metrics subsystem is documented here The Metrics subsystem

The tutorial assumes an Ubuntu Saucy (13.10) release on amd64

While for Graphite we will use Ubuntu official packages, uWSGI core and plugins will be downloaded and installed from official sources

Installing Graphite and the others needed packages

sudo apt-get install python-dev ruby-dev bundler build-essential libpcre3-dev graphite-carbon graphite-web

python-dev and ruby-dev are required as we want to support both WSGI and Rack apps.

pcre development headers allow you to build uWSGI with internal routing support (something you always want)

Initializing Graphite

The first step will be enabling th Carbon server.

The Graphite project is composed by three subsystems: whisper, carbon and the web frontend

Whisper is a data storage format (similar to rrdtool)

Carbon is the server gathering metrics and storing them in whisper files (well it does more, but this is its main purpose)

The web frontend visualize the charts/graphs built from the data gathered by the carbon server.

To enable the carbon server edit /etc/default/graphite-carbon and set CARBON_CACHE_ENABLED to true

Before starting the carbon server we need to build its search index.

Just run:

sudo /usr/bin/graphite-build-search-index

Then start the carbon server (at the next reboot it will be automatically started)

sudo /etc/init.d/carbon-cache start

Building and Installing uWSGI

Download latest stable uWSGI tarball

wget http://projects.unbit.it/downloads/uwsgi-latest.tar.gz

explode it, and from the created directory run:

python uwsgiconfig.py --build core

this will build the uWSGI “core” binary.

We now want to build the python, rack and carbon plugins:

python uwsgiconfig.py --plugin plugins/python core
python uwsgiconfig.py --plugin plugins/rack core
python uwsgiconfig.py --plugin plugins/carbon core

now we have uwsgi, python_plugin.so, rack_plugin.so and carbon_plugin.so

let’s copy it to system directories:

sudo mkdir /etc/uwsgi
sudo mkdir /usr/lib/uwsgi
sudo cp uwsgi /usr/bin/uwsgi
sudo cp python_plugin.so /usr/lib/uwsgi
sudo cp rack_plugin.so /usr/lib/uwsgi
sudo cp carbon_plugin.so /usr/lib/uwsgi

Setting up the uWSGI Emperor

Create an upstart config file for starting The uWSGI Emperor – multi-app deployment

Emperor uWSGI script

description "uWSGI Emperor"
start on runlevel [2345]
stop on runlevel [06]

exec /usr/bin/uwsgi --emperor /etc/uwsgi

save it as /etc/init/emperor.conf and start the Emperor:

start emperor

From now on, to start uWSGI instances just drop their config files into /etc/uwsgi

Spawning the Graphite web interface

Before starting the graphite web interface (that is a Django app) we need to initialize its database.

Just run:

sudo graphite-manage syncdb

this is the standard django syncdb command for manage.py. Just answer the questions to create an admin user.

Now we are ready to create a uWSGI vassal:

[uwsgi]
plugins-dir = /usr/lib/uwsgi
plugins = python
uid = _graphite
gid = _graphite
wsgi-file = /usr/share/graphite-web/graphite.wsgi
http-socket = :8080

Save it as /etc/uwsgi/graphite.ini

the _graphite user (and group) is created by the graphite ubuntu package. Our uWSGI vassal will run under this privileges.

The web interface will be available on the port 8080 of your server natively speaking HTTP. If you prefer to proxy it,
just change http-socket to http or place it behind a full webserver like nginx (this step is not covered in this tutorial)

Spawning vassals sending metrics to Graphite

We are now ready to send applications metrics to the carbon/graphite server.

For every vassal file in /etc/uwsgi just be sure to add the following options:

[uwsgi]
...
plugins = carbon
enable-metrics = true
carbon-use-metrics = true
carbon-id = %n
carbon = 127.0.0.1:2003
...

The carbon-id set a meaningful prefix to each metric (%n automatically translates to the name without extension of the vassal file).

The carbon option set the address of the carbon server to send metrics to (by default the carbon server binds on port 2003, but you can change it editing
/etc/carbon/carbon.conf and restarting the carbon server)

Using Graphiti (Ruby/Sinatra based) as alternative frontend

Graphiti is an alternative dashboard/frontend from Graphite writte in Sinatra (a Ruby/Rack framework).

Graphiti requires redis, so be sure a redis server is running in your system.

Running:

sudo apt-get install redis-server

will be enough

First step is cloning the graphiti app (place it where you want/need):

git clone https://github.com/paperlesspost/graphiti.git

then run the bundler tool (if you are not confident with the ruby world it is a tool for managing dependencies)

bundle install

注解

if the eventmachine gem installation fails, add “gem ‘eventmachine’” in the Gemfile as the first gem and run bundle update. This will ensure latest eventmachine version will be installed

After bundle has installed all of the gems, you have to copy the graphiti example configuration:

cp config/settings.yml.example config/settings.yml

edit it and set graphite_base_url to the url where the graphite web interface (the django one) is running.

Now we can deploy it on uWSGI

[uwsgi]
plugins-dir = /usr/lib/uwsgi
plugins = rack
chdir = <path_to_graphiti>
rack = config.ru
rbrequire = bundler/setup
http-socket = :9191
uid = _graphite
gid = _graphite

save it as /etc/uwsgi/graphiti.ini to let the Emperor deploy it

You can now connect to port 9191 to manage your gathered metrics.

As always you are free to place the instance under a proxy.

Notes

By default the carbon server listens on a public address. Unless you know what you are doing you should point it to a local one (like 127.0.0.1)

uWSGI exports a gazillion of metrics (and more are planned), do not be afraid to use them

There is no security between apps and the carbon server, any apps can write metrics to it. If you are hosting untrusted apps you’d better to use other approcahes (like giving a graphite instance to every user in the system)

The same is true for redis, if you run untrusted apps a shared redis instance is absolutely not a good choice from a secuity point of view

Serializing accept(), AKA Thundering Herd, AKA the Zeeg Problem

One of the historical problems in the UNIX world is the “thundering herd”.

What is it?

Take a process binding to a networking address (it could be AF_INET,
AF_UNIX or whatever you want) and then forking itself:

int s = socket(...)
bind(s, ...)
listen(s, ...)
fork()

After having forked itself a bunch of times, each process will generally start
blocking on accept()

for(;;) {
 int client = accept(...);
 if (client < 0) continue;
 ...
}

The funny problem is that on older/classic UNIX, accept() is woken up in
each process blocked on it whenever a connection is attempted on the socket.

Only one of those processes will be able to truly accept the connection, the
others will get a boring EAGAIN.

This results in a vast number of wasted cpu cycles (the kernel scheduler has to
give control to all of the sleeping processes waiting on that socket).

This behaviour (for various reasons) is amplified when instead of processes you
use threads (so, you have multiple threads blocked on accept()).

The de facto solution was placing a lock before the accept() call to serialize
its usage:

for(;;) {
 lock();
 int client = accept(...);
 unlock();
 if (client < 0) continue;
 ...
}

For threads, dealing with locks is generally easier but for processes you have
to fight with system-specific solutions or fall back to the venerable SysV ipc
subsystem (more on this later).

In modern times, the vast majority of UNIX systems have evolved, and now the
kernel ensures (more or less) only one process/thread is woken up on a
connection event.

Ok, problem solved, what we are talking about?

select()/poll()/kqueue()/epoll()/...

In the pre-1.0 era, uWSGI was a lot simpler (and less interesting) than the
current form. It did not have the signal framework and it was not able to
listen to multiple addresses; for this reason its loop engine was only calling
accept() in each process/thread, and thundering herd (thanks to modern
kernels) was not a problem.

Evolution has a price, so after a while the standard loop engine of a uWSGI
process/thread moved from:

for(;;) {
 int client = accept(s, ...);
 if (client < 0) continue;
 ...
}

to a more complex:

for(;;) {
 int interesting_fd = wait_for_fds();
 if (fd_need_accept(interesting_fd)) {
 int client = accept(interesting_fd, ...);
 if (client < 0) continue;
 }
 else if (fd_is_a_signal(interesting_fd)) {
 manage_uwsgi_signal(interesting_fd);
 }
 ...
}

The problem is now the wait_for_fds() example function: it will call
something like select(), poll() or the more modern epoll() and
kqueue().

These kinds of system calls are “monitors” for file descriptors, and they are
woken up in all of the processes/threads waiting for the same file descriptor.

Before you start blaming your kernel developers, this is the right approach, as
the kernel cannot know if you are waiting for those file descriptors to call
accept() or to make something funnier.

So, welcome again to the thundering herd.

Application Servers VS WebServers

The popular, battle tested, solid, multiprocess reference webserver is Apache
HTTPD.

It survived decades of IT evolutions and it’s still one of the most important
technologies powering the whole Internet.

Born as multiprocess-only, Apache had to always deal with the thundering herd
problem and they solved it using SysV ipc semaphores.

(Note: Apache is really smart about that, when it only needs to wait on a
single file descriptor, it only calls accept() taking advantage of modern
kernels anti-thundering herd policies)

(Update: Apache 2.x even allows you to choose which lock technique to use,
included flock/fcntl for very ancient systems, but on the vast majority of the
system, when in multiprocess mode it will use the sysv semaphores)

Even on modern Apache releases, stracing one of its process (bound to multiple
interfaces) you will see something like that (it is a Linux system):

semop(...); // lock
epoll_wait(...);
accept(...);
semop(...); // unlock
... // manage the request

the SysV semaphore protect your epoll_wait from thundering herd.

So, another problem solved, the world is a such a beatiful place... but

SysV IPC is not good for application servers :(*

The definition of “application server” is pretty generic, in this case we refer
to one or more process/processes generated by an unprivileged (non-root) user
binding on one or more network address and running custom, highly
non-deterministic code.

Even if you had a minimal/basic knowledge on how SysV IPC works, you will know
each of its components is a limited resource in the system (and in modern BSDs
these limits are set to ridiculously low values, PostgreSQL FreeBSD users know
this problem very well).

Just run ‘ipcs’ in your terminal to get a list of the allocated objects in your
kernel. Yes, in your kernel. SysV ipc objects are persistent resources, they
need to be removed manually by the user. The same user that could allocate
hundreds of those objects and fill your limited SysV IPC memory.

One of the most common problems in the Apache world caused by the SysV ipc
usage is the leakage when you brutally kills Apache instances (yes, you should
never do it, but you don’t have a choice if you are so brave/fool to host
unreliable PHP apps in your webserver process).

To better understand it, spawn Apache and killall -9 apache2. Respawn it
and run ‘ipcs’ you will get a new semaphore object every time. Do you see the
problem? (to Apache gurus: yes I know there are hacky tricks to avoid that,
but this is the default behaviour)

Apache is generally a system service, managed by a conscious sysadmin, so
except few cases you can continue trusting it for more decades, even if it
decides to use more SysV ipc objects :)

Your application server, sadly, is managed by different kind of users, from the
most skilled one to the one who should change job as soon as possible to the
one with the site cracked by a moron wanting to take control of your server.

Application servers are not dangerous, users are. And application servers are
run by users. The world is an ugly place.

How application server developers solved it

Fast answer: they generally do not solve/care it

Note: we are talking about multiprocessing, we have already seen multithreading
is easy to solve.

Serving static files or proxying (the main activities of a webserver) is
generally a fast, non-blocking (very deterministic under various points of view)
activity. Instead, a web application is way slower and heavier, so, even on
moderately loaded sites, the amount of sleeping processes is generally low.

On highly loaded sites you will pray for a free process, and in non-loaded
sites the thundering herd problem is completely irrelevant (unless you are
running your site on a 386).

Given the relatively low number of processes you generally allocate for an
application server, we can say thundering herd is a no-problem.

Another approach is dynamic process spawning. If you ensure your application
server has always the minimum required number of processes running you will
highly reduce the thundering herd problem. (check the family of –cheaper uWSGI
options)

No-problem ??? So, again, what we are talking about ?

We are talking about “common cases”, and for common cases there are a plethora
of valid choices (instead of uWSGI, obviously) and the vast majority of
problems we are talking about are non-existent.

Since the beginning of the uWSGI project, being developed by a hosting company
where “common cases” do not exist, we cared a lot about corner-case problems,
bizarre setups and those problems the vast majority of users never need to care
about.

In addition to this, uWSGI supports operational modes only common/available in
general-purpose webservers like Apache (I have to say Apache is probably the
only general purpose webserver as it allows basically anything in its process
space in a relatively safe and solid way), so lot of new problems combined with
user bad-behaviour arise.

One of the most challenging development phase of uWSGI was adding
multithreading. Threads are powerful, but are really hard to manage in the
right way.

Threads are way cheaper than processes, so you generally allocate dozens of
them for your app (remember, not used memory is wasted memory).

Dozens (or hundreds) of threads waiting for the same set of file descriptors
bring us back to a thundering herd problem (unless all of your threads are
constantly used).

For such a reason when you enable multiple threads in uWSGI a pthread mutex is
allocated, serializing epoll()/kqueue()/poll()/select()... usage in each
thread.

Another problem solved (and strange for uWSGI, without the need of an option ;)

But...

The Zeeg problem: Multiple processes with multiple threads

On June 27, 2013, David Cramer wrote an interesting blog post (you may not
agree with its conclusions, but it does not matter now, you can continue hating
uWSGI safely or making funny jokes about its naming choices or the number of
options).

http://justcramer.com/2013/06/27/serving-python-web-applications/

The problem David faced was such a strong thundering herd that its response
time was damaged by it (non constant performance was the main result of its
tests).

Why did it happen? Wasn’t the mutex allocated by uWSGI solving it?

David is (was) running uWSGI with 10 process and each of them with 10 threads:

uwsgi --processes 10 --threads 10 ...

While the mutex protects each thread in a single process to call accept()
on the same request, there is no such mechanism (or better, it is not enabled
by default, see below) to protect multiple processes from doing it, so given
the number of threads (100) available for managing requests, it is unlikely
that a single process is completely blocked (read: with all of its 10 threads
blocked in a request) so welcome back to the thundering herd.

How David solved it ?

uWSGI is a controversial piece of software, no shame in that. There are users
fiercely hating it and others morbidly loving it, but all agree that docs could
be way better ([OT] it is good when all the people agree on something, but pull
requests on uwsgi-docs are embarrassingly low and all from the same people....
come on, help us !!!)

David used an empirical approach, spotted its problem and decided to solve it
running independent uwsgi processes bound on different sockets and configured
nginx to round robin between them.

It is a very elegant approach, but it has a problem: nginx cannot know if the
process on which is sending the request has all of its thread busy. It is a
working but suboptimal solution.

The best way would be having an inter-process locking (like Apache),
serializing all of the accept() in both threads and processes

uWSGI docs sucks: –thunder-lock

Michael Hood (you will find his name in the comments of David’s post, too)
signalled the problem in the uWSGI mailing-list/issue tracker some time ago, he
even came out with an initial patch that ended with the --thunder-lock
option (this is why open-source is better ;)

--thunder-lock is available since uWSGI 1.4.6 but never got documentation (of
any kind)

Only the people following the mailing-list (or facing the specific problem)
know about it.

SysV IPC semaphores are bad how you solved it ?

Interprocess locking has been an issue since uWSGI 0.0.0.0.0.1, but we solved
it in the first public release of the project (in 2009).

We basically checked each operating system capabilities and chose the
best/fastest ipc locking they could offer, filling our code with dozens of
#ifdef.

When you start uWSGI you should see in its logs which “lock engine” has been
chosen.

There is support for a lot of them:

	pthread mutexes with _PROCESS_SHARED and _ROBUST attributes (modern Linux and Solaris)

	pthread mutexes with _PROCESS_SHARED (older Linux)

	OSX Spinlocks (MacOSX, Darwin)

	Posix semaphores (FreeBSD >= 9)

	Windows mutexes (Windows/Cygwin)

	SysV IPC semaphores (fallback for all the other systems)

Their usage is required for uWSGI-specific features like caching, rpc and all
of those features requiring changing shared memory structures (allocated with
mmap() + _SHARED)

Each of these engines is different from the others and dealing with them has
been a pain and (more important) some of them are not “ROBUST”.

The “ROBUST” term is pthread-borrowed. If a lock is “robust”, it means if the
process locking it dies, the lock is released.

You would expect it from all of the lock engines, but sadly only few of them
works reliably.

For this reason the uWSGI master process has to allocate an additional thread
(the ‘deadlock’ detector) constantly checking for non-robust unreleased locks
mapped to dead processes.

It is a pain, however, anyone will tell you IPC locking is easy should be
accepted in a JEDI school...

uWSGI developers are fu*!ing cowards

Both David Cramer and Graham Dumpleton (yes, he is the mod_wsgi author but
heavily contributed to uWSGI development as well to the other WSGI servers,
this is another reason why open source is better) asked why --thunder-lock
is not the default when multiprocess + multithread is requested.

This is a good question with a simple answer: we are cowards who only care
about money.

uWSGI is completely open source, but its development is sponsored (in various
way) by the companies using it and by Unbit.it customers.

Enabling “risky” features by default for a “common” usage (like
multiprocess+multithread) is too much for us, and in addition to this, the
situation (especially on linux) of library/kernel incompatibilities is a real
pain.

As an example for having ROBUST pthread mutexes you need a modern kernel with a
modern glibc, but commonly used distros (like the centos family) have a mix of
older kernels with newer glibc and the opposite too. This leads to the
inability to correctly detect which is the best locking engine for a platform,
and so, when the uwsgiconfig.py script is in doubt it falls back to the safest
approach (like non-robust pthread mutexes on linux).

The deadlock-detector should save you from most of the problem, but the
“should” word is the key. Making a test suite (or even a single unit test) on
this kind of code is basically impossible (well, at least for me), so we
cannot be sure all is in the right place (and reporting threading bugs is hard
for users as well as skilled developer, unless you work on pypy ;)

Linux pthread robust mutexes are solid, we are “pretty” sure about that, so you
should be able to enable --thunder-lock on modern Linux systems with a
99.999999% success rates, but we prefer (for now) users consciously enable it

When SysV IPC semaphores are a better choice

Yes, there are cases on which SysV IPC semaphores gives you better results than
system-specific features.

Marcin Deranek of Booking.com has been battle-testing uWSGI for months and
helped us with fixing corner-case situations even in the locking area.

He noted system-specific lock-engines tend to favour the kernel scheduler (when
choosing which process wins the next lock after an unlock) instead of a
round-robin distribution.

As for their specific need for an equal distribution of requests among
processes is better (they use uWSGI with perl, so no threading is in place, but
they spawn lot of processes) they (currently) choose to use the “ipcsem” lock
engine with:

uwsgi --lock-engine ipcsem --thunder-lock --processes 100 --psgi

The funny thing (this time) is that you can easily test if the lock is working
well. Just start blasting the server and you will see in the request logs how
the reported pid is different each time, while with system-specific locking the
pids are pretty random with a pretty heavy tendency of favouring the last used
process.

Funny enough, the first problem they faced was the ipcsem leakage (when you are
in emergency, graceful reload/stop is your enemy and kill -9 will be your
silver bullet)

To fix it, the –ftok option is available allowing you to give a unique id to
the semaphore object and to reuse it if it is available from a previous run:

uwsgi --lock-engine ipcsem --thunder-lock --processes 100 --ftok /tmp/foobar --psgi

–ftok takes a file as an argument, it will use it to build the unique id. A
common pattern is using the pidfile for it

What about other portable lock engines ?

In addition to “ipcsem”, uWSGI (where available) adds “posixsem” too.

They are used by default only on FreeBSD >= 9, but are available on Linux too.

They are not “ROBUST”, but they do not need shared kernel resources, so if you
trust our deadlock detector they are a pretty-good approach. (Note: Graham
Dumpleton pointed me to the fact they can be enabled on Apache 2.x too)

Conclusions

You can have the best (or the worst) software of the whole universe, but
without docs it does not exist.

The Apache team still slam the face of the vast majority of us trying to touch
their market share :)

Bonus chapter: using the Zeeg approach in a uWSGI friendly way

I have to admit, I am not a big fan of supervisord. It is a good software
without doubts, but I consider the Emperor and the –attach-daemon facilities a
better approach to the deployment problems. In addition to this, if you want to
have a “scriptable”/”extendable” process supervisor I think Circus
(http://circus.readthedocs.org/) is a lot more fun and capable (the first thing
I have done after implementing socket activation in the uWSGI Emperor was
making a pull request [merged, if you care] for the same feature in Circus).

Obviously supervisord works and is used by lot of people, but as a heavy uWSGI
user I tend to abuse its features to accomplish a result.

The first approach I would use is binding to 10 different ports and mapping
each of them to a specific process:

[uwsgi]
processes = 5
threads = 5

; create 5 sockets
socket = :9091
socket = :9092
socket = :9093
socket = :9094
socket = :9095

; map each socket (zero-indexed) to the specific worker
map-socket = 0:1
map-socket = 1:2
map-socket = 2:3
map-socket = 3:4
map-socket = 4:5

Now you have a master monitoring 5 processes, each one bound to a different
address (no --thunder-lock needed)

For the Emperor fanboys you can make such a template (call it foo.template):

[uwsgi]
processes = 1
threads = 10
socket = :%n

Now make a symbolic link for each instance+port you want to spawn:

ln -s foo.template 9091.ini
ln -s foo.template 9092.ini
ln -s foo.template 9093.ini
ln -s foo.template 9094.ini
ln -s foo.template 9095.ini
ln -s foo.template 9096.ini

Bonus chapter 2: securing SysV IPC semaphores

My company hosting platform in heavily based on Linux cgroups and namespaces.

The first (cgroups) are used to limit/account resource usage, while the second
(namespaces) are used to give an “isolated” system view to users (like seeing a
dedicated hostname or root filesystem).

As we allow users to spawn PostgreSQL instances in their accounts we need to
limit SysV objects.

Luckily, modern Linux kernels have a namespace for IPC, so calling
unshare(CLONE_NEWIPC) will create a whole new set (detached from the others) of
IPC objects.

Calling --unshare ipc in customer-dedicated Emperors is a common approach.
When combined with memory cgroup you will end with a pretty secure setup.

Credits:

Author: Roberto De Ioris

Fixed by: Honza Pokorny

The Art of Graceful Reloading

Author: Roberto De Ioris

The following article is language-agnostic, and albeit uWSGI-specific, some of
its initial considerations apply to other application servers and platforms
too.

All of the described techniques assume a modern (>= 1.4) uWSGI release with
the master process enabled.

What is a “graceful reload”?

During the life-cycle of your webapp you will reload it hundreds of time.

You need reloading for code updates, you need reloading for changes in the
uWSGI configuration, you need reloading to reset the state of your app.

Basically, reloading is one of the most simple, frequent and dangerous
operation you do every time.

So, why “graceful”?

Take a traditional (and highly suggested) architecture: a proxy/load balancer
(like nginx) forwards requests to one or more uWSGI daemons listening on various
addresses.

If you manage your reloads as “stop the instance, start the instance”, the time
slice between two phases will result in a brutal disservice for your customers.

The main trick for avoiding it is: not closing the file descriptors mapped to
the uWSGI daemon addresses and abusing the Unix fork() behaviour (read:
file descriptors are inherited by default) to exec() the uwsgi binary
again.

The result is your proxy enqueuing requests to the socket until the latter
will be able to accept() them again, with the user/customer only seeing
a little slowdown in the first response (the time required for the app to be
fully loaded again).

Another important step of graceful reload is to avoid destroying workers/threads
that are still managing requests. Obviously requests could be stuck, so you
should have a timeout for running workers (in uWSGI it is called the
“worker’s mercy” and it has a default value of 60 seconds).

These kind of tricks are pretty easy to accomplish and basically all of the
modern servers/application servers do it (more or less).

But, as always, the world is an ugly place and lot of problems arise, and the
“inherited sockets” approach is often not enough.

Things go wrong

We have seen that holding the uWSGI sockets alive allows the proxy webserver
to enqueue requests without spitting out errors to the clients. This is true
only if your app restarts fast, and, sadly, this may not always happen.

Frameworks like Ruby on Rails or Zope start up really slow by default, your
app could start up slowly by itself, or your machine could be so overloaded that
every process spawn (fork()) takes ages.

In addition to this, your site could be so famous that even if your app restarts
in a couple of seconds, the queue of your sockets could be filled up forcing the
proxy server to raise an error.

Do not forget, your workers/threads that are still running requests could block
the reload (for various reasons) for more seconds than your proxy server could
tolerate.

Finally, you could have made an application error in your just-committed code,
so uWSGI will not start, or will start sending wrong things or errors...

Reloads (brutal or graceful) can easily fail.

The listen queue

Let’s start with the dream of every webapp developer: success.

Your app is visited by thousands of clients and you obviously make money with
it. Unfortunately, it is a very complex app and requires 10 seconds to warm up.

During graceful reloads, you expect new clients to wait 10 seconds (best case)
to start seeing contents, but, unfortunately, you have hundreds of concurrent
requests, so first 100 customers will wait during the server warm-up, while
the others will get an error from the proxy.

This happens because the default size of uWSGI’s listen queue is 100 slots.
Before you ask, it is an average value choosen by the maximum value allowed
by default by your kernel.

Each operating system has a default limit (Linux has 128, for example), so
before increasing it you need to increase your kernel limit too.

So, once your kernel is ready, you can increase the listen queue to the
maximum number of users you expect to enqueue during a reload.

To increase the listen queue you use the --listen <n> option where
<n> is the maximum number of slots.

To raise kernel limits, you should check your OS docs. Some examples:

	sysctl kern.ipc.somaxconn on FreeBSD

	/proc/sys/net/core/somaxconn on Linux.

注解

This is only one of the reasons to tune the listen queue, but do not blindly
set it to huge values as a way to increase availability.

Proxy timeouts

This is another thing you need to check if your reloads take a lot of time.

Generally, proxies allow you to set two timeouts:

	connect

	Maximum amount of time the proxy will wait for a successful connection.

	read

	Maximum amount of time the server will be able to wait for data before
giving up.

When tuning the reloads, only the “connection” timeout matters. This timeout
enters the game in the time slice between uWSGI’s bind to an interface (or
inheritance of it) and the call to accept().

Waiting instead of errors is good, no errors and no waiting is even better

This is the focus of this article. We have seen how to increase the tolerance
of your proxy during application server reloading. The customers will wait
instead of getting scary errors, but we all want to make money, so why force
them to wait?

We want zero-downtime and zero-wait.

Preforking VS lazy-apps VS lazy

This is one of the controversial choices of the uWSGI project.

By default uWSGI loads the whole application in the first process and after
the app is loaded it does fork() itself multiple times.
This is the common Unix pattern, it may highly reduce the memory usage of your
app, allows lot of funny tricks and on some languages may bring you a lot of
headaches.

Albeit its name, uWSGI was born as a Perl application server (it was not called
uWSGI and it was not open source), and in the Perl world preforking is
generally the blessed way.

This is not true for a lot of other languages, platforms and frameworks, so
before starting dealing with uWSGI you should choose how to manage fork()
in your stack.

Seeing it from the “graceful reloading” point of view, preforking extremely
speeds up things: your app is loaded only one time, and spawning additional
workers will be really fast. Avoiding disk access for each worker of your
stack will decrease startup times, expecially for frameworks or languages
doing a lot of disk access to find modules.

Unfortunately, the preforking approach forces you to reload the whole stack
whenever you make code changes instead of reloading only the workers.

In addition to this, your app could need preforking, or could completely
crash due to it because of the way it has been developed.

lazy-apps mode instead loads your application one time per worker. It will
require about O(n) time to load it (where n is the number of workers),
will very probably consume more memory, but will run in a more consistent
and clean environment.

Remember: lazy-apps is different from lazy, the first one only instructs
uWSGI to load the application one time per worker, while the second is
more invasive (and generally discouraged) as it changes a lot of internal
defaults.

The following approaches will show you how to accomplish zero-downtime/wait
reloads in both preforking and lazy modes.

注解

Each approach has pros and cons, choose carefully.

Standard (default/boring) graceful reload (aka SIGHUP)

To trigger it, you can:

	send SIGHUP to the master

	write r to The Master FIFO

	use --touch-reload option

	call uwsgi.reload() API.

In preforking and lazy-apps mode, it will:

	Wait for running workers.

	Close all of the file descriptors except the ones mapped to sockets.

	Call exec() on itself.

In lazy mode, it will:

	Wait for running workers.

	Restart all of them (this means you cannot change uWSGI options during
this kind of reload).

警告

lazy is discouraged!

Pros:

	easy to manage

	no corner-case problems

	no inconsistent states

	basically full reset of the instance.

Cons:

	the ones we seen before

	listen queue filling up

	stuck workers

	potentially long waiting times.

Workers reloading in lazy-apps mode

Requires --lazy-apps option.

To trigger it:

	write w to The Master FIFO

	use --touch-workers-reload option.

It will wait for running workers and then restart each of them.

Pros:

	avoids restarting the whole instance.

Cons:

	no user-experience improvements over standard graceful reload, it is
only a shortcut for situation when code updates do not imply instance
reconfiguration.

Chain reloading (lazy apps)

Requires --lazy-apps option.

To trigger it:

	write c to The Master FIFO

	use --touch-chain-reload option.

This is the first approach that improves user experience. When triggered,
it will restart one worker at time, and the following worker is not reloaded
until the previous one is ready to accept new requests.

Pros:

	potentially highly reduces waiting time for clients

	reduces the load of the machine during reloads (no multiple processes loading
the same code).

Cons:

	only useful for code updates

	you need a good amount of workers to get a better user experience.

Zerg mode

Requires a zerg server or a zerg pool.

To trigger it, run the instance in zerg mode.

This is the first approach that uses multiple instances of the same application
to increase user experience.

Zerg mode works by making use of the venerable “fd passing over Unix sockets”
technique.

Basically, an external process (the zerg server/pool) binds to the various
sockets required by your app. Your uWSGI instance, instead of binding by
itself, asks the zerg server/pool to pass it the file descriptor. This means
multiple unrelated instances can ask for the same file descriptors and work
together.

Zerg mode was born to improve auto-scalability, but soon became one of the most
loved approaches for zero-downtime reloading.

Now, examples.

Spawn a zerg pool exposing 127.0.0.1:3031 to the Unix socket
/var/run/pool1:

[uwsgi]
master = true
zerg-pool = /var/run/pool1:127.0.0.1:3031

Now spawn one or more instances attached to the zerg pool:

[uwsgi]
; this will give access to 127.0.0.1:3031 to the instance
zerg = /var/run/pool1

When you want to make update of code or options, just spawn a new instance
attached to the zerg, and shut down the old one when the new one is ready to
accept requests.

The so-called “zerg dance” is a trick for automation of this kind of reload.
There are various ways to accomplish it, the objective is to automatically
“pause” or “destroy” the old instance when the new one is fully ready and able
to accept requests. More on this below.

Pros:

	potentially the silver bullet

	allows instances with different options to cooperate for the same app.

Cons:

	requires an additional process

	can be hard to master

	reload requires copy of the whole uWSGI stack.

The Zerg Dance: Pausing instances

We all make mistakes, sysadmins must improve their skill of fast disaster
recovery. Focusing on avoiding them is a waste of time. Unfortunately, we
are all humans.

Rolling back deployments could be your life-safer.

We have seen how zerg mode allows us to have multiple instances asking on
the same socket. In the previous section we used it to spawn a new instance
working together with the old one. Now, instead of shutting down the old
instance, why not “pause” it? A paused instance is like the standby mode
of your TV. It consumes very few resources, but you can bring it back very
quickly.

“Zerg Dance” is the battle-name for the procedure of continuos swapping of
instances during reloads. Every reload results in a “sleeping” instance and
a running one. Following reloads destroy the old sleeping instance and
transform the old running to the sleeping one and so on.

There are literally dozens of ways to accomplish the “Zerg Dance”, the fact
that you can easily use scripts in your reloading procedures makes this
approach extremely powerful and customizable.

Here we will see the one that requires zero scripting, it could be the less
versatile (and requires at least uWSGI 1.9.21), but should be a good starting
point for the improvements.

The Master FIFO is the best way to manage instances instead of relying
on Unix signals. Basically, you write single-char commands to govern the
instance.

The funny thing about the Master FIFOs is that you can have many of them
configured for your instance and swap one with another very easily.

An example will clarify things.

We spawn an instance with 3 Master FIFOs: new (the default one), running
and sleeping:

[uwsgi]
; fifo '0'
master-fifo = /var/run/new.fifo
; fifo '1'
master-fifo = /var/run/running.fifo
; fifo '2'
master-fifo = /var/run/sleeping.fifo
; attach to zerg
zerg = /var/run/pool1
; other options ...

By default the “new” one will be active (read: will be able to process
commands).

Now we want to spawn a new instance, that once is ready to accept requests will
put the old one in sleeping mode. To do it, we will use uWSGI’s advanced hooks.
Hooks allow you to “make things” at various phases of uWSGI’s life cycle.
When the new instance is ready, we want to force the old instance to start
working on the sleeping FIFO and be in “pause” mode:

[uwsgi]
; fifo '0'
master-fifo = /var/run/new.fifo
; fifo '1'
master-fifo = /var/run/running.fifo
; fifo '2'
master-fifo = /var/run/sleeping.fifo
; attach to zerg
zerg = /var/run/pool1

; hooks

; destroy the currently sleeping instance
if-exists = /var/run/sleeping.fifo
 hook-accepting1-once = writefifo:/var/run/sleeping.fifo Q
endif =
; force the currently running instance to became sleeping (slot 2) and place it in pause mode
if-exists = /var/run/running.fifo
 hook-accepting1-once = writefifo:/var/run/running.fifo 2p
endif =
; force this instance to became the running one (slot 1)
hook-accepting1-once = writefifo:/var/run/new.fifo 1

The hook-accepting1-once phase is run one time per instance soon after the
first worker is ready to accept requests.
The writefifo command allows writing to FIFOs without failing if the
other peers are not connected (this is different from a simple write
command that would fail or completely block when dealing with bad FIFOs).

注解

Both features have been added only in uWSGI 1.9.21, with older releases you can
use the --hook-post-app option instead of --hook-accepting1-once, but
you will lose the “once” feature, so it will work reliably only in preforking
mode.

Instead of writefifo you can use the shell variant:
exec:echo <string> > <fifo>.

Now start running instances with the same config files over and over again.
If all goes well, you should always end with two instances, one sleeping and
one running.

Finally, if you want to bring back a sleeping instance, just do:

destroy the running instance
echo Q > /var/run/running.fifo

unpause the sleeping instance and set it as the running one
echo p1 > /var/run/sleeping.fifo

Pros:

	truly zero-downtime reload.

Cons:

	requires high-level uWSGI and Unix skills.

SO_REUSEPORT (Linux >= 3.9 and BSDs)

On recent Linux kernels and modern BSDs you may try --reuse-port option.
This option allows multiple unrelated instances to bind on the same network
address. You may see it as a kernel-level zerg mode. Basically, all of the Zerg
approaches can be followed.

Once you add --reuse-port to you instance, all of the sockets will have
the SO_REUSEPORT flag set.

Pros:

	similar to zerg mode, could be even easier to manage.

Cons:

	requires kernel support

	could lead to inconsistent states

	you lose ability to use TCP addresses as a way to avoid incidental multiple
instances running.

The Black Art (for rich and brave people): master forking

To trigger it, write f to The Master FIFO.

This is the most dangerous of the ways to reload, but once mastered, it could
lead to pretty cool results.

The approach is: call fork() in the master, close all of the file
descriptors except the socket-related ones, and exec() a new uWSGI
instance.

You will end with two specular uWSGI instances working on the same set of
sockets.

The scary thing about it is how easy (just write a single char to the master
FIFO) is to trigger it...

With a bit of mastery you can implement the zerg dance on top of it.

Pros:

	does not require kernel support nor an additional process

	pretty fast.

Cons:

	a whole copy for each reload

	inconstent states all over the place (pidfiles, logging, etc.: the master
FIFO commands could help fix them).

Subscription system

This is probably the best approach when you can count on multiple servers.
You add the “fastrouter” between your proxy server (e.g., nginx) and your
instances.

Instances will “subscribe” to the fastrouter that will pass requests
from proxy server (nginx) to them while load balancing and constantly
monitoring all of them.

Subscriptions are simple UDP packets that instruct the fastrouter which
domain maps to which instance or instances.

As you can subscribe, you can unsubscribe too, and this is where the magic
happens:

[uwsgi]
subscribe-to = 192.168.0.1:4040:unbit.it
unsubscribe-on-graceful-reload = true
; all of the required options ...

Adding unsubscribe-on-graceful-reload will force the instance to send an
“unsubscribe” packet to the fastrouter, so until it will not be back no request
will be sent to it.

Pros:

	low-cost zero-downtime

	a KISS approach (finally).

Cons:

	requires a subscription server (like the fastrouter) that introduces overhead
(even if we are talking about microseconds).

Inconsistent states

Sadly, most of the approaches involving copies of the whole instance (like
Zerg Dance or master forking) lead to inconsistent states.

Take, for example, an instance writing pidfiles: when starting a copy of it,
that pidfile will be overwritten.

If you carefully plan your configurations, you can avoid inconsistent states,
but thanks to The Master FIFO you can manage some of them (read: the most
common ones):

	l command will reopen logfiles

	P command will update all of the instance pidfiles.

Fighting inconsistent states with the Emperor

If you manage your instances with the Emperor, you can
use its features to avoid (or reduce number of) inconsistent states.

Giving each instance a different symbolic link name will allow you to map
files (like pidfiles or logs) to different paths:

[uwsgi]
logto = /var/log/%n.log
pidfile = /var/run/%n.pid
; and so on ...

Dealing with ultra-lazy apps (like Django)

Some applications or frameworks (like Django) may load the vast majority of
their code only at the first request. This means that customer will continue
to experience slowdowns during reload even when using things like zerg mode
or similar.

This problem is hard to solve (impossible?) in the application server itself,
so you should find a way to force your app to load itself ASAP. A good trick
(read: works with Django) is to call the entry-point function (like the WSGI
callable) in the app itself:

def application(environ, sr):
 sr('200 OK', [('Content-Type', 'text/plain')])
 yield "Hello"

application({}, lambda x, y: None) # call the entry-point function

You may need to pass CGI vars to the environ to make a true request: it depends
on the WSGI app.

Finally: Do not blindly copy & paste!

Please, turn on your brain and try to adapt shown configs to your needs, or
invent new ones.

Each app and system is different from the others.

Experiment before making a choice.

References

The Master FIFO

Hooks

Zerg mode

The uWSGI FastRouter

uWSGI Subscription Server

Fun with Perl, Eyetoy and RaspberryPi

Author: Roberto De Ioris

Date: 2013-12-07

[image: https://raw.github.com/unbit/uwsgi-capture/master/rpi-examples/rpi_eyetoy.jpg]

Intro

This article is the result of various experiments aimed at improving uWSGI performance and usability in various areas before the 2.0 release.

To follow the article you need:

	a Raspberry Pi (any model) with a Linux distribution installed (I used standard Raspbian)

	a PS3 Eyetoy webcam

	a websocket-enabled browser (basically any serious browser)

	a bit of Perl knowledge (really only a bit, there’s less than 10 lines of Perl ;)

	Patience (building uWSGI + PSGI + coroae on the RPI requires 13 minutes)

uWSGI subsystems and plugins

The project makes use of the following uWSGI subsystems and plugins:

	WebSocket support

	SharedArea – share memory pages between uWSGI components (for storing frames)

	uWSGI Mules (for gathering frames)

	The Symcall plugin

	uWSGI Perl support (PSGI)

	uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9) (optional, we use Coro::Anyevent but you can rely on standard processes, though you’ll need way more memory)

What we want to accomplish

We want our RPI to gather frames from the Eyetoy and stream them to various connected clients using websockets, using a HTML5 canvas element to show them.

The whole system must use as little memory as possible, as few CPU cycles as possible, and it should support a large number of clients (... though well, even 10 clients will be a success for the Raspberry Pi hardware ;)

Technical background

The Eyetoy captures frames in YUYV format (known as YUV 4:2:2). This means we need 4 bytes for 2 pixels.

By default the resolution is set to 640x480, so each frame will need 614,400 bytes.

Once we have a frame we need to decode it to RGBA to allow the HTML5 canvas to show it.

The translation between YUYV and RGBA is pretty heavy for the RPI (especially if you need to do it for every connected client) so we will do it
in the browser using Javascript. (There are other approaches we could follow, just check the end of the article for them.)

The uWSGI stack is composed by a mule gathering frames from the Eyetoy and writing them to the uWSGI SharedArea.

Workers constantly read from that SharedArea and send frames as binary websocket messages.

Let’s start: the uwsgi-capture plugin

uWSGI 1.9.21 introduced a simplified (and safe) procedure to build uWSGI plugins. (Expect more third party plugins soon!)

The project at: https://github.com/unbit/uwsgi-capture shows a very simple plugin using the Video4Linux 2 API to gather frames.

Each frame is written in a shared area initialized by the plugin itself.

The first step is getting uWSGI and building it with the ‘coroae’ profile:

sudo apt-get install git build-essential libperl-dev libcoro-perl
git clone https://github.com/unbit/uwsgi
cd uwsgi
make coroae

The procedure requires about 13 minutes. If all goes well you can clone the uwsgi-capture plugin and build it.

git clone https://github.com/unbit/uwsgi-capture
./uwsgi --build-plugin uwsgi-capture

You now have the capture_plugin.so file in your uwsgi directory.

Plug your Eyetoy into an USB port on your RPI and check if it works:

./uwsgi --plugin capture --v4l-capture /dev/video0

(the --v4l-capture option is exposed by the capture plugin)

If all goes well you should see the following lines in uWSGI startup logs:

/dev/video0 detected width = 640
/dev/video0 detected height = 480
/dev/video0 detected format = YUYV
sharedarea 0 created at 0xb6935000 (150 pages, area at 0xb6936000)
/dev/video0 started streaming frames to sharedarea 0

(the sharedarea memory pointers will obviously probably be different)

The uWSGI process will exit soon after this as we did not tell it what to do. :)

The uwsgi-capture plugin exposes 2 functions:

	captureinit(), mapped as the init() hook of the plugin, will be called automatically by uWSGI. If the –v4l-capture option is specified, this function will initialize the specified device and will map it to a uWSGI sharedarea.

	captureloop() is the function gathering frames and writing them to the sharedarea. This function should constantly run (even if there are no clients reading frames)

We want a mule to run the captureloop() function.

./uwsgi --plugin capture --v4l-capture /dev/video0 --mule="captureloop()" --http-socket :9090

This time we have bound uWSGI to HTTP port 9090 with a mule mapped to the “captureloop()” function. This mule syntax is
exposed by the symcall plugin that takes control of every mule argument ending with “()” (the quoting is required to avoid the shell making a mess of the parentheses).

If all goes well you should see your uWSGI server spawning a master, a mule and a worker.

Step 2: the PSGI app

Time to write our websocket server sending Eyetoy frames (you can find sources for the example here: https://github.com/unbit/uwsgi-capture/tree/master/rpi-examples).

The PSGI app will be very simple:

use IO::File;
use File::Basename;

my $app = sub {
 my $env = shift;

 # websockets connection happens on /eyetoy
 if ($env->{PATH_INFO} eq '/eyetoy') {
 # complete the handshake
 uwsgi::websocket_handshake($env->{HTTP_SEC_WEBSOCKET_KEY}, $env->{HTTP_ORIGIN});
 while(1) {
 # wait for updates in the sharedarea
 uwsgi::sharedarea_wait(0, 50);
 # send a binary websocket message directly from the sharedarea
 uwsgi::websocket_send_binary_from_sharedarea(0, 0)
 }
 }
 # other requests generate the html
 else {
 return [200, ['Content-Type' => 'text/html'], new IO::File(dirname(__FILE__).'/eyetoy.html')];
 }
}

The only interesting parts are:

uwsgi::sharedarea_wait(0, 50);

This function suspends the current request until the specified shared area (the ‘zero’ one) gets an update. As this function is basically a busy-loop poll, the second argument specifies the polling frequency in milliseconds. 50 milliseconds gave us good results (feel free to try with other values).

uwsgi::websocket_send_binary_from_sharedarea(0, 0)

This is a special utility function sending a websocket binary message directly from the sharedarea (yep, zero-copy). The first argument is the sharedarea id (the ‘zero’ one) and the second is the position
in the sharedarea to start reading from (zero again, as we want a full frame).

Step 3: HTML5

The HTML part (well it would be better to say Javascript part) is very easy, aside from the YUYV to RGB(A) transform voodoo.

<html>
 <body>
 <canvas id="mystream" width="640" height="480" style="border:solid 1px red"></canvas>

 <script>

 var canvas = document.getElementById('mystream');
 var width = canvas.width;
 var height = canvas.height;
 var ctx = canvas.getContext("2d");
 var rgba = ctx.getImageData(0, 0, width, height);

 // fill alpha (optimization)
 for(y = 0; y< height; y++) {
 for(x = 0; x < width; x++) {
 pos = (y * width * 4) + (x * 4) ;
 rgba.data[pos+3] = 255;
 }
 }

 // connect to the PSGI websocket server
 var ws = new WebSocket('ws://' + window.location.host + '/eyetoy');
 ws.binaryType = 'arraybuffer';
 ws.onopen = function(e) {
 console.log('ready');
 };

 ws.onmessage = function(e) {
 var x, y;
 var ycbcr = new Uint8ClampedArray(e.data);
 // convert YUYV to RGBA
 for(y = 0; y< height; y++) {
 for(x = 0; x < width; x++) {
 pos = (y * width * 4) + (x * 4) ;
 var vy, cb, cr;
 if (x % 2 == 0) {
 ycbcr_pos = (y * width * 2) + (x * 2);
 vy = ycbcr[ycbcr_pos];
 cb = ycbcr[ycbcr_pos+1];
 cr = ycbcr[ycbcr_pos+3];
 }
 else {
 ycbcr_pos = (y * width * 2) + ((x-1) * 2);
 vy = ycbcr[ycbcr_pos+2];
 cb = ycbcr[ycbcr_pos+1];
 cr = ycbcr[ycbcr_pos+3];
 }
 var r = (cr + ((cr * 103) >> 8)) - 179;
 var g = ((cb * 88) >> 8) - 44 + ((cr * 183) >> 8) - 91;
 var b = (cb + ((cb * 198) >> 8)) - 227;
 rgba.data[pos] = vy + r;
 rgba.data[pos+1] = vy + g;
 rgba.data[pos+2] = vy + b;
 }
 }
 // draw pixels
 ctx.putImageData(rgba, 0, 0);
 };
 ws.onclose = function(e) { alert('goodbye');}
 ws.onerror = function(e) { alert('oops');}
 </script>

 </body>
</html>

Nothing special here. The vast majority of the code is related to YUYV->RGBA conversion. Pay attention to set the websocket communication in ‘binary’ mode (binaryType = ‘arraybuffer’ is enough) and be sure to use
an Uint8ClampedArray (otherwise performance will be terribly bad)

Ready to watch

./uwsgi --plugin capture --v4l-capture /dev/video0 --http-socket :9090 --psgi uwsgi-capture/rpi-examples/eyetoy.pl --mule="captureloop()"

Connect with your browser to TCP port 9090 of your Raspberry Pi and start watching.

Concurrency

While you watch your websocket stream, you may want to start another browser window to see a second copy of your video. Unfortunately
you spawned uWSGI with a single worker, so only a single client can get the stream.

You can add multiple workers easily:

./uwsgi --plugin capture --v4l-capture /dev/video0 --http-socket :9090 --psgi uwsgi-capture/rpi-examples/eyetoy.pl --mule="captureloop()" --processes 10

Like this up to 10 people will be able to watch the stream.

But coroutines are way better (and cheaper) for I/O bound applications such as this:

./uwsgi --plugin capture --v4l-capture /dev/video0 --http-socket :9090 --psgi uwsgi-capture/rpi-examples/eyetoy.pl --mule="captureloop()" --coroae 10

Now, magically, we are able to manage 10 clients with but a single process! The memory on the RPI will be grateful to you.

Zero-copy all the things

Why are we using the SharedArea?

The SharedArea is one of the most advanced uWSGI features. If you give a look at the uwsgi-capture plugin you will see how it easily creates a sharedarea pointing
to a mmap()’ed region. Basically each worker, thread (but please do not use threads with Perl) or coroutine will have access to that memory in a concurrently safe way.

In addition to this, thanks to the websocket/sharedarea cooperation API you can directly send websocket packets from a sharedarea without copying memory (except for the resulting websocket packet).

This is way faster than something like:

my $chunk = uwsgi::sharedarea_read(0, 0)
uwsgi::websocket_send_binary($chunk)

We would need to allocate the memory for $chunk at every iteration, copying the sharedarea content into it and finally encapsulating it in a websocket message.

With the sharedarea you remove the need to allocate (and free) memory constantly and to copy it from sharedarea to the Perl VM.

Alternative approaches

There are obviously other approaches you can follow.

You could hack uwsgi-capture to allocate a second sharedarea into which it will directly write RGBA frames.

JPEG encoding is relatively fast, you can try encoding frames in the RPI and sending them as MJPEG frames (instead of using websockets):

my $writer = $responder->([200, ['Content-Type' => 'multipart/x-mixed-replace; boundary=uwsgi_mjpeg_frame']]);
$writer->write("--uwsgi_mjpeg_frame\r\n");
while(1) {
 uwsgi::sharedarea_wait(0);
 my $chunk = uwsgi::sharedarea_read(0, 0);
 $writer->write("Content-Type: image/jpeg\r\n");
 $writer->write("Content-Length: ".length($chunk)."\r\n\r\n");
 $writer->write($chunk);
 $writer->write("\r\n--uwsgi_mjpeg_frame\r\n");
}

Other languages

At the time of writing, the uWSGI PSGI plugin is the only one exposing the additional API for websockets+sharedarea. The other language plugins will be updated soon.

More hacking

The RPI board is really fun to tinker with and uWSGI is a great companion for it (especially its lower-level API functions).

注解

As an exercise left to the reader: remember you can mmap() the address 0x20200000 to access the Raspberry PI GPIO controller... ready to write a uwsgi-gpio plugin?

Offloading Websockets and Server-Sent Events AKA “Combine them with Django safely”

Author: Roberto De Ioris

Date: 20140315

Disclaimer

This article shows a pretty advanced way for combining websockets (or sse) apps with Django in a “safe way”. It will not show you
how cool are websockets and sse, or how to write better apps with them, it is an attempt to try to avoid bad practices with them.

In my opinion the Python web-oriented world is facing a communication/marketing problem: There is a huge number of people
running heavily blocking apps (like Django) on non-blocking technologies (like gevent) only because someone told them it is cool and will solve all of their scaling issues.

This is completely WRONG, DANGEROUS and EVIL, you cannot mix blocking apps with non-blocking engines, even a single, ultra-tiny blocking part
can potentially destroy your whole stack. As i have already said dozens of time, if your app is 99.9999999% non-blocking, it is still blocking.

And no, monkey patching on your Django app is not magic. Unless you are using pretty-customized database adapters, tuned for working in a non-blocking way, you are doing wrong.

At the cost of looking a huber-asshole, i strongly suggest you to completely ignore people suggesting you to move your Django app to gevent, eventlet, tornado or whatever, without warning you about
the hundreds of problems you may encounter.

Having said that, i love gevent, it is probably the best (with perl’s Coro::AnyEvent) supported loop engine in the uWSGI project. So in this article i will use gevent for managing websocket/sse traffic and plain multiprocessing for the Django part.

If this last sentence looks a nonsense to you, you probably do not know what uWSGI offloading is...

uWSGI offloading

The concept is not a new thing, or a uWSGI specific one. Projects like nodejs or twisted use it by ages.

注解

an example of a webapp serving a static file is not very interesting, nor the best thing to show, but will be useful later, when presenting a real-world scenario with X-Sendfile

Immagine this simple WSGI app:

def application(env, start_response):
 start_response('200 OK',[('Content-Type','text/plain')])
 f = open('/etc/services')
 # do not do it, if the file is 4GB it will allocate 4GB of memory !!!
 yield f.read()

it will simply returns the content of /etc/services. It is a pretty tiny file, so in few milliseconds your process will be ready to process another request.

What if /etc/services is 4 gigabytes ? Your process (or thread) will be blocked for various seconds (even minutes), and will not be able to manage another request
until the file is completely transferred.

Would not be cool if you can tell to another thread to send the file for you, so you will be able to manage another request ?

Offloading is exactly this: it will give you one ore more threads for doing simple and slow task for you. Which kind of tasks ? All of those that can be managed
in a non-blocking way, so a single thread can manage thousand of transfer for you.

You can see it as the DMA engine in your computer, your CPU will program the DMA to tranfer memory from a controller to the RAM, and then will be freed to accomplish another task while the DMA works in background.

To enable offloading in uWSGI you only need to add the --offload-threads <n> option, where <n> is the number of threads per-process to spawn. (generally a single thread will be more than enough, but if you want to use/abuse your multiple cpu cores feel free to increase it)

Once offloading is enabled, uWSGI will automatically use it whenever it detects that an operation can be offloaded safely.

In the python/WSGI case the use of wsgi.file_wrapper will be offloaded automatically, as well as when you use the uWSGI proxy features for passing requests to other server speaking the uwsgi or HTTP protocol.

A cool example (showed even in the Snippets page of uWSGI docs) is implementing a offload-powered X-Sendfile feature:

[uwsgi]
; load router_static plugin (compiled in by default in monolithic profiles)
plugins = router_static

; spawn 2 offload threads
offload-threads = 2

; files under /etc can be safely served (DANGEROUS !!!)
static-safe = /etc

; collect the X-Sendfile response header as X_SENDFILE var
collect-header = X-Sendfile X_SENDFILE

; if X_SENDFILE is not empty, pass its value to the "static" routing action (it will automatically use offloading if available)
response-route-if-not = empty:${X_SENDFILE} static:${X_SENDFILE}

; now the classic options
plugins = python
; bind to HTTP port 8080
http-socket = :8080
; load a simple wsgi-app
wsgi-file = myapp.py

now in our app we can X-Sendfile to send static files without blocking:

def application(env, start_response):
 start_response('200 OK',[('X-Sendfile','/etc/services')])
 return []

A very similar concept will be used in this article: We will use a normal Django to setup our session, to authorize the user and whatever (that is fast) you want, then we will return a special header that will instruct uWSGI to offload the connection to another uWSGI instance (listening on a private socket) that will manage the websocket/sse transaction using gevent in a non-blocking way.

Our SSE app

The SSE part will be very simple, a gevent-based WSGI app will send the current time every second:

from sse import Sse
import time

def application(e, start_response):
 print e
 # create the SSE session
 session = Sse()
 # prepare HTTP headers
 headers = []
 headers.append(('Content-Type','text/event-stream'))
 headers.append(('Cache-Control','no-cache'))
 start_response('200 OK', headers)
 # enter the loop
 while True:
 # monkey patching will prevent sleep() to block
 time.sleep(1)
 # add the message
 session.add_message('message', str(time.time()))
 # send to the client
 yield str(session)

Let’s run it on /tmp/foo UNIX socket (save the app as sseapp.py)

uwsgi --wsgi-file sseapp.py --socket /tmp/foo --gevent 1000 --gevent-monkey-patch

(monkey patching is required for time.sleep(), feel free to use gevent primitives for sleeping if you want/prefer)

The (boring) HTML/Javascript

<html>
 <head>
 </head>
 <body>
 <h1>Server sent events</h1>
 <div id="event"></div>
 <script type="text/javascript">

 var eventOutputContainer = document.getElementById("event");
 var evtSrc = new EventSource("/subscribe");

 evtSrc.onmessage = function(e) {
 console.log(e.data);
 eventOutputContainer.innerHTML = e.data;
 };

 </script>
 </body>
 </html>

it is very simple, it will connect to /subscribe and will start waiting for events

The Django view

Our django view, will be very simple, it will simply generate a special response header (we will call it X-Offload-to-SSE) with the username of the logged user as its value:

def subscribe(request):
 response = HttpResponse()
 response['X-Offload-to-SSE'] = request.user
 return response

Now we are ready for the “advanced” part

Let’s offload the SSE transaction

The configuration could look a bit complex but it is the same concept of the X-Sendfile seen before

[uwsgi]
; the boring part
http-socket = :9090
offload-threads = 2
wsgi-file = sseproject/wsgi.py

; collect X-Offload-to-SSE header and store in var X_OFFLOAD
collect-header = X-Offload-to-SSE X_OFFLOAD
; if X_OFFLOAD is defined, do not send the headers generated by Django
response-route-if-not = empty:${X_OFFLOAD} disableheaders:
; if X_OFFLOAD is defined, offload the request to the app running on /tmp/foo
response-route-if-not = empty:${X_OFFLOAD} uwsgi:/tmp/foo,0,0

The only “new’ part is the use of `disableheaders routing action. It is required otherwise the headers generated by Django
will be sent along the ones generated by the gevent-based app.

You could avoid it (remember that disableheaders has been added only in 2.0.3) removing the call to start_response() in the gevent app (at the risk of being cursed by some WSGI-god) and changing the Django view
to set the right headers:

def subscribe(request):
 response = HttpResponse()
 response['Content-Type'] = 'text/event-stream'
 response['X-Offload-to-SSE'] = request.user
 return response

Eventually you may want to be more “streamlined” and simply detect for ‘text/event-stream’ content_type presence:

[uwsgi]
; the boring part
http-socket = :9090
offload-threads = 2
wsgi-file = sseproject/wsgi.py

; collect Content-Type header and store in var CONTENT_TYPE
collect-header = Content-Type CONTENT_TYPE
; if CONTENT_TYPE is 'text/event-stream', forward the request
response-route-if = equal:${CONTENT_TYPE};text/event-stream uwsgi:/tmp/foo,0,0

Now, how to access the username of the Django-logged user in the gevent app ?

You should have noted that the gevent-app prints the content of the WSGI environ on each request. Such environment is the same
of the Django app + the collected headers. So accessing environ[‘X_OFFLOAD’] will return the logged username. (obviously in the second example, where the content type is used, the variable with the username is no more collected, so you should fix it)

You can pass all of the infos you need using the same approach, you can collect all of the vars you need and so on.

You can even add variables at runtime

[uwsgi]
; the boring part
http-socket = :9090
offload-threads = 2
wsgi-file = sseproject/wsgi.py

; collect Content-Type header and store in var CONTENT_TYPE
collect-header = Content-Type CONTENT_TYPE

response-route-if = equal:${CONTENT_TYPE};text/event-stream addvar:FOO=BAR
response-route-if = equal:${CONTENT_TYPE};text/event-stream addvar:TEST1=TEST2

; if CONTENT_TYPE is 'text/event-stream', forward the request
response-route-if = equal:${CONTENT_TYPE};text/event-stream uwsgi:/tmp/foo,0,0

or (using goto for better readability)

[uwsgi]
; the boring part
http-socket = :9090
offload-threads = 2
wsgi-file = sseproject/wsgi.py

; collect Content-Type header and store in var CONTENT_TYPE
collect-header = Content-Type CONTENT_TYPE

response-route-if = equal:${CONTENT_TYPE};text/event-stream goto:offload
response-route-run = last:

response-route-label = offload
response-route-run = addvar:FOO=BAR
response-route-run = addvar:TEST1=TEST2
response-route-run = uwsgi:/tmp/foo,0,0

Simplifying things using the uwsgi api (>= uWSGI 2.0.3)

While dealing with headers is pretty HTTP friendly, uWSGI 2.0.3 added the possibility to define per-request variables
directly in your code.

This allows a more “elegant” approach (even if highly non-portable)

import uwsgi

def subscribe(request):
 uwsgi.add_var("LOGGED_IN_USER", request.user)
 uwsgi.add_var("USER_IS_UGLY", "probably")
 uwsgi.add_var("OFFLOAD_TO_SSE", "y")
 uwsgi.add_var("OFFLOAD_SERVER", "/tmp/foo")
 return HttpResponse()

Now the config can change to a more gentle:

; the boring part
http-socket = :9090
offload-threads = 2
wsgi-file = sseproject/wsgi.py

; if OFFLOAD_TO_SSE is 'y', do not send the headers generated by Django
response-route-if = equal:${OFFLOAD_TO_SSE};y disableheaders:
; if OFFLOAD_TO_SSE is defined, offload the request to the app running on 'OFFLOAD_SERVER'
response-route-if = equal:${OFFLOAD_TO_SSE};y uwsgi:${OFFLOAD_SERVER},0,0

Have you noted how we allowed the Django app to set the backend server to use using a request variable ?

Now we can go even further. We will not use the routing framework (except for disabling headers generation)

import uwsgi

def subscribe(request):
 uwsgi.add_var("LOGGED_IN_USER", request.user)
 uwsgi.add_var("USER_IS_UGLY", "probably")
 uwsgi.route("uwsgi", "/tmp/foo,0,0")
 return HttpResponse()

and a simple:

; the boring part
http-socket = :9090
offload-threads = 2
wsgi-file = sseproject/wsgi.py

response-route = ^/subscribe disableheaders:

What about Websockets ?

We have seen how to offload SSE (that are mono-directional), we can offload websockets too (that are bidirectional).

The concept is the same, you only need to ensure (as before) that no headers are sent by django, (otherwise the websocket handshake will fail) and then you
can change your gevent app:

import time
import uwsgi

def application(e, start_response):
 print e
 uwsgi.websocket_handshake()
 # enter the loop
 while True:
 # monkey patching will prevent sleep() to block
 time.sleep(1)
 # send to the client
 uwsgi.websocket_send(str(time.time()))

Using redis or uWSGI caching framework

Request vars are handy (and funny), but they are limited (see below). If you need to pass a big amount of data between Django and the sse/websocket app, Redis
is a great way (and works perfectly with gevent). Basically you store infos from django to redis and than you pass only the hash key (via request vars) to the sse/websocket app.

The same can be accomplished with the uWSGI caching framework, but take in account redis has a lot of data primitives, while uWSGI only supports key->value items.

Common pitfalls

	The amount of variables you can add per-request is limited by the uwsgi packet buffer (default 4k). You can increase it up to 64k with the –buffer-size option

	This is the whole point of this article: do not use the Django ORM in your gevent apps unless you know what you are doing !!! (read, you have a django database adapter that supports gevent and does not sucks compared to the standard ones...)

	Forget about finding a way to disable headers generation in django. This is a “limit/feature” of its WSGI adapter, use the uWSGI facilities (if available) or do not generate headers in your gevent app. Eventually you can modify wsgi.py in this way:

"""
WSGI config for sseproject project.

It exposes the WSGI callable as a module-level variable named ``application``.

For more information on this file, see
https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/
"""

import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sseproject.settings")

from django.core.wsgi import get_wsgi_application
django_application = get_wsgi_application()

def fake_start_response(status, headers, exc_info=None):
 pass

def application(environ, start_response):
 if environ['PATH_INFO'] == '/subscribe':
 return django_application(environ, fake_start_response)
 return django_application(environ, start_response)

The uWSGI Legion subsystem

As of uWSGI 1.9-dev a new subsystem for clustering has been added: The Legion
subsystem. A Legion is a group of uWSGI nodes constantly fighting for
domination. Each node has a valor value (different from the others, if
possible). The node with the highest valor is the Lord of the Legion (or if
you like a less gaming nerd, more engineer-friendly term: the master). This
constant fight generates 7 kinds of events:

	setup - when the legion subsystem is started on a node

	join - the first time quorum is reached, only on the newly joined node

	lord - when this node becomes the lord

	unlord - when this node loses the lord title

	death - when the legion subsystem is shutting down

	node-joined - when any new node joins our legion

	node-left - when any node leaves our legion

You can trigger actions every time such an event rises.

Note: openssl headers must be installed to build uWSGI with Legion support.

IP takeover

This is a very common configuration for clustered environments. The IP address
is a resource that must be owned by only one node. For this example, that node
is our Lord. If we configure a Legion right (remember, a single uWSGI
instances can be a member of all of the legions you need) we could easily
implement IP takeover.

[uwsgi]

legion = clusterip 225.1.1.1:4242 98 bf-cbc:hello
legion-node = clusterip 225.1.1.1:4242

legion-lord = clusterip cmd:ip addr add 192.168.173.111/24 dev eth0
legion-lord = clusterip cmd:arping -c 3 -S 192.168.173.111 192.168.173.1

legion-setup = clusterip cmd:ip addr del 192.168.173.111/24 dev eth0
legion-unlord = clusterip cmd:ip addr del 192.168.173.111/24 dev eth0
legion-death = clusterip cmd:ip addr del 192.168.173.111/24 dev eth0

In this example we join a legion named clusterip. To receive messages from
the other nodes we bind on the multicast address 225.1.1.1:4242. The valor of
this node will be 98 and each message will be encrypted using Blowfish in CBC
with the shared secret hello. The legion-node option specifies the
destination of our announce messages. As we are using multicast we only need to
specify a single “node”. The last options are the actions to trigger on the
various states of the cluster. For an IP takeover solution we simply rely on
the Linux iproute commands to set/unset ip addresses and to send an extra
ARP message to announce the change. Obviously this specific example requires
root privileges or the CAP_NET_ADMIN Linux capability, so be sure to not
run untrusted applications on the same uWSGI instance managing IP takeover.

The Quorum

To choose a Lord each member of the legion has to cast a vote. When all of the
active members of a legion agree on a Lord, the Lord is elected and the old
Lord is demoted. Every time a new node joins or leaves a legion the quorum is
re-computed and logged to the whole cluster.

Choosing the Lord

Generally the node with the higher valor is chosen as the Lord, but there can
be cases where multiple nodes have the same valor. When a node is started a
UUID is assigned to it. If two nodes with same valor are found the one with the
lexicographically higher UUID wins.

Split brain

Even though each member of the Legion has to send a checksum of its internal
cluster-membership, the system is still vulnerable to the split brain problem.
If a node loses network connectivity with the cluster, it could believe it is
the only node available and starts going in Lord mode.

For many scenarios this is not optimal. If you have more than 2 nodes in a
legion you may want to consider tuning the quorum level. The quorum level is
the amount of votes (as opposed to nodes) needed to elect a lord.
legion-quorum is the option for the job. You can reduce the split brain
problem asking the Legion subsystem to check for at least 2 votes:

[uwsgi]

legion = clusterip 225.1.1.1:4242 98 bf-cbc:hello
legion-node = clusterip 225.1.1.1:4242

legion-quorum = clusterip 2

legion-lord = clusterip cmd:ip addr add 192.168.173.111/24 dev eth0
legion-lord = clusterip cmd:arping -c 3 -S 192.168.173.111 192.168.173.1

legion-setup = clusterip cmd:ip addr del 192.168.173.111/24 dev eth0
legion-unlord = clusterip cmd:ip addr del 192.168.173.111/24 dev eth0
legion-death = clusterip cmd:ip addr del 192.168.173.111/24 dev eth0

As of 1.9.7 you can use nodes with valor 0 (concept similar to MongoDB’s
Arbiter Nodes), such nodes will be counted when checking for quorum but may
never become The Lord. This is useful when you only need a couple nodes while
protecting against split-brain.

Actions

Each one of the four phases of a legion can trigger an action. The actions
system is modular so you can add new kinds of actions. Currently the supported
actions are:

cmd:<command>

Run a shell command.

signal:<num>

Raise a uWSGI signal.

log:<msg>

Log a message. For example you could combine the log action with the alarm subsystem to have cluster monitoring for free.

Multicast, broadcast and unicast

Even if multicast is probably the easiest way to implement clustering it is not
available in all networks. If multicast is not an option, you can rely on
normal IP addresses. Just bind to an address and add all of the legion-node
options you need:

[uwsgi]

legion = mycluster 192.168.173.17:4242 98 bf-cbc:hello
legion-node = mycluster 192.168.173.22:4242
legion-node = mycluster 192.168.173.30:4242
legion-node = mycluster 192.168.173.5:4242

This is for a cluster of 4 nodes (this node + 3 other nodes)

Multiple Legions

You can join multiple legions in the same instance. Just remember to use
different addresses (ports in case of multicast) for each legion.

[uwsgi]

legion = mycluster 192.168.173.17:4242 98 bf-cbc:hello
legion-node = mycluster 192.168.173.22:4242
legion-node = mycluster 192.168.173.30:4242
legion-node = mycluster 192.168.173.5:4242

legion = mycluster2 225.1.1.1:4243 99 aes-128-cbc:secret
legion-node = mycluster2 225.1.1.1:4243

legion = anothercluster 225.1.1.1:4244 91 aes-256-cbc:secret2
legion-node = anothercluster 225.1.1.1:4244

Security

Each packet sent by the Legion subsystem is encrypted using a specified cipher,
a preshared secret, and an optional IV (initialization vector). Depending on
cipher, the IV may be a required parameter. To get the list of supported
ciphers, run openssl enc -h.

重要

Each node of a Legion has to use the same encryption parameters.

To specify the IV just add another parameter to the legion option.

[uwsgi]

legion = mycluster 192.168.173.17:4242 98 bf-cbc:hello thisistheiv
legion-node = mycluster 192.168.173.22:4242
legion-node = mycluster 192.168.173.30:4242
legion-node = mycluster 192.168.173.5:4242

To reduce the impact of replay-based attacks, packets with a timestamp lower
than 30 seconds are rejected. This is a tunable parameter. If you have no
control on the time of all of the nodes you can increase the clock skew
tolerance.

Tuning and Clock Skew

Currently there are three parameters you can tune. These tuables affect all
Legions in the system. The frequency (in seconds) at which each packet is sent
(legion-freq <secs>), the amount of seconds after a node not sending
packets is considered dead (legion-tolerance <secs>), and the amount of
clock skew between nodes (legion-skew-tolerance <secs>). The Legion
subsystem requires tight time synchronization, so the use of NTP or similar is
highly recommended. By default each packet is sent every 3 seconds, a node is
considered dead after 15 seconds, and a clock skew of 30 seconds is tolerated.
Decreasing skew tolerance should increase security against replay attacks.

Lord scroll (coming soon)

The Legion subsystem can be used for a variety of purposes ranging from master
election to node autodiscovery or simple monitoring. One example is to assign
a “blob of data” (a scroll) to every node, One use of this is to pass
reconfiguration parameters to your app, or to log specific messages. Currently
the scroll system is being improved upon, so if you have ideas join our mailing
list or IRC channel.

Legion API

You can know if the instance is a lord of a Legion by simply calling

int uwsgi_legion_i_am_the_lord(char *legion_name);

It returns 1 if the current instance is the lord for the specified Legion.

	The Python plugin exposes it as uwsgi.i_am_the_lord(name)

	The PSGI plugin exposes it as uwsgi::i_am_the_lord(name)

	The Rack plugin exposes it as UWSGI::i_am_the_lord(name)

Obviously more API functions will be added in the future, feel free to expose your ideas.

Stats

The Legion information is available in the The uWSGI Stats Server. Be sure to
understand the difference between “nodes” and “members”. Nodes are the peer you
configure with the legion-node option while members are the effective nodes
that joined the cluster.

The old clustering subsystem

During 0.9 development cycle a clustering subsystem (based on multicast) was
added. It was very raw, unreliable and very probably no-one used it seriously.
The new method is transforming it in a general API that can use different
backends. The Legion subsystem can be one of those backends, as well as
projects like corosync or the redhat cluster suite.

uWSGI Mules

Mules are worker processes living in the uWSGI stack but not reachable via socket connections, that can be used as a generic subsystem to offload tasks. You can see them as a more primitive spooler.

They can access the entire uWSGI API and can manage signals and be communicated with through a simple string-based message system.

To start a mule (you can start an unlimited number of them), use the mule option as many times as you need.

Mules have two modes,

	Signal only mode (the default). In this mode the mules load your application as normal workers would. They can only respond to uWSGI signals.

	Programmed mode. In this mode mules load a program separate from your application. See ProgrammedMules.

By default each mule starts in signal-only mode.

uwsgi --socket :3031 --mule --mule --mule --mule

<uwsgi>
 <socket>:3031</socket>
 <mule/>
 <mule/>
 <mule/>
 <mule/>
</uwsgi>

Basic usage

import uwsgi
from uwsgidecorators import timer, signal, filemon

run a timer in the first available mule
@timer(30, target='mule')
def hello(signum):
 print "Hi! I am responding to signal %d, running on mule %d" % (signum, uwsgi.mule_id())

map signal 17 to mule 2
@signal(17, target='mule2')
def i_am_mule2(signum):
 print "Greetings! I am running in mule number two."

monitor /tmp and arouse all of the mules on modifications
@filemon('/tmp', target='mules')
def tmp_modified(signum):
 print "/tmp has been modified. I am mule %d!" % uwsgi.mule_id()

Giving a brain to mules

As mentioned before, mules can be programmed. To give custom logic to a mule, pass the name of a script to the mule option.

uwsgi --socket :3031 --mule=somaro.py --mule --mule --mule

This will run 4 mules, 3 in signal-only mode and one running somaro.py.

somaro.py
from threading import Thread
import time

def loop1():
 while True:
 print "loop1: Waiting for messages... yawn."
 message = uwsgi.mule_get_msg()
 print message

def loop2():
 print "Hi! I am loop2."
 while True:
 time.sleep(2)
 print "This is a thread!"

t = Thread(target=loop2)
t.daemon = True
t.start()

if __name__ == '__main__':
 loop1()

So as you can see from the example, you can use mule_get_msg() to receive messages in a programmed mule. Multiple threads in the same programmed mule can wait for messages.

If you want to block a mule to wait on an uWSGI signal instead of a message you can use uwsgi.signal_wait().

Use uwsgi.mule_msg() to send a message to a programmed mule. Mule messages can be sent from anywhere in the uWSGI stack, including but not limited to workers, the spoolers, another mule.

Send the string "ciuchino" to mule1.
If you do not specify a mule ID, the message will be processed by the first available programmed mule.
uwsgi.mule_msg("ciuchino", 1)

As you can spawn an unlimited number of mules, you may need some form of synchronization – for example if you are developing a task management subsystem and do not want two mules to be able to start the same task simultaneously. You’re in luck – see Locks.

The uWSGI Spooler

Updated to uWSGI 2.0.1

Supported on: Perl, Python, Ruby

The Spooler is a queue manager built into uWSGI that works like a printing/mail system.

You can enqueue massive sending of emails, image processing, video encoding, etc. and let the spooler do the hard work in background while your users get their requests served by normal workers.

A spooler works by defining a directory in which “spool files” will be written, every time the spooler find a file in its directory it will parse it and will run a specific function.

You can have multiple spoolers mapped to different directories and even multiple spoolers mapped to the same one.

The --spooler <directory> option allows you to generate a spooler process, while the --spooler-processes <n> allows you to set how many processes to spawn for every spooler.

The spooler is able to manage uWSGI signals too, so you can use it as a target for your handlers.

This configuration will generate a spooler for your instance (myspool directory must exists)

[uwsgi]
spooler = myspool
...

while this one will create two spoolers:

[uwsgi]
spooler = myspool
spooler = myspool2
...

having multiple spoolers allows you to prioritize tasks (and eventually parallelize them)

Spool files

Spool files are serialized hashes/dictionaries of strings. The spooler will parse them and pass the resulting hash/dictionary to the spooler function (see below).

The serialization format is the same used for the ‘uwsgi’ protocol, so you are limited to 64k (even if there is a trick for passing bigger values, see the ‘body’ magic key below). The modifier1
for spooler packets is the 17, so a {‘hello’ => ‘world’} hash will be encoded as:

	header
	key1
	value1

	17|14|0|0
	|5|0|h|e|l|l|o
	|5|0|w|o|r|l|d

A locking system allows you to safely manually remove spool files if something goes wrong, or to move them between spooler directories.

Spool dirs over NFS are allowed, but if you do not have proper NFS locking in place, avoid mapping the same spooler NFS directory to spooler on different machines.

Setting the spooler function/callable

Because there are dozens of different ways to enqueue spooler requests, we’re going to cover receiving the requests first.

To have a fully operational spooler you need to define a “spooler function/callable” to process the requests.

Regardless of the the number of configured spoolers, the same function will be executed.
It is up to the developer to instruct it to recognize tasks.
If you don’t process requests, the spool directory will just fill up.

This function must returns an integer value:

	-2 (SPOOL_OK) – the task has been completed, the spool file will be removed

	-1 (SPOOL_RETRY) – something is temporarily wrong, the task will be retried at the next spooler iteration

	0 (SPOOL_IGNORE) – ignore this task, if multiple languages are loaded in the instance all of them will fight for managing the task. This return values allows you to skip a task in specific languages.

Any other value will be interpreted as -1 (retry).

Each language plugin has its own way to define the spooler function:

Perl:

uwsgi::spooler(
 sub {
 my ($env) = @_;
 print $env->{foobar};
 return uwsgi::SPOOL_OK;
 }
);
hint - uwsgi:: is available when running using perl-exec= or psgi=
no don't need to use "use" or "require" it, it's already there.

Python:

import uwsgi

def my_spooler(env):
 print env['foobar']
 return uwsgi.SPOOL_OK

uwsgi.spooler = my_spooler

Ruby:

module UWSGI
 module_function
 def spooler(env)
 puts env.inspect
 return UWSGI::SPOOL_OK
 end
end

Spooler functions must be defined in the master process, so if you are in lazy-apps mode, be sure to place it in a file that is parsed
early in the server setup. (in Python you can use –shared-import, in Ruby –shared-require, in Perl –perl-exec).

Python has support for importing code directly in the spooler with the --spooler-python-import option.

Enqueueing requests to a spooler

The ‘spool’ api function allows you to enqueue a hash/dictionary into the spooler specified by the instance:

add this to your instance .ini file
spooler=/path/to/spooler
that's it! now use one of the code blocks below to send requests
note: you'll still need to register some sort of receiving function (specified above)

python
import uwsgi
uwsgi.spool({'foo': 'bar', 'name': 'Kratos', 'surname': 'the same of Zeus'})
or
uwsgi.spool(foo='bar', name='Kratos', surname='the same of Zeus')
for python3 use bytes instead of strings !!!

perl
uwsgi::spool({foo => 'bar', name => 'Kratos', surname => 'the same of Zeus'})
the uwsgi:: functions are available when executed within psgi or perl-exec

ruby
UWSGI.spool(foo => 'bar', name => 'Kratos', surname => 'the same of Zeus')

Some keys have a special meaning:

	‘spooler’ => specify the ABSOLUTE path of the spooler that has to manage this task

	‘at’ => unix time at which the task must be executed (read: the task will not be run until the ‘at’ time is passed)

	‘priority’ => this will be the subdirectory in the spooler directory in which the task will be placed, you can use that trick to give a good-enough prioritization to tasks (for better approach use multiple spoolers)

	‘body’ => use this key for objects bigger than 64k, the blob will be appended to the serialzed uwsgi packet and passed back to the spooler function as the ‘body’ argument

注解

Spool arguments must be strings (or bytes for python3). The API functions will try to cast non-string values to strings/bytes, but do not rely on that functionality!

External spoolers

You could want to implement a centralized spooler for your server across many uWSGI instances.

A single instance will manage all of the tasks enqueued by multiple uWSGI instances.

To accomplish this setup, each uWSGI instance has to know which spooler directories are valid (consider it a form of security).

To add an external spooler directory use the --spooler-external <directory> option, then add to it using the spool function.

The spooler locking subsystem will avoid any messes that you might think could occur.

Networked spoolers

You can even enqueue tasks over the network (be sure the ‘spooler’ plugin is loaded in your instance, but generally it is built in by default).

As we have already seen, spooler packets have modifier1 17, you can directly send those packets to an uWSGI socket of an instance with a spooler enabled.

We will use the Perl Net::uwsgi module (exposing a handy uwsgi_spool function) in this example (but feel free to use whatever you want to write the spool files).

#!/usr/bin/perl
use Net::uwsgi;
uwsgi_spool('localhost:3031', {'test'=>'test001','argh'=>'boh','foo'=>'bar'});
uwsgi_spool('/path/to/my.sock', {'test'=>'test001','argh'=>'boh','foo'=>'bar'});

[uwsgi]
socket = /path/to/my.sock
socket = localhost:3031
spooler = /path/for/files
spooler-processes=1
perl-exec = /path/for/script-which-registers-spooler-sub.pl
...

(thanks brianhorakh for the example)

Priorities

We have already seen that you can use the ‘priority’ key to give order in spooler parsing.

While having multiple spoolers would be an extremely better approach, on system with few resources ‘priorities’ are a good trick.

They works only if you enable the --spooler-ordered option. This option allows the spooler to scan directories entry in alphabetical order.

If during the scan a directory with a ‘number’ name is found, the scan is suspended and the content of this subdirectory will be explored for tasks.

/spool
/spool/ztask
/spool/xtask
/spool/1/task1
/spool/1/task0
/spool/2/foo

With this layout the order in which files will be parsed is:

/spool/1/task0
/spool/1/task1
/spool/2/foo
/spool/xtask
/spool/ztask

Remember, priorities only work for subdirectories named as ‘numbers’ and you need the --spooler-ordered option.

The uWSGI spooler gives special names to tasks so the ordering of enqueuing is always respected.

Options

spooler=directory
run a spooler on the specified directory

spooler-external=directory
map spoolers requests to a spooler directory managed by an external instance

spooler-ordered
try to order the execution of spooler tasks (uses scandir instead of readdir)

spooler-chdir=directory
call chdir() to specified directory before each spooler task

spooler-processes=##
set the number of processes for spoolers

spooler-quiet
do not be verbose with spooler tasks

spooler-max-tasks=##
set the maximum number of tasks to run before recycling a spooler (to help alleviate memory leaks)

spooler-harakiri=##
set harakiri timeout for spooler tasks, see [harakiri] for more information.

spooler-frequency=##
set the spooler frequency

spooler-python-import=???
import a python module directly in the spooler

Tips and tricks

You can re-enqueue a spooler request by returning uwsgi.SPOOL_RETRY in your callable:

def call_me_again_and_again(env):
 return uwsgi.SPOOL_RETRY

You can set the spooler poll frequency using the --spooler-frequency <secs> option (default 30 seconds).

You could use the The uWSGI caching framework or SharedArea – share memory pages between uWSGI components to exchange memory structures between spoolers and workers.

Python (uwsgidecorators.py) and Ruby (uwsgidsl.rb) exposes higher-level facilities to manage the spooler, try to use them instead of the low-level approach described here.

When using a spooler as a target for a uWSGI signal handler you can specify which one to route signal to using its ABSOLUTE directory name.

SNI - Server Name Identification (virtual hosting for SSL nodes)

uWSGI 1.9 (codenamed “ssl as p0rn”) added support for SNI (Server Name Identification) throughout the whole
SSL subsystem. The HTTPS router, the SPDY router and the SSL router can all use it transparently.

SNI is an extension to the SSL standard which allows a client to specify a “name” for the resource
it wants. That name is generally the requested hostname, so you can implement virtual hosting-like behavior like you do using the HTTP Host: header without requiring extra IP addresses etc.

In uWSGI an SNI object is composed of a name and a value. The name is the servername/hostname while the value is the “SSL context” (you can think of it as the sum of certificates, key and ciphers for a particular domain).

Adding SNI objects

To add an SNI object just use the --sni option:

--sni <name> crt,key[,ciphers,client_ca]

For example:

--sni "unbit.com unbit.crt,unbit.key"

or for client-based SSL authentication and OpenSSL HIGH cipher levels

--sni "secure.unbit.com unbit.crt,unbit.key,HIGH,unbit.ca"

Adding complex SNI objects

Sometimes you need more complex keys for your SNI objects (like when using wildcard certificates)

If you have built uWSGI with PCRE/regexp support (as you should) you can use the --sni-regexp option.

--sni-regexp "*.unbit.com unbit.crt,unbit.key,HIGH,unbit.ca"

Massive SNI hosting

One of uWSGI’s main purposes is massive hosting, so SSL without support for that would be pretty annoying.

If you have dozens (or hundreds, for that matter) of certificates mapped to the same IP address you can simply put them in a directory (following a simple convention we’ll elaborate in a bit) and let uWSGI scan it whenever it needs to find a context for a domain.

To add a directory just use

--sni-dir <path>

like

--sni-dir /etc/customers/certificates

Now, if you have unbit.com and example.com certificates (.crt) and keys (.key) just drop them in there following these naming rules:

	/etc/customers/certificates/unbit.com.crt

	/etc/customers/certificates/unbit.com.key

	/etc/customers/certificates/unbit.com.ca

	/etc/customers/certificates/example.com.crt

	/etc/customers/certificates/example.com.key

As you can see, example.com has no .ca file, so client authentication will be disabled for it.

If you want to force a default cipher set to the SNI contexts, use

--sni-dir-ciphers HIGH

(or whatever other value you need)

Note: Unloading SNI objects is not supported. Once they are loaded into memory they will be held onto until reload.

Subscription system and SNI

uWSGI 2.0 added support for SNI in the subscription system.

The https/spdy router and the sslrouter can dinamically load certificates and keys from the paths specified in a subscription packet:

uwsgi --subscribe2 key=mydomain.it,socket=0,sni_key=/foo/bar.key,sni_crt=/foo/bar.crt

the router will create a new SSL context based on the specified files (be sure the router can reach them) and will destroy it when the last node
disconnect.

This is useful for massive hosting where customers have their certificates in the home and you want them the change/update those files without bothering you.

注解

We understand that directly encapsulating keys and cert in the subscription packets will be much more useful, but network transfer of keys is something
really foolish from a security point of view. We are investigating if combining it with the secured subscription system (where each packet is encrypted) could be a solution.

The GeoIP plugin

The geoip plugin adds new routing vars to your internal routing subsystem.
GeoIP’s vars are prefixed with the “geoip” tag. To build the geoip plugin you
need the official GeoIP C library and its headers. The supported databases are
the country and city one, and they are completely loaded on memory at startup.

The country database give access to the following variables:

	${geoip[country_code]}

	${geoip[country_code3]}

	${geoip[country_name]}

while the city one offers a lot more at the cost of increased memory usage for
storing the database

	${geoip[continent]}

	${geoip[country_code]}

	${geoip[country_code3]}

	${geoip[country_name]}

	${geoip[region]}

	${geoip[region_name]}

	${geoip[city]}

	${geoip[postal_code]}

	${geoip[latitude]} (${geoip[lat]})

	${geoip[longitude]} (${geoip[lon]})

	${geoip[dma]}

	${geoip[area]}

Enabling geoip lookup

To enable the GeoIP lookup system you need to load at least one database. After
having loaded the geoip plugin you will get 2 new options:

	--geoip-country specifies a country database

	--geoip-city specifies a city database

If you do not specify at least one of them, the system will always return empty strings.

An example

[uwsgi]
plugin = geoip
http-socket = :9090
; load the geoip city database
geoip-city = GeoLiteCity.dat
module = werkzeug.testapp:test_app
; first some debug info (addvar will ad WSGI variables you will see in the werkzeug testapp)
route-run = log:${geoip[country_name]}/${geoip[country_code3]}
route-run = addvar:COUNTRY=${geoip[country_name]}
route-run = log:${geoip[city]}/${geoip[region]}/${geoip[continent]}
route-run = addvar:COORDS=${geoip[lon]}/${geoip[lat]}
route-run = log:${geoip[region_name]}
route-run = log:${geoip[dma]}/${geoip[area]}

; then something more useful
; block access to all of the italians (hey i am italian do not start blasting me...)
route-if = equal:${geoip[country_name]};Italy break:403 Italians cannot see this site :P
; try to serve a specific page translation
route = ^/foo/bar/test.html static:/var/www/${geoip[country_code]}/test.html

Memory usage

The country database is tiny so you will generally have no problem in using it.
Instead, the city database can be huge (from 20MB to more than 40MB). If you
have lot of instances using the GeoIP city database and you are on a recent
Linux system, consider using Using Linux KSM in uWSGI to reduce memory usage. All of the
memory used by the GeoIP database can be shared by all instances with it.

uWSGI Transformations

Starting from uWSGI 1.9.7, a “transformations” API has been added to uWSGI internal routing.

A transformation is like a filter applied to the response generated by your application.

Transformations can be chained (the output of a transformation will be the input of the following one) and can completely overwrite
response headers.

The most common example of transformation is gzip encoding. The output of your application is passed to a function compressing it with gzip
and setting the Content-Encoding header. This feature rely on 2 external packages: libpcre3-dev, libz-dev on Ubuntu.

[uwsgi]
plugin = python,transformation_gzip
http-socket = :9090
; load the werkzeug test app
module = werkzeug.testapp:test_app
; if the client supports gzip encoding goto to the gzipper
route-if = contains:${HTTP_ACCEPT_ENCODING};gzip goto:mygzipper
route-run = last:

route-label = mygzipper
; pass the response to the gzip transformation
route = ^/$ gzip:

The cachestore routing instruction is a transformation too, so you can cache various states of the response.

[uwsgi]
plugin = python,transformation_gzip
http-socket = :9090
; load the werkezeug test app
module = werkzeug.testapp:test_app
; create a cache of 100 items
cache = 100
; if the client support gzip encoding goto to the gzipper
route-if = contains:${HTTP_ACCEPT_ENCODING};gzip goto:mygzipper
route = ^/$ cache:key=werkzeug_homepage
route = ^/$ cachestore:key=werkzeug_homepage
route-run = last:

route-label = mygzipper
route = ^/$ cache:key=werkzeug_homepage.gz
; first cache the 'clean' response (for client not supporting gzip)
route = ^/$ cachestore:key=werkzeug_homepage
; then pass the response to the gzip transformation
route = ^/$ gzip:
; and cache it again in another item (gzipped)
route = ^/$ cachestore:key=werkzeug_homepage.gz

Another common transformation is applying stylesheets to XML files. (see The XSLT plugin)

The toxslt transformation is exposed by the xslt plugin:

uwsgi --plugin xslt --http-socket :9090 -w mycd --route-run "toxslt:stylesheet=t/xslt/cd.xml.xslt,params=foobar=test&agent=\${HTTP_USER_AGENT}"

The mycd module here is a simple XML generator. Its output is then passed to the XSLT transformation.

Streaming vs. buffering

Each transformation announces itself as a “streaming” one or a “buffering” one.

Streaming ones are transformations that can be applied to response chunks (parts). An example of a streaming transformation
is gzip (you do not need the whole body to begin compressing it). Buffering transformations are those requiring the full body before applying something to it. XSLT is an example of buffering transformation. Another example of buffering transformations are those used for storing response in some kind of cache.

If your whole pipeline is composed by only “streaming” transformations, your client will receive the output chunk by chunk. On the other hand
a single buffering transformation will make the whole pipeline buffered, so your client will get the output only at the end.

An often using streaming functionality is gzip + chunked:

[uwsgi]
plugins = transformation_gzip,transformation_chunked
route-run = gzip:
route-run = chunked:
...

The whole transformation pipeline is composed by streaming plugins, so you will get each HTTP chunk in realtime.

Flushing magic

The “flush” transformation is a special one. It allows you to send the current contents of the transformation buffer to the client (without clearing the buffer).

You can use it for implementing streaming mode when buffering will be applied. A common example is having streaming + caching:

[uwsgi]
plugins = transformation_toupper,transform_tofile
; convert each char to uppercase
route-run = toupper:
; after each chunk converted to upper case, flush to the client
route-run = flush:
; buffer the whole response in memory for finally storing it in a file
route-run = tofile:filename=/tmp/mycache
...

You can call flush multiple times and in various parts of the chain. Experiment a bit with it...

Available transformations (last update 20130504)

	gzip, exposed by the transformation_gzip plugin (encode the response buffer to gzip)

	toupper, exposed by the transformation_toupper plugin (example plugin transforming each character in uppercase)

	tofile, exposed by the transformation_tofile plugin (used for caching to response buffer to a static file)

	toxslt, exposed by the xslt plugin (apply xslt stylesheet to an XML response buffer)

	cachestore, exposed by the router_cache plugin (cache the response buffer in the uWSGI cache)

	chunked, encode the output in HTTP chunked

	flush, flush the current buffer to the client

	memcachedstore, store the response buffer in a memcached object

	redisstore, store the response buffer in a redis object

	template, apply routing translations to each chunk

Working on

	rpc, allows applying rpc functions to a response buffer (limit 64k size)

	lua, apply a lua function to a response buffer (no limit in size)

WebSocket support

In uWSGI 1.9, a high performance websocket (RFC 6455) implementation has been added.

Although many different solutions exist for WebSockets, most of them rely on a higher-level language implementation, that rarely is good enough for topics like gaming or streaming.

The uWSGI websockets implementation is compiled in by default.

Websocket support is sponsored by 20Tab S.r.l. http://20tab.com/

They released a full game (a bomberman clone based on uWSGI websockets api): https://github.com/20tab/Bombertab

An echo server

This is how a uWSGI websockets application looks like:

def application(env, start_response):
 # complete the handshake
 uwsgi.websocket_handshake(env['HTTP_SEC_WEBSOCKET_KEY'], env.get('HTTP_ORIGIN', ''))
 while True:
 msg = uwsgi.websocket_recv()
 uwsgi.websocket_send(msg)

You do not need to worry about keeping the connection alive or reject dead peers. The uwsgi.websocket_recv() function will do all of the dirty work for you in background.

Handshaking

Handshaking is the first phase of a websocket connection.

To send a full handshake response you can use the uwsgi.websocket_handshake([key,origin, proto]) function. Without a correct handshake the connection will never complete.

In the 1.9 series, the key parameter is required. In 2.0+ you can call websocket_handshake without arguments (the response will be built automatically from request’s data).

Sending

Sending data to the browser is really easy. uwsgi.websocket_send(msg) – nothing more.

Receiving

This is the real core of the whole implementation.

This function actually lies about its real purpose. It does return a websocket message, but it really also holds the connection
opened (using the ping/pong subsystem) and monitors the stream’s status.

msg = uwsgi.websocket_recv()

The function can receive messages from a named channel (see below) and automatically forward them to your websocket connection.

It will always return only websocket messages sent from the browser – any other communication happens in the background.

There is a non-blocking variant too – msg = uwsgi.websocket_recv_nb(). See: https://github.com/unbit/uwsgi/blob/master/tests/websockets_chat_async.py

PING/PONG

To keep a websocket connection opened, you should constantly send ping (or pong, see later) to the browser and expect
a response from it. If the response from the browser/client does not arrive in a timely fashion the connection is closed (uwsgi.websocket_recv() will raise an exception). In addition to ping, the uwsgi.websocket_recv() function send the so called ‘gratuitous pong’. They are used
to inform the client of server availability.

All of these tasks happen in background. YOU DO NOT NEED TO MANAGE THEM!

Available proxies

Unfortunately not all of the HTTP webserver/proxies work flawlessly with websockets.

	The uWSGI HTTP/HTTPS/SPDY router supports them without problems. Just remember to add the --http-websockets option.

uwsgi --http :8080 --http-websockets --wsgi-file myapp.py

or

uwsgi --http :8080 --http-raw-body --wsgi-file myapp.py

This is slightly more “raw”, but supports things like chunked input.

	Haproxy works fine.

	nginx >= 1.4 works fine and without additional configuration.

Language support

	Python https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.py

	Perl https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.pl

	PyPy https://github.com/unbit/uwsgi/blob/master/tests/websockets_chat_async.py

	Ruby https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.ru

	Lua https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.lua

Supported concurrency models

	Multiprocess

	Multithreaded

	uWSGI native async api

	Coro::AnyEvent

	gevent

	Ruby fibers + uWSGI async

	Ruby threads

	greenlet + uWSGI async

	uGreen + uWSGI async

	PyPy continulets

wss:// (websockets over https)

The uWSGI HTTPS router works without problems with websockets. Just remember to use wss:// as the connection scheme in your client code.

Websockets over SPDY

n/a

Routing

The http proxy internal router supports websocket out of the box (assuming your front-line proxy already supports them)

[uwsgi]
route = ^/websocket uwsgi:127.0.0.1:3032,0,0

or

[uwsgi]
route = ^/websocket http:127.0.0.1:8080

Api

uwsgi.websocket_handshake([key, origin, proto])

uwsgi.websocket_recv()

uwsgi.websocket_send(msg)

uwsgi.websocket_send_binary(msg) (added in 1.9.21 to support binary messages)

uwsgi.websocket_recv_nb()

uwsgi.websocket_send_from_sharedarea(id, pos) (added in 1.9.21, allows sending directly from a SharedArea – share memory pages between uWSGI components)

uwsgi.websocket_send_binary_from_sharedarea(id, pos) (added in 1.9.21, allows sending directly from a SharedArea – share memory pages between uWSGI components)

The Metrics subsystem

Available from 1.9.19.

The uWSGI metrics subsystem allows you to manage “numbers” from your app.

While the caching subsystem got some math capabilities during the 1.9 development cycle, the metrics subsystem
is optimized by design for storing numbers and applying functions over them. So, compared to the caching subsystem it’s way faster
and requires a fraction of the memory.

When enabled, the metric subsystem configures a vast amount of metrics (like requests per-core, memory usage, etc) but, in addition to this, you can configure your own metrics,
such as the number of active users or, say, hits of a particular URL, as well as the memory consumption of your app or the whole server.

To enable the metrics subsystem just add --enable-metrics to your options, or configure a stats pusher (see below).

The metrics subsystem is completely thread-safe.

By default uWSGI creates a lot of metrics (and more are planned), so before adding your own be sure uWSGI does not already expose the one(s) you need.

Metric names and oids

Each metric must have a name (containing only numbers, letters, underscores, dashes and dots) and an optional oid (required for mapping a metric to The embedded SNMP server).

Metric types

Before dealing with metrics you need to understand the various types represented by each metric:

COUNTER (type 0)

This is a generally-growing up number (like the number of requests).

GAUGE (type 1)

This is a number that can increase or decrease dynamically (like the memory used by a worker, or CPU load).

ABSOLUTE (type 2)

This is an absolute number, like the memory of the whole server, or the size of the hard disk.

ALIAS (type 3)

This is a virtual metric pointing to another one . You can use it to give different names to already existing metrics.

Metric collectors

Once you define a metric type, you need to tell uWSGI how to ‘collect’ the specific metric.

There are various collectors available (and more can be added via plugins).

	ptr – The value is collected from a memory pointer

	file – the value is collected from a file

	sum – the value is the sum of other metrics

	avg – compute the algebraic average of the children (added in 1.9.20)

	accumulator – always add the sum of children to the final value. See below for an example.

Round 1: child1 = 22, child2 = 17 -> metric_value = 39
Round 2: child1 = 26, child2 = 30 -> metric_value += 56

	multiplier - Multiply the sum of children by the specified argument (arg1n).

child1 = 22, child2 = 17, arg1n = 3 -> metric_value = (22+17)*3

	func - the value is computed calling a specific function every time

	manual - the NULL collector. The value must be updated manually from applications using the metrics API.

Custom metrics

You can define additional metrics to manage from your app.

The --metric option allows you to add more metrics.

It has two syntaxes: “simplified” and “keyval”.

uwsgi --http-socket :9090 --metric foobar

will create a metric ‘foobar’ with type ‘counter’, manual collector and no oid.

For creating advanced metrics you need the keyval way:

uwsgi --http-socket :9090 --metric name=foobar,type=gauge,oid=100.100.100

The following keys are available:

	name – set the metric name

	oid – set the metric oid

	type – set the metric type, can be counter, gauge, absolute, alias

	initial_value – set the metric to a specific value on startup

	freq – set the collection frequency in seconds (default to 1)

	reset_after_push – reset the metric to zero (or the configured initial_value) after it’s been pushed to the backend (so every freq seconds)

	children – maps children to the metric (see below)

	alias – the metric will be a simple alias for the specified one (–metric name=foobar,alias=worker.0.requests,type=alias)

	arg1 to arg3 – string based arguments (see below)

	arg1n to arg3n – number based arguments (see below)

	collector set the collector, can be ptr, file, sum, func or anything exposed by plugins. Not specifying a collector means the metric is manual (your app needs to update it).

The ptr is currently unimplemented, while the other collector requires a bit of additional configuration:

collector=file requires arg1 for the filename and an optional arg1n for the so-called split value.

uwsgi --metric name=loadavg,type=gauge,collector=file,arg1=/proc/loadavg,arg1n=1,freq=3

This will add a ‘loadavg` metric, of type gauge, updated every 3 seconds with the content of /proc/loadavg. The content is split (using \n, \t, spaces, \r and zero as separator) and the item 1 (the returned array is zero-based) used as the return value.

The splitter is very powerful, making it possible to gather information from more complex files, such as /proc/meminfo.

uwsgi --metric name=memory,type=gauge,collector=file,arg1=/proc/meminfo,arg1n=4,freq=3

Once split, /proc/meminfo has the MemFree value in the 4th slot.

collector=sum requires the list of metrics that must be summed up. Each metric has the concept of ‘children’. The sum collector
will sum the values of all of its children:

uwsgi --metric name=reqs,collector=sum,children=worker.1.requests;worker.2.requests

This will sum the value of worker.1.requests and worker.2.requests every second.

collector=func is a convenience collector avoiding you to write a whole plugin for adding a new collector.

Let’s define a C function (call the file mycollector.c or whatever you want):

int64_t my_collector(void *metric) {
 return 173;
}

and build it as a shared library...

gcc -shared -o mycollector.so mycollector.c

now run uWSGI loading the library...

uwsgi --dlopen ./mycollector.so --metric name=mine,collector=func,arg1=my_collector,freq=10

this will call the C function my_collector every 10 seconds and will set the value of the metric ‘mine’ to its return value.

The function must returns an int64_t value. The argument it takes is a uwsgi_metric pointer. You generally do not need to parse the metric, so just casting to void will avoid headaches.

The metrics directory

UNIX sysadmins love text files. They are generally the things they have to work on most of the time. If you want to make a UNIX sysadmin happy, just give him or her some text file to play with. (Or some coffee, or whiskey maybe, depending on their tastes. But generally, text files should do just fine.)

The metrics subsystem can expose all of its metrics in the form of text files in a directory:

uwsgi --metrics-dir mymetrics ...

The directory must exist in advance.

This will create a text file for each metric in the ‘mymetrics’ directory. The content of each file is the value of the metric (updated in real time).

Each file is mapped into the process address space, so do not worry if your virtual memory increases slightly.

Restoring metrics (persistent metrics)

When you restart a uWSGI instance, all of its metrics are reset.

This is generally the best thing to do, but if you want, you can restore the previous situation using the values stored in the metrics
directory defined before.

Just add the --metrics-dir-restore option to force the metric subsystem to read-back the values from the metric directory before
starting to collect values.

API

Your language plugins should expose at least the following api functions. Currently they are implemented in Perl, CPython, PyPy and Ruby

	metric_get(name)

	metric_set(name, value)

	metric_set_max(name, value) – only set the metric name if the give value is greater than the one currently stored

	metric_set_min(name, value) – only set the metric name if the give value is lower than the one currently stored

metric_set_max and metric_set_min can be used to avoid having to call metric_get when you need a metric to be set at a maximal or minimal value. Another simple use case is to use the avg collector to calculate an average between some max and min set metrics.

	metric_inc(name[, delta])

	metric_dec(name[, delta])

	metric_mul(name[, delta])

	metric_div(name[, delta])

	metrics (tuple/array of metric keys, should be immutable and not-callable, currently unimplemented)

Stats pushers

Collected metrics can be sent to external systems for analysis or chart generation.

Stats pushers are plugins aimed at sending metrics to those systems.

There are two kinds of stats pushers at the moment: JSON and raw.

The JSON stats pusher send the whole JSON stats blob (the same you get from the stats server), while ‘raw’ ones send the metrics list.

Currently available stats pushers:

rrdtool

	Type: raw

	Plugin: rrdtool (builtin by default)

	Requires (during runtime): librrd.so

	Syntax: --stats-push rrdtool:my_rrds ...

This will store an rrd file for each metric in the specified directory. Each rrd file has a single data source named ‘metric’.

Usage:

uwsgi --rrdtool my_rrds ...
or
uwsgi --stats-push rrdtool:my_rrds ...

By default the RRD files are updated every 300 seconds. You can tune this value with --rrdtool-freq

The librrd.so library is detected at runtime. If you need you can specify its absolute path with --rrdtool-lib.

statsd

	Type: raw

	Plugin: stats_pusher_statsd

	Syntax: --stats-push statsd:address[,prefix]

Push metrics to a statsd server.

Usage:

uwsgi --stats-push statsd:127.0.0.1:8125,myinstance ...

carbon

	Type: raw

	Plugin: carbon (built-in by default)

	See: Integration with Graphite/Carbon

zabbix

	Type: raw

	Plugin: zabbix

	Syntax: --stats-push zabbix:address[,prefix]

Push metrics to a zabbix server.

The plugin exposes a --zabbix-template option that will generate a zabbix template (on stdout or in the specified file) containing all of the exposed metrics as trapper items.

注解

On some Zabbix versions you will need to authorize the IP addresses allowed to push items.

Usage:

uwsgi --stats-push zabbix:127.0.0.1:10051,myinstance ...

mongodb

	Type: json

	Plugin: stats_pusher_mongodb

	Required (build time): libmongoclient.so

	Syntax (keyval): --stats-push mongodb:addr=<addr>,collection=<db>,freq=<freq>

Push statistics (as JSON) the the specified MongoDB database.

file

	Type: json

	Plugin: stats_pusher_file

Example plugin storing stats JSON in a file.

socket

	Type: raw

	Plugin: stats_pusher_socket (builtin by default)

	Syntax: --stats-push socket:address[,prefix]

Push metrics to a UDP server with the following format: <metric> <type> <value> (<type> is in the numeric form previously reported).

Example:

uwsgi --stats-push socket:127.0.0.1:8125,myinstance ...

Alarms/Thresholds

You can configure one or more “thresholds” for each metric.

Once this limit is reached the specified alarm (see The uWSGI alarm subsystem (from 1.3)) is triggered.

Once the alarm is delivered you may choose to reset the counter to a specific value (generally 0), or continue triggering alarms
with a specified rate.

[uwsgi]
...
metric-alarm = key=worker.0.avg_response_time,value=2000,alarm=overload,rate=30
metric-alarm = key=loadavg,value=3,alarm=overload,rate=120
metric-threshold = key=mycounter,value=1000,reset=0
...

Specifying an alarm is not required. Using the threshold value to automatically reset a metric is perfectly valid.

Note: --metric-threshold and --metric-alarm are aliases for the same option.

SNMP integration

The The embedded SNMP server server exposes metrics starting from the 1.3.6.1.4.1.35156.17.3 OID.

For example to get the value of worker.0.requests:

snmpget -v2c -c <snmp_community> <snmp_addr>:<snmp_port> 1.3.6.1.4.1.35156.17.3.0.1

Remember: only metrics with an associated OID can be used via SNMP.

Internal Routing integration

The ‘’router_metrics’’ plugin (builtin by default) adds a series of actions to the internal routing subsystem.

	metricinc:<metric>[,value] increase the <metric>

	metricdec:<metric>[,value] decrease the <metric>

	metricmul:<metric>[,value] multiply the <metric>

	metricdiv:<metric>[,value] divide the <metric>

	metricset:<metric>,<value> set <metric> to <value>

In addition to action, a route var named “metric” is added.

Example:

[uwsgi]
metric = mymetric
route = ^/foo metricinc:mymetric
route-run = log:the value of the metric 'mymetric' is ${metric[mymetric]}
log-format = %(time) - %(metric.mymetric)

Request logging

You can access metrics values from your request logging format using the %(metric.xxx) placeholder:

[uwsgi]
log-format = [hello] %(time) %(metric.worker.0.requests)

Officially Registered Metrics

This is a work in progress.

The best way to know which default metrics are exposed is enabling the stats server and querying it (or adding the --metrics-dir option).

	worker/3 (exports information about workers, example worker.1.requests [or 3.1.1] reports the number of requests served by worker 1)

	plugin/4 (namespace for metrics automatically added by plugins, example plugins.foo.bar)

	core/5 (namespace for general instance informations)

	router/6 (namespace for corerouters, example router.http.active_sessions)

	socket/7 (namespace for sockets, example socket.0.listen_queue)

	mule/8 (namespace for mules, example mule.1.signals)

	spooler/9 (namespace for spoolers, example spooler.1.signals)

	system/10 (namespace for system metrics, like loadavg or free memory)

OID assigment for plugins

If you want to write a plugin that will expose metrics, please add the OID namespace that you are going to use to the list below and make a pull request first.

This will ensure that all plugins are using unique OID namespaces.

Prefix all plugin metric names with plugin name to ensure no conflicts if same keys are used in multiple plugins (example plugin.myplugin.foo.bar, worker.1.plugin.myplugin.foo.bar)

	(3|4).100.1 - cheaper_busyness

External tools

Check: https://github.com/unbit/unbit-bars

The Chunked input API

An API for managing HTTP chunked input requests has been added in uWSGI 1.9.13.

The API is very low-level to allow easy integration with standard apps.

There are only two functions exposed:

	chunked_read([timeout])

	chunked_read_nb()

This API is supported (from uWSGI 1.9.20) on CPython, PyPy and Perl.

Reading chunks

To read a chunk (blocking) just run

my $msg = uwsgi::chunked_read

If no timeout is specified, the default one will be used. If you do not get a chunk in time, the function will croak (or raise an exception when under Python).

Under non-blocking/async engines you may want to use

my $msg = uwsgi::chunked_read_nb

The function will soon return undef (or None on Python) if no chunks are available (and croak/raise an exception on error).

A full PSGI streaming echo example:

simple PSGI echo app reading chunked input
sub streamer {
 $responder = shift;
 # generate the headers and start streaming the response
 my $writer = $responder->([200, ['Content-Type' => 'text/plain']]);

 while(1) {
 my $msg = uwsgi::chunked_read;
 last unless $msg;
 $writer->write($msg);
 }

 $writer->close;
}

my $app = sub {
 return \&streamer;
};

Tuning the chunks buffer

Before starting to read chunks, uWSGI allocates a fixed buffer for storing chunks.

All of the messages are always stored in the same buffer. If a message bigger than the buffer is received, an exception will be raised.

By default the buffer is limited to 1 MB. You can tune it with the --chunked-input-limit option (bytes).

Integration with proxies

If you plan to put uWSGI behind a proxy/router be sure it supports chunked input requests (or generally raw HTTP requests).

When using the uWSGI HTTP router just add –http-raw-body to support chunked input.

HAProxy works out of the box.

Nginx >= 1.4 supports chunked input.

Options

	--chunked-input-limit: the limit (in bytes) of a chunk message (default 1MB)

	--chunked-input-timeout: the default timeout (in seconds) for blocking chunked_read (default to the same –socket-timeout value, 4 seconds)

Notes

	Calling chunked API functions after having consumed even a single byte of the request body is wrong (this includes --post-buffering).

	Chunked API functions can be called independently by the presence of “Transfer-Encoding: chunked” header.

The uWSGI cheaper subsystem – adaptive process spawning

uWSGI provides the ability to dynamically scale the number of running workers
via pluggable algorithms. Use uwsgi --cheaper-algos-list to get the list
of available algorithms.

Usage

To enable cheaper mode add the cheaper = N option to the uWSGI
configuration file, where N is the minimum number of workers uWSGI can run. The
cheaper value must be lower than the maximum number of configured workers
(workers or processes option).

set cheaper algorithm to use, if not set default will be used
cheaper-algo = spare

minimum number of workers to keep at all times
cheaper = 2

number of workers to spawn at startup
cheaper-initial = 5

maximum number of workers that can be spawned
workers = 10

how many workers should be spawned at a time
cheaper-step = 1

This configuration will tell uWSGI to run up to 10 workers under load. If the
app is idle uWSGI will stop workers but it will always leave at least 2 of them
running. With cheaper-initial you can control how many workers should be
spawned at startup. If your average load requires more than minimum number of
workers you can have them spawned right away and then “cheaped” (killed off) if
load is low enough. When the cheaper algorithm decides that it needs more
workers it will spawn cheaper-step of them. This is useful if you have a
high maximum number of workers – in the event of a sudden load spike it would
otherwise take a lot of time to spawn enough workers one by one.

Setting memory limits

Starting with 1.9.16 rss memory limits can be set to stop cheaper spawning
new workers if process count limit was not reached, but total sum of rss
memory used by all workers reached given limit.

soft limit will prevent cheaper from spawning new workers
if workers total rss memory is equal or higher
we use 128MB soft limit below (values are in bytes)
cheaper-rss-limit-soft = 134217728

hard limit will force cheaper to cheap single worker
if workers total rss memory is equal or higher
we use 160MB hard limit below (values are in bytes)
cheaper-rss-limit-hard = 167772160

Notes:

	Hard limit is optional, soft limit alone can be used.

	Hard value must be higher then soft value, both values shouldn’t be too close to each other.

	Hard value should be soft + at least average worker memory usage for given app.

	Soft value is the limiter for cheaper, it won’t spawn more workers, but already running workers
memory usage might grow, to handle that reload-on-rss can be set too. To set unbreakable barrier
for app memory usage cgroups are recommended.

spare cheaper algorithm

This is the default algorithm. If all workers are busy for
cheaper_overload seconds then uWSGI will spawn new workers. When the load
is gone it will begin stopping processes one at a time.

backlog cheaper algorithm

注解

backlog is only available on Linux and only on TCP sockets (not UNIX domain sockets).

If the socket’s listen queue has more than cheaper_overload requests
waiting to be processed, uWSGI will spawn new workers. If the backlog is lower
it will begin killing processes one at a time.

busyness cheaper algorithm

注解

This algorithm is optional, it is only available if the cheaper_busyness plugin is compiled and loaded.

This plugin implements an algorithm which adds or removes workers based on
average utilization for a given time period. It’s goal is to keep more workers
than the minimum needed available at any given time, so the app will always
have capacity for new requests. If you want to run only minimum number of
workers then use the spare or backlog algorithms.

This plugin primarily is used because the way spare and backlog plugins work
causes very aggressive scaling behavior. If you set a low cheaper value
(for example 1), then uWSGI will keep only 1 worker running and spawn new
workers only when that running worker is overloaded. If an app requires more
workers, then uWSGI will be spawning and stopping workers all the time. Only
during times of very low load the would the minimum number of workers be
enough.

The Busyness algorithm tries to do the opposite: spawn as many workers as
needed and stop some of them only when there is a good chance that they are not
needed. This should lead to a more stable worker count and much less respawns.
Since for most of the time we have more worker capacity than actually needed,
average application response times should be lower than with other plugins.

Options:

cheaper-overload

Specifies the window, in seconds, for tracking the average busyness of workers. Example:

cheaper-overload = 30

This option will check busyness every 30 seconds. If during the last 30 seconds
all workers were running for 3 seconds and idle for the remaining 27 seconds
the calculated busyness will be 10% (3/30). This value will decide how fast
uWSGI can respond to load spikes. New workers will be spawned at most every
cheaper-overload seconds (unless you are running uWSGI on Linux – see
cheaper-busyness-backlog-alert for details).

If you want to react to load spikes faster, keep this value low so busyness is
calculated more often. Keep in mind this may cause workers to be
started/stopped more often than required since every minor spike may spawn new
workers. With a high cheaper-overload value the worker count will change
much less since longer cycles will eat all short spikes of load and extreme
values.
Default is 3, for busyness plugin it’s best to use higher value (10-30).

cheaper-step

How many workers to spawn when the algorithm decides they are needed. Default
is 1.

cheaper-initial

The number of workers to be started when starting the application. After the
app is started the algorithm can stop or start workers if needed.

cheaper-busyness-max

This is the maximum busyness we allow. Every time the calculated busyness for
last cheaper-overload seconds is higher than this value, uWSGI will spawn
cheaper-step new workers. Default is 50.

cheaper-busyness-min

This is minimum busyness. If current busyness is below this value, the app is
considered as being in an “idle cycl” and uWSGI will start counting them. Once
we reach needed number of idle cycles uWSGI will kill one worker. Default is
25.

cheaper-busyness-multiplier

This option tells uWSGI how many idle cycles we need before stopping a worker.
After reaching this limit uWSGI will stop a worker and reset this counter.

For example:

cheaper-overload = 10
cheaper-busyness-multiplier = 20
cheaper-busyness-min = 25

If average worker busyness is under 25% for 20 checks in a row, executed every
10 seconds (total of 200 seconds), tone worker will be stopped. The idle cycles
counter will be reset if average busyness jumps above cheaper-busyness-max
and we spawn new workers. If during idle cycle counting the average busyness
jumps above cheaper-busyness-min but still below cheaper-busyness-max,
then the idle cycles counter is adjusted and we need to wait extra one idle
cycle. If during idle cycle counting the average busyness jumps above
cheaper-busyness-min but still below cheaper-busyness-max three times
in a row, then the idle cycle counter is reset.

cheaper-busyness-penalty

uWSGI will automatically tune the number of idle cycles needed to stop worker
when worker is stopped due to enough idle cycles and then spawned back to fast
(less than the same time we need to cheap worker), then we will increment the
cheaper-busyness-multiplier value this value. Default is 1.

Example:

cheaper-overload = 10
cheaper-busyness-multiplier = 20
cheaper-busyness-min = 25
cheaper-busyness-penalty = 2

If average worker busyness is under 25% for 20 checks in a row, executed every
10 seconds (total 200 seconds), one worker will be stopped. If new worker is
spawned in less than 200 seconds (counting from the time when we spawned the
last worker before it), the cheaper-busyness-multiplier value will be
incremented up to 22 (20+2). Now we will need to wait 220 seconds (22*10) to
cheap another worker. This option is used to prevent workers from being
started and stopped all the time since once we stop one worker, busyness might
jump up enough to hit cheaper-busyness-max. Without this, or if tuned
poorly, we can get into a stop/start feedback loop .

cheaper-busyness-verbose

This option enables debug logs from the cheaper_busyness plugin.

cheaper-busyness-backlog-alert

This option is only available on Linux. It is used to allow quick response to
load spikes even with high cheaper-overload values. On every uWSGI master
cycle (default 1 second) the current listen queue is checked. If it is higher
than this value, an emergency worker is spawned. When using this option it is
safe to use high cheaper-overload values to have smoother scaling of worker
count. Default is 33.

cheaper-busyness-backlog-multiplier

This option is only available on Linux. It works just like
cheaper-busyness-multiplier, except it is used only for emergency workers
spawned when listen queue was higher than cheaper-busyness-backlog-alert.

Emergency workers are spawned in case of big load spike to prevent currently
running workers from being overloaded. Sometimes load spike are random and
short which can spawn a lot of emergency workers. In such cases we would need
to wait several cycles before reaping those workers. This provides an alternate
multiplier to reap these processes faster. Default is 3.

cheaper-busyness-backlog-step

This option is only available on Linux. It sets the number of emergency workers
spawned when listen queue is higher than cheaper-busyness-backlog-alert.
Defaults to 1.

cheaper-busyness-backlog-nonzero

This option is only available on Linux. It will spawn new emergency workers if
the request listen queue is > 0 for more than N seconds. It is used to protect
the server from the corner case where there is only a single worker running and
the worker is handling a long running request. If uWSGI receives new requests
they would stay in the request queue until that long running request is
completed. With this option we can detect such a condition and spawn new worker
to prevent queued requests from being timed out. Default is 60.

Notes regarding Busyness

	Experiment with settings, there is no one golden rule of what values should be used for everyone. Test and pick values that are best for you. Monitoring uWSGI stats (via Carbon, for instance) will make it easy to decide on good values.

	Don’t expect busyness to be constant. it will change frequently. In the end, real users interact with your apps in very random way. It’s recommended to use longer –cheaper-overload values (>=30) to have less spikes.

	If you want to run some benchmarks with this plugin, you should use tools that add randomness to the work load

	With a low number of workers (2-3) starting new worker or stopping one might affect busyness a lot, if You have 2 workers with busyness of 50%, than stopping one of them will increase busyness to 100%. Keep that in mind when picking min and max levels, with only few workers running most of the time max should be more than double of min, otherwise every time one worker is stopped it might increase busyness to above max level.

	With a low number of workers (1-4) and default settings expect this plugin will keep average busyness below the minimum level; adjust levels to compensate for this.

	With a higher number of workers required to handle load, worker count should stabilize somewhere near minimum busyness level, jumping a little bit around this value

	When experimenting with this plugin it is advised to enable --cheaper-busyness-verbose to get an idea of what it is doing. An example log follows.

These messages are logged at startup to show current settings
[busyness] settings: min=20%, max=60%, overload=20, multiplier=15, respawn penalty=3
[busyness] backlog alert is set to 33 request(s)

With --cheaper-busyness-verbose enabled You can monitor calculated busyness
[busyness] worker nr 1 20s average busyness is at 11%
[busyness] worker nr 2 20s average busyness is at 11%
[busyness] worker nr 3 20s average busyness is at 20%
[busyness] 20s average busyness of 3 worker(s) is at 14%

Average busyness is under 20%, we start counting idle cycles
we have overload=20 and multiplier=15 so we need to wait 300 seconds before we can stop worker
cycle we just had was counted as idle so we need to wait another 280 seconds
1 missing second below is just from rounding, master cycle is every 1 second but it also takes some time, this is normal
[busyness] need to wait 279 more second(s) to cheap worker

We waited long enough and we can stop one worker
[busyness] worker nr 1 20s average busyness is at 6%
[busyness] worker nr 2 20s average busyness is at 22%
[busyness] worker nr 3 20s average busyness is at 19%
[busyness] 20s average busyness of 3 worker(s) is at 15%
[busyness] 20s average busyness is at 15%, cheap one of 3 running workers

After stopping one worker average busyness is now higher, which is no surprise
[busyness] worker nr 2 20s average busyness is at 36%
[busyness] worker nr 3 20s average busyness is at 24%
[busyness] 20s average busyness of 2 worker(s) is at 30%
30% is above our minimum (20%), but it's still far from our maximum (60%)
since this is not idle cycle uWSGI will ignore it when counting when to stop worker
[busyness] 20s average busyness is at 30%, 1 non-idle cycle(s), adjusting cheaper timer

After a while our average busyness is still low enough, so we stop another worker
[busyness] 20s average busyness is at 3%, cheap one of 2 running workers

With only one worker running we won't see per worker busyness since it's the same as total average
[busyness] 20s average busyness of 1 worker(s) is at 16%
[busyness] 20s average busyness of 1 worker(s) is at 17%

Shortly after stopping second worker and with only one running we have load spike that is enough to hit our maximum level
this was just few cycles after stopping worker so uWSGI will increase multiplier
now we need to wait extra 3 cycles before stopping worker
[busyness] worker(s) respawned to fast, increasing cheaper multiplier to 18 (+3)

Initially we needed to wait only 300 seconds, now we need to have 360 subsequent seconds when workers busyness is below minimum level
10*20 + 3*20 = 360
[busyness] worker nr 1 20s average busyness is at 9%
[busyness] worker nr 2 20s average busyness is at 17%
[busyness] worker nr 3 20s average busyness is at 17%
[busyness] worker nr 4 20s average busyness is at 21%
[busyness] 20s average busyness of 4 worker(s) is at 16%
[busyness] need to wait 339 more second(s) to cheap worker

The uWSGI Emperor – multi-app deployment

If you need to deploy a big number of apps on a single server, or a group of
servers, the Emperor mode is just the ticket. It is a special uWSGI instance
that will monitor specific events and will spawn/stop/reload instances (known
as vassals, when managed by an Emperor) on demand.

By default the Emperor will scan specific directories for supported (.ini,
.xml, .yml, .json, etc.) uWSGI configuration files, but it is extensible using
imperial monitor plugins. The dir:// and glob:// plugins are
embedded in the core, so they need not be loaded, and are automatically
detected. The dir:// plugin is the default.

	Whenever an imperial monitor detects a new configuration file, a new uWSGI instance will be spawned with that configuration.

	Whenever a configuration file is modified (its modification time changed, so touch --no-dereference may be your friend), the corresponding app will be reloaded.

	Whenever a config file is removed, the corresponding app will be stopped.

	If the emperor dies, all the vassals die.

	If a vassal dies for any reason, the emperor will respawn it.

Multiple sources of configuration may be monitored by specifying --emperor multiple times.

参见

See Imperial monitors for a list of the Imperial Monitor plugins
shipped with uWSGI and how to use them.

	Imperial monitors
	dir:// – scan a directory for uWSGI config files

	glob:// – monitor a shell pattern

	pg:// – scan a PostgreSQL table for configuration

	mongodb:// – Scan MongoDB collections for configuration

	amqp:// – Use an AMQP compliant message queue to announce events
	AMQP with HTTP

	Direct AMQP configuration

	zmq:// – ZeroMQ

	zoo:// – Zookeeper

	ldap:// – LDAP

	The Emperor protocol
	The protocol

Special configuration variables

Using Placeholders and Magic variables in conjunction with the Emperor
will probably save you a lot of time and make your configuration more DRY.
Suppose that in /opt/apps there are only Django [http://djangoproject.com] apps. /opt/apps/app.skel (the
.skel extension is not a known configuration file type to uWSGI and will be
skipped)

[uwsgi]
chdir = /opt/apps/%n
master = true
threads = 20
socket = /tmp/sockets/%n.sock
env = DJANGO_SETTINGS_MODULE=%n.settings
module = django.core.handlers.wsgi:WSGIHandler()

And then for each app create a symlink:

ln -s /opt/apps/app.skel /opt/apps/app1.ini
ln -s /opt/apps/app.skel /opt/apps/app2.ini

Finally, start the Emperor with the --emperor-nofollow option. Now you can reload each vassal separately with the command:

touch --no-dereference $INI_FILE

Passing configuration parameters to all vassals

Starting from 1.9.19 you can pass options using the --vassal-set facility

[uwsgi]
emperor = /etc/uwsgi/vassals
vassal-set = processes=8
vassal-set = enable-metrics=1

this will add --set processes=8 and --set enable-metrics=1 to each vassal

You can force the Emperor to pass options to uWSGI instances using environment
variables too. Every environment variable of the form UWSGI_VASSAL_xxx will be
rewritten in the new instance as UWSGI_xxx, with the usual
configuration implications.

For example:

UWSGI_VASSAL_SOCKET=/tmp/%n.sock uwsgi --emperor /opt/apps

will let you avoid specifying the socket option in configuration files.

Alternatively, you can use the --vassals-include option let each
vassal automatically include a complete config file:

uwsgi --emperor /opt/apps --vassals-include /etc/uwsgi/vassals-default.ini

Note that if you do this, %n (and other magic variables) in the
included file will resolve to the name of the included file, not the
original vassal configuration file. If you want to set options in the
included file using the vassal name, you’ll have to use placeholders.
For example, in the vassal config, you write:

[uwsgi]
vassal_name = %n
... more options

In the vassal-defaults.ini, you write:

[uwsgi]
socket = /tmp/sockets/%(vassal_name).sock

Tyrant mode (secure multi-user hosting)

The emperor is normally be run as root, setting the UID and GID in each
instance’s config. The vassal instance then drops privileges before serving
requests. In this mode, if your users have access to their own uWSGI
configuration files, you can’t trust them to set the correct uid and
gid. You could run the emperor as unprivileged user (with uid and
gid) but all of the vassals would then run under the same user, as
unprivileged users are not able to promote themselves to other users. For this
case the Tyrant mode is available – just add the emperor-tyrant option.

In Tyrant mode the Emperor will run the vassal with the UID/GID of its
configuration file (or for other Imperial Monitors, by some other method of
configuration). If Tyrant mode is used, the vassal configuration files must
have UID/GID > 0. An error will occur if the UID or GID is zero, or if the UID
or GID of the configuration of an already running vassal changes.

Tyrant mode for paranoid sysadmins (Linux only)

If you have built a uWSGI version with Setting POSIX Capabilities options enabled, you
can run the Emperor as unprivileged user but maintaining the minimal amount of
root-capabilities needed to apply the tyrant mode

[uwsgi]
uid = 10000
gid = 10000
emperor = /tmp
emperor-tyrant = true
cap = setgid,setuid

On demand vassals (socket activation)

Inspired by the venerable xinetd/inetd approach, you can spawn your vassals
only after the first connection to a specific socket. This feature is available
as of 1.9.1. Check the changelog for more information: uWSGI 1.9.1

Loyalty

As soon as a vassal manages a request it will became “loyal”. This status is
used by the Emperor to identify bad-behaving vassals and punish them.

Throttling

Whenever two or more vassals are spawned in the same second, the Emperor will
start a throttling subsystem to avoid fork bombing [http://en.wikipedia.org/wiki/Fork_bomb]. The system adds a
throttle delta (specified in milliseconds via the OptionEmperorThrottle
option) whenever it happens, and waits for that duration before spawning a new
vassal. Every time a new vassal spawns without triggering throttling, the
current throttling duration is halved.

Blacklist system

Whenever a non-loyal vassal dies, it is put in a shameful blacklist. When in a
blacklist, that vassal will be throttled up to a maximum value (tunable via
OptionEmperorMaxThrottle), starting from the default throttle delta of
3. Whenever a blacklisted vassal dies, its throttling value is increased by
the delta (OptionEmperorThrottle).

Heartbeat system

Vassals can voluntarily ask the Emperor to monitor their status. Workers of
heartbeat-enabled vassals will send “heartbeat” messages to the Emperor. If the
Emperor does not receive heartbeats from an instance for more than N (default
30, OptionEmperorRequiredHeartbeat) seconds, that instance will be
considered hung and thus reloaded. To enable sending of heartbeat packet in a
vassal, add the OptionHeartbeat option.

重要

If all of your workers are stuck handling perfectly legal requests such as
slow, large file uploads, the Emperor will trigger a reload as if the workers
are hung. The reload triggered is a graceful one, so you can be able to tune
your config/timeout/mercy for sane behaviour.

Using Linux namespaces for vassals

On Linux you can tell the Emperor to run vassals in “unshared” contexts. That means you can run each vassal with a dedicated view of the filesystems, ipc, uts, networking, pids and uids.

Things you generally do with tools like lxc or its abstractions like docker are native in uWSGI.

For example if you want to run each vassals in a new namespace:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-clone = fs,net,ipc,pid,uts

now each vassal will be able to modify the filesystem layout, networking, hostname and so on without damaging the main system.

A couple of helper daemons are included in the uWSGI distribution to simplify management of jailed vassals. Most notably The TunTap Router allows full user-space networking in jails, while
the forkpty router allows allocation of pseudoterminals in jails

It is not needed to unshare all of the subsystem in your vassals, sometimes you only want to give dedicated ipc and hostname to a vassal and hide from the processes list:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-clone = fs,ipc,pid,uts

a vassal could be:

[uwsgi]
; set the hostname
exec-as-root = hostname foobar
; umount /proc and remount to hide processes
; as we are in the 'fs' namespace umounting /proc does not interfere with the main one
exec-as-root = umount /proc
exec-as-root = mount -t proc none /proc
; drop privileges
uid = foobar
gid = foobar
; bind to the socket
socket = /tmp/myapp.socket
psgi = myapp.pl

The Imperial Bureau of Statistics

You can enable a statistics/status service for the Emperor by adding the
OptionEmperorStats option with a TCP address. By connecting to that
address, you’ll get a JSON-format blob of statistics.

Running non-uWSGI apps or using alternative uWSGIs as vassals

You can exec() a different binary as your vassal using the
privileged-binary-patch/unprivileged-binary-patch options. The first
one patches the binary after socket inheritance and shared socket
initialization (so you will be able to use uWSGI-defined sockets). The second
one patches the binary after privileges drop. In this way you will be able to
use uWSGI’s UID/GID/chroot/namespace/jailing options. The binary is called
with the same arguments that were passed to the vassal by the Emperor.

; i am a special vassal calling a different binary in a new linux network namespace
[uwsgi]
uid = 1000
gid = 1000
unshare = net
unprivileged-binary-patch = /usr/bin/myfunnyserver

重要

DO NOT DAEMONIZE your apps. If you do so, the Emperor will lose its connection with them.

The uWSGI arguments are passed to the new binary. If you do not like that
behaviour (or need to pass custom arguments) add -arg to the binary patch
option, yielding:

; i am a special vassal calling a different binary in a new linux network namespace
; with custom options
[uwsgi]
uid = 1000
gid = 1000
unshare = net
unprivileged-binary-patch-arg = ps aux

or:

;nginx example
[uwsgi]
privileged-binary-patch-arg = nginx -g "daemon off;"

参见

Your custom vassal apps can also speak with the emperor using the emperor protocol.

Integrating the Emperor with the FastRouter

The FastRouter is a proxy/load-balancer/router speaking The uwsgi Protocol. Yann
Malet from Lincoln Loop [http://lincolnloop.com/] has released a draft about massive Emperor +
Fastrouter deployment [http://projects.unbit.it/uwsgi/raw-attachment/wiki/Emperor/lincolnloop.pdf] (PDF) using The uWSGI caching framework as a hostname to socket
mapping storage.

Notes

	At startup, the emperor chdir() to the vassal dir. All vassal instances will start from here.

	If the uwsgi binary is not in your system path you can force its path with binary-path:

./uwsgi --emperor /opt/apps --binary-path /opt/uwsgi/uwsgi

	Sending SIGUSR1 to the emperor will print vassal status in its log.

	Stopping (SIGINT/SIGTERM/SIGQUIT) the Emperor will invoke
Ragnarok and kill all the vassals.

	Sending SIGHUP to the Emperor will reload all vassals.

	The emperor should generally not be run with --master, unless master
features like advanced logging are specifically needed.

	The emperor should generally be started at server boot time and left alone,
not reloaded/restarted except for uWSGI upgrades; emperor reloads are a bit
drastic, reloading all vassals at once. Instead vassals should be reloaded
individually when needed, in the manner of the imperial monitor in use.

Todo

	Docs-TODO: Clarify what the “chdir-on-startup” behavior does with
non-filesystem monitors.

	Export more magic vars

	Add support for multiple sections in xml/ini/yaml files (this will allow to
have a single config file for multiple instances)

Imperial monitors

dir:// – scan a directory for uWSGI config files

Simply put all of your config files in a directory, then point the uWSGI
emperor to it. The Emperor will start scanning this directory. When it finds
a valid config file it will spawn a new uWSGI instance.

For our example, we’re deploying a Werkzeug [http://werkzeug.pocoo.org/] test app, a Trac [http://trac.edgewall.org/] instance, a Ruby
on Rails app and a Django [http://djangoproject.com/] app.

werkzeug.xml

<uwsgi>
 <module>werkzeug.testapp:test_app</module>
 <master/>
 <processes>4</processes>
 <socket>127.0.0.1:3031</socket>
</uwsgi>

trac.ini

[uwsgi]
master = true
processes = 2
module = trac.web.main:dispatch_request
env = TRAC_ENV=/opt/project001
socket = 127.0.0.1:3032

rails.yml

uwsgi:
 plugins: rack
 rack: config.ru
 master: 1
 processes: 8
 socket: 127.0.0.1:3033
 post-buffering: 4096
 chdir: /opt/railsapp001

django.ini

[uwsgi]
socket = 127.0.0.1:3034
threads = 40
master = 1
env = DJANGO_SETTINGS_MODULE=myapp.settings
module = django.core.handlers.wsgi:WSGIHandler()
chdir = /opt/djangoapp001

Put these 4 files in a directory, for instance /etc/uwsgi/vassals in our example, then spawn the Emperor:

uwsgi --emperor /etc/uwsgi/vassals

The emperor will find the uWSGI instance configuration files in that directory
(the dir:// plugin declaration is implicit) and start the daemons needed to
run them.

glob:// – monitor a shell pattern

glob:// is similar to dir://, but a glob expression must be specified:

uwsgi --emperor "/etc/vassals/domains/*/conf/uwsgi.xml"
uwsgi --emperor "/etc/vassals/*.ini"

注解

Remember to quote the pattern, otherwise your shell will most likely
interpret it and expand it at invocation time, which is not what you want.

As the Emperor can search for configuration files in subdirectory hierarchies,
you could have a structure like this:

/opt/apps/app1/app1.xml
/opt/apps/app1/...all the app files...
/opt/apps/app2/app2.ini
/opt/apps/app2/...all the app files...

and run uWSGI with:

uwsgi --emperor /opt/apps/app*/app*.*

pg:// – scan a PostgreSQL table for configuration

You can specify a query to run against a PostgreSQL database. Its result must
be a list of 3 to 5 fields defining a vassal:

	The instance name, including a valid uWSGI config file extension. (Such as
django-001.ini)

	A TEXT blob containing the vassal configuration, in the format based on
the extension in field 1

	A number representing the modification time of this row in UNIX format
(seconds since the epoch).

	The UID of the vassal instance. Required in Tyrant mode (secure multi-user hosting) mode only.

	The GID of the vassal instance. Required in Tyrant mode (secure multi-user hosting) mode only.

uwsgi --plugin emperor_pg --emperor "pg://host=127.0.0.1 user=foobar dbname=emperor;SELECT name,config,ts FROM vassals"

	Whenever a new tuple is added a new instance is created and spawned with the
config specified in the second field.

	Whenever the modification time field changes, the instance is reloaded.

	If a tuple is removed, the corresponding vassal will be destroyed.

mongodb:// – Scan MongoDB collections for configuration

uwsgi --plugin emperor_mongodb --emperor "mongodb://127.0.0.1:27107,emperor.vassals,{enabled:1}"

This will scan all of the documents in the emperor.vassals collection
having the field enabled set to 1. An Emperor-compliant document must
define three fields: name, config and ts. In Tyrant mode (secure multi-user hosting) mode, 2
more fields are required.

	name (string) is the name of the vassal (remember to give it a valid extension, like .ini)

	config (multiline string) is the vassal config in the format described by the name‘s extension.

	ts (date) is the timestamp of the config (Note: MongoDB internally stores the timestamp in milliseconds.)

	uid (number) is the UID to run the vassal as. Required in Tyrant mode (secure multi-user hosting) mode only.

	gid (number) is the GID to run the vassal as. Required in Tyrant mode (secure multi-user hosting) mode only.

amqp:// – Use an AMQP compliant message queue to announce events

Set your AMQP (RabbitMQ, for instance) server address as the –emperor argument:

uwsgi --plugin emperor_amqp --emperor amqp://192.168.0.1:5672

Now the Emperor will wait for messages in the uwsgi.emperor exchange. This
should be a fanout type exchange, but you can use other systems for your
specific needs. Messages are simple strings containing the absolute path of a
valid uWSGI config file.

The pika module is used in this example, but you're free to use whatever adapter you like.
import pika
connect to RabbitMQ server
connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.0.1'))
get the channel
channel = connection.channel()
create the exchange (if not already available)
channel.exchange_declare(exchange='uwsgi.emperor', type='fanout')
publish a new config file
channel.basic_publish(exchange='uwsgi.emperor', routing_key='', body='/etc/vassals/mydjangoapp.xml')

The first time you launch the script, the emperor will add the new instance (if
the config file is available). From now on every time you re-publish the
message the app will be reloaded. When you remove the config file the app is
removed too.

小技巧

You can subscribe all of your emperors in the various servers to this
exchange to allow cluster-synchronized reloading/deploy.

AMQP with HTTP

uWSGI is capable of loading configuration files over
HTTP. This is a very handy way to dynamically generate
configuration files for massive hosting. Simply declare the HTTP URL of the
config file in the AMQP message. Remember that it must end with one of the
valid config extensions, but under the hood it can be generated by a script.
If the HTTP URL returns a non-200 status code, the instance will be removed.

channel.basic_publish(exchange='uwsgi.emperor', routing_key='', body='http://example.com/confs/trac.ini')

Direct AMQP configuration

Configuration files may also be served directly over AMQP. The routing_key
will be the (virtual) config filename, and the message will be the content of
the config file.

channel.basic_publish(
 exchange='uwsgi.emperor',
 routing_key='mydomain_trac_config.ini',
 body="""
[uwsgi]
socket=:3031
env = TRAC_ENV=/accounts/unbit/trac/uwsgi
module = trac.web.main:dispatch_request
processes = 4""")

The same reloading rules of previous modes are valid. When you want to remove
an instance simply set an empty body as the “configuration”.

channel.basic_publish(exchange='uwsgi.emperor', routing_key='mydomain_trac_config.ini', body='')

zmq:// – ZeroMQ

The Emperor binds itself to a ZeroMQ PULL socket, ready to receive commands.

uwsgi --plugin emperor_zeromq --emperor zmq://tcp://127.0.0.1:5252

Each command is a multipart message sent over a PUSH zmq socket. A command is
composed by at least 2 parts: command and name command is the
action to execute, while name is the name of the vassal. 3 optional parts
can be specified.

	config (a string containing the vassal config)

	uid (the user id to drop priviliges to in case of tyrant mode)

	gid (the group id to drop priviliges to in case of tyrant mode)

There are 2 kind of commands (for now):

	touch

	destroy

The first one is used for creating and reloading instances while the second is
for destroying. If you do not specify a config string, the Emperor will assume
you are referring to a static file available in the Emperor current directory.

import zmq
c = zmq.Context()
s = zmq.Socket(c, zmq.PUSH)
s.connect('tcp://127.0.0.1:5252')
s.send_multipart(['touch','foo.ini',"[uwsgi]\nsocket=:4142"])

zoo:// – Zookeeper

Currently in development.

ldap:// – LDAP

Currently in development.

The Emperor protocol

As of 1.3 you can spawn custom applications via the Emperor.

Non-uWSGI Vassals should never daemonize, to maintain a link with the Emperor.
If you want/need better integration with the Emperor, implement the Emperor
protocol.

The protocol

An environment variable UWSGI_EMPEROR_FD is passed to every vassal,
containing a file descriptor number.

import os
has_emperor = os.environ.get('UWSGI_EMPEROR_FD')
if has_emperor:
 print "I'm a vassal snake!"

Or in Perl,

my $has_emperor = $ENV{'UWSGI_EMPEROR_FD'}
if ($has_emperor) {
 print "I am a vassal.\n"
}

Or in C,

int emperor_fd = -1;
char *has_emperor = getenv("UWSGI_EMPEROR_FD");
if (has_emperor) {
 emperor_fd = atoi(has_emperor);
 fprintf(stderr, "I am a vassal.\n");
}

From now you can receive (and send) messages from (and to) the Emperor over this file descriptor.

Messages are byte sized (0-255), and each number (byte) has a meaning.

	0
	Sent by the Emperor to stop a vassal

	1
	Sent by the Emperor to reload a vassal / sent by a vassal when it has been spawned

	2
	Sent by a vassal to ask the Emperor for configuration chunk

	5
	Sent by a vassal when it is ready to accept requests

	17
	Sent by a vassal after the first request to announce loyalty

	22
	Sent by a vassal to notify the Emperor of voluntary shutdown

	26
	Heartbeat sent by the vassal. After the first received heartbeat, the Emperor will expect more of them from the vassal.

	30
	Sent by the vassal to ask for Auto-scaling with Broodlord mode mode.

Auto-scaling with Broodlord mode

Broodlord (taken from Starcraft, like Zerg mode mode) is a way for a vassal to
ask for “reinforcements” to the Emperor. “Reinforcements” are new vassals spawned on demand generally
bound on the same socket. Broodlord mode alone is not very useful. However, when combined with Zerg mode, Idle and The uWSGI Emperor – multi-app deployment
it can be used to implement auto-scaling for your apps.

WARNING: If you are looking for a way to dynamically adapt the number of workers of an instance, check the The uWSGI cheaper subsystem – adaptive process spawning mode, Broodlord mode is for spawning totally new instances.

A ‘simple’ example

We’ll start apps with a single worker, adding resources on demand. Broodlord
mode expects an additional stanza in your config file to be used for zergs.

[uwsgi]
socket = :3031
master = true
vassal-sos-backlog = 10
module = werkzeug.testapp:test_app
processes = 1
zerg-server = /tmp/broodlord.sock
disable-logging = true

[zerg]
zerg = /tmp/broodlord.sock
master = true
module = werkzeug.testapp:test_app
processes = 1
disable-logging = true
idle = 30
die-on-idle = true

The vassal-sos-backlog option (supported only on Linux and TCP sockets)
will ask the Emperor for zergs when the listen queue is higher than the given
value. By default the value is 10. More “vassal-sos-” options will be added in
the future to allow for more specific detect-overload systems.

The [zerg] stanza is the config the Emperor will run when a vassal requires
resources. The die-on-idle option will completely destroy the zerg when
inactive for more than 30 seconds. This configuration shows how to combine the
various uWSGI features to implement different means of scaling. To run the
Emperor we need to specify how many zerg instances can be run:

uwsgi --emperor /etc/vassals --emperor-broodlord 40

This will allow you to run up to 40 additional zerg workers for your apps.

–vassal-sos

注解

This flag has been added in 2.0.7.

–vassal-sos allows the vassal to ask for reinforcement as soon as all of its workers are busy.

The option takes an integer value, the number of seconds to wait between asking for a new reinforcements.

Manually asking for reinforcement

You can use the master FIFO’s “B” command to force an instance to ask for reinforcements from the Emperor.

echo B > /var/run/master.fifo

Under the hood (or: hacking broodlord mode)

Technically broodlord mode is a simple message sent by a vassal to “force” the Emperor to spawn another vassal with a ‘:zerg’ suffix in the instance name.

Even if the suffix is ‘:zerg’ this does not mean you need to use Zerg mode. A ‘zerg’ instance could be a completely independent one that simply subscribes
to a router, or binds to a SO_REUSEPORT socket.

This is an example with subscription system.

[uwsgi]
socket = 127.0.0.1:0
subscribe2 = server=127.0.0.1:4040,key=foobar.it
psgi = app.pl
processes = 4
vassal-sos = 3

[zerg]
socket = 127.0.0.1:0
subscribe2 = server=127.0.0.1:4040,key=foobar.it
psgi = app.pl
idle = 60
processes = 1

Zerg mode

注解

Yes, that’s Zerg as in the “quantity-over-quality” Starcraft race. If you haven’t played Starcraft, be prepared for some nonsense.

注解

Also note that this nonsense is mostly limited to the nomenclature. Zerg Mode is serious business.

When your site load is variable, it would be nice to be able to add workers dynamically.

You can obviously edit your configuration to hike up workers and reload your uWSGI instance, but for very loaded apps this is undesirable, and frankly – who wants to do manual work like that to scale an app?

Enabling Zerg mode you can allow “uwsgi-zerg” instances to attach to your already running server and help it in the work.

Zerg mode is obviously local only. You cannot use it to add remote instances – this is a job better done by the The uWSGI FastRouter, the HTTP plugin or your web server’s load balancer.

Enabling the zerg server

If you want an uWSGI instance to be rushed by zerg, you have to enable the Zerg server. It will be bound to an UNIX socket and will pass uwsgi socket file descriptors to the Zerg workers connecting to it.

警告

The socket must be an UNIX socket because it must be capable of passing through file descriptors. A TCP socket simply will not work.

For security reasons the UNIX socket does not inherit the chmod-socket option, but will always use the current umask.

If you have filesystem permission issues, on Linux you can use the UNIX sockets in abstract namespace, by prepending an @ to the socket name.

	A normal UNIX socket:

./uwsgi -M -p 8 --module welcome --zerg-server /var/run/mutalisk

	A socket in a Linux abstract namespace:

./uwsgi -M -p 8 --module welcome --zerg-server @nydus

Attaching zergs to the zerg server

To add a new instance to your zerg pool, simply use the –zerg option

./uwsgi --zerg /var/run/mutalisk --master --processes 4 --module welcome
(or --zerg @nydus, following the example above)

In this way 4 new workers will start serving requests.

When your load returns to normal values, you can simply shutdown all of the uwsgi-zerg instances without problems.

You can attach an unlimited number of uwsgi-zerg instances.

Fallback if a zerg server is not available

By default a Zerg client will not run if the Zerg server is not available. Thus, if your zerg server dies, and you reload the zerg client, it will simply shutdown.

If you want to avoid that behaviour, add a --socket directive mapping to the required socket (the one that should be managed by the zerg server) and add the --zerg-fallback option.

With this setup, if a Zerg server is not available, the Zerg client will continue binding normally to the specified socket(s).

Using Zerg as testers

A good trick you can use, is suspending the main instance with the SIGTSTP signal and loading a new version of your app in a Zerg. If the code is not ok you can simply shutdown the Zerg and resume the main instance.

Zerg Pools

Zergpools are special Zerg servers that only serve Zerg clients, nothing more.

You can use them to build high-availability systems that reduce downtime during tests/reloads.

You can run an unlimited number of zerg pools (on several UNIX sockets) and map an unlimited number of sockets to them.

[uwsgi]
master = true
zergpool = /tmp/zergpool_1:127.0.0.1:3031,127.0.0.1:3032
zergpool = /tmp/zergpool_2:192.168.173.22:3031,192.168.173.22:3032

With a config like this, you will have two zergpools, each serving two sockets.

You can now attach instances to them.

uwsgi --zerg /tmp/zergpool_1 --wsgi-file myapp.wsgi --master --processes 8
uwsgi --zerg /tmp/zergpool_2 --rails /var/www/myapp --master --processes 4

or you can attach a single instance to multiple Zerg servers.

uwsgi --zerg /tmp/zergpool_1 --zerg /tmp/zergpool_2 --wsgi-file myapp.wsgi --master --processes 8

Adding applications dynamically

NOTE: this is not the best approach for hosting multiple applications. You’d better to run a uWSGI instance for each app.

You can start the uWSGI server without configuring an application.

To load a new application you can use these variables in the uwsgi packet:

	UWSGI_SCRIPT – pass the name of a WSGI script defining an application callable

	or UWSGI_MODULE and UWSGI_CALLABLE – the module name (importable path) and the name of the callable to invoke from that module

Dynamic apps are officially supported on Cherokee, Nginx, Apache, cgi_dynamic.
They are easily addable to the Tomcat and Twisted handlers.

Defining VirtualEnv with dynamic apps

Virtualenvs are based on the Py_SetPythonHome() function. This function has
effect only if called before Py_Initialize() so it can’t be used with
dynamic apps.

To define a VirtualEnv with DynamicApps, a hack is the only solution.

First you have to tell python to not import the site module. This module
adds all site-packages to sys.path. To emulate virtualenvs, we must
load the site module only after subinterpreter initialization. Skipping the
first import site, we can now simply set sys.prefix and
sys.exec_prefix on dynamic app loading and call

PyImport_ImportModule("site");
// Some users would want to not disable initial site module loading, so the site module must be reloaded:
PyImport_ReloadModule(site_module);

Now we can set the VirtualEnv dynamically using the UWSGI_PYHOME var:

location / {
 uwsgi_pass 192.168.173.5:3031;
 include uwsgi_params;
 uwsgi_param UWSGI_SCRIPT mytrac;
 uwsgi_param UWSGI_PYHOME /Users/roberto/uwsgi/VENV2;
}

Scaling SSL connections (uWSGI 1.9)

Distributing SSL servers in a cluster is a hard topic. The biggest problem is sharing SSL sessions between different nodes.

The problem is amplified in non-blocking servers due to OpenSSL’s limits in the way sessions are managed.

For example, you cannot share sessions in Memcached servers and access them in a non-blocking way.

A common solution (well, a compromise, maybe) until now has been to use a single SSL terminator balancing requests to multiple non-encrypted backends. This solution kinda works, but obviously it does not scale.

Starting from uWSGI 1.9-dev an implementation (based on the stud project) of distributed caching has been added.

Setup 1: using the uWSGI cache for storing SSL sessions

You can configure the SSL subsystem of uWSGI to use the shared cache. The SSL sessions will time out according to the expiry value of the cache item. This way the cache sweeper thread (managed by the master) will destroy sessions in the cache.

重要

The order of the options is important. cache options must be specified BEFORE ssl-sessions-use-cache and https options.

[uwsgi]
; spawn the master process (it will run the cache sweeper thread)
master = true
; store up to 20k sessions
cache = 20000
; 4k per object is enough for SSL sessions
cache-blocksize = 4096
; force the SSL subsystem to use the uWSGI cache as session storage
ssl-sessions-use-cache = true
; set SSL session timeout (in seconds)
ssl-sessions-timeout = 300
; set the session context string (see later)
https-session-context = foobar
; spawn an HTTPS router
https = 192.168.173.1:8443,foobar.crt,foobar.key
; spawn 8 processes for the HTTPS router (all sharing the same session cache)
http-processes = 8
; add a bunch of uwsgi nodes to relay traffic to
http-to = 192.168.173.10:3031
http-to = 192.168.173.11:3031
http-to = 192.168.173.12:3031
; add stats
stats = 127.0.0.1:5001

Now start blasting your HTTPS router and then telnet to port 5001. Under the “cache” object of the JSON
output you should see the values “items” and “hits” increasing. The value “miss” is increased every time a session is not found
in the cache. It is a good metric of the SSL performance users can expect.

Setup 2: synchronize caches of different HTTPS routers

The objective is to synchronize each new session in each distributed cache. To accomplish that you have to spawn a special thread
(cache-udp-server) in each instance and list all of the remote servers that should be synchronized.

A pure-TCP load balancer (like HAProxy or uWSGI’s Rawrouter) can be used to load balance between the various HTTPS routers.

Here’s a possible Rawrouter config.

[uwsgi]
master = true
rawrouter = 192.168.173.99:443
rawrouter-to = 192.168.173.1:8443
rawrouter-to = 192.168.173.2:8443
rawrouter-to = 192.168.173.3:8443

Now you can configure the first node (the new options are at the end of the .ini config)

[uwsgi]
; spawn the master process (it will run the cache sweeper thread)
master = true
; store up to 20k sessions
cache = 20000
; 4k per object is enough for SSL sessions
cache-blocksize = 4096
; force the SSL subsystem to use the uWSGI cache as session storage
ssl-sessions-use-cache = true
; set SSL session timeout (in seconds)
ssl-sessions-timeout = 300
; set the session context string (see later)
https-session-context = foobar
; spawn an HTTPS router
https = 192.168.173.1:8443,foobar.crt,foobar.key
; spawn 8 processes for the HTTPS router (all sharing the same session cache)
http-processes = 8
; add a bunch of uwsgi nodes to relay traffic to
http-to = 192.168.173.10:3031
http-to = 192.168.173.11:3031
http-to = 192.168.173.12:3031
; add stats
stats = 127.0.0.1:5001

; spawn the cache-udp-server
cache-udp-server = 192.168.173.1:7171
; propagate updates to the other nodes
cache-udp-node = 192.168.173.2:7171
cache-udp-node = 192.168.173.3:7171

and the other two...

[uwsgi]
; spawn the master process (it will run the cache sweeper thread)
master = true
; store up to 20k sessions
cache = 20000
; 4k per object is enough for SSL sessions
cache-blocksize = 4096
; force the SSL subsystem to use the uWSGI cache as session storage
ssl-sessions-use-cache = true
; set SSL session timeout (in seconds)
ssl-sessions-timeout = 300
; set the session context string (see later)
https-session-context = foobar
; spawn an HTTPS router
https = 192.168.173.1:8443,foobar.crt,foobar.key
; spawn 8 processes for the HTTPS router (all sharing the same session cache)
http-processes = 8
; add a bunch of uwsgi nodes to relay traffic to
http-to = 192.168.173.10:3031
http-to = 192.168.173.11:3031
http-to = 192.168.173.12:3031
; add stats
stats = 127.0.0.1:5001

; spawn the cache-udp-server
cache-udp-server = 192.168.173.2:7171
; propagate updates to the other nodes
cache-udp-node = 192.168.173.1:7171
cache-udp-node = 192.168.173.3:7171

[uwsgi]
; spawn the master process (it will run the cache sweeper thread)
master = true
; store up to 20k sessions
cache = 20000
; 4k per object is enough for SSL sessions
cache-blocksize = 4096
; force the SSL subsystem to use the uWSGI cache as session storage
ssl-sessions-use-cache = true
; set SSL session timeout (in seconds)
ssl-sessions-timeout = 300
; set the session context string (see later)
https-session-context = foobar
; spawn an HTTPS router
https = 192.168.173.1:8443,foobar.crt,foobar.key
; spawn 8 processes for the HTTPS router (all sharing the same session cache)
http-processes = 8
; add a bunch of uwsgi nodes to relay traffic to
http-to = 192.168.173.10:3031
http-to = 192.168.173.11:3031
http-to = 192.168.173.12:3031
; add stats
stats = 127.0.0.1:5001

; spawn the cache-udp-server
cache-udp-server = 192.168.173.3:7171
; propagate updates to the other nodes
cache-udp-node = 192.168.173.1:7171
cache-udp-node = 192.168.173.2:7171

Start hammering the Rawrouter (remember to use a client supporting persistent SSL sessions, like your browser) and get cache statistics
from the stats server of each HTTPS terminator node. If the count of “hits” is a lot higher than the “miss” value the system is working well
and your load is distributed and in awesome hyper high performance mode.

So, what is https-session-context, you ask? Basically each SSL session before being used is checked against a fixed string (the session context). If the session does not match that string, it is rejected. By default the session context is initialized to a value built from the HTTP server address. Forcing it to a shared value will avoid a session created in a node being rejected in another one.

Using named caches

Starting from uWSGI 1.9 you can have multiple caches. This is a setup with 2 nodes using a new generation cache named “ssl”.

The cache2 option allows also to set a custom key size. Since SSL session keys are not very long, we can use it to optimize memory usage. In this example we use 128 byte key size limit, which should be enough for session IDs.

[uwsgi]
; spawn the master process (it will run the cache sweeper thread)
master = true
; store up to 20k sessions
cache2 = name=ssl,items=20000,keysize=128,blocksize=4096,node=127.0.0.1:4242,udp=127.0.0.1:4141
; force the SSL subsystem to use the uWSGI cache as session storage
ssl-sessions-use-cache = ssl
; set sessions timeout (in seconds)
ssl-sessions-timeout = 300
; set the session context string
https-session-context = foobar
; spawn an HTTPS router
https = :8443,foobar.crt,foobar.key
; spawn 8 processes for the HTTPS router (all sharing the same session cache)
http-processes = 8
module = werkzeug.testapp:test_app
; add stats
stats = :5001

and the second node...

[uwsgi]
; spawn the master process (it will run the cache sweeper thread)
master = true
; store up to 20k sessions
cache2 = name=ssl,items=20000,blocksize=4096,node=127.0.0.1:4141,udp=127.0.0.1:4242
; force the SSL subsystem to use the uWSGI cache as session storage
ssl-sessions-use-cache = ssl
; set session timeout
ssl-sessions-timeout = 300
; set the session context string
https-session-context = foobar
; spawn an HTTPS router
https = :8444,foobar.crt,foobar.key
; spawn 8 processes for the HTTPS router (all sharing the same sessions cache)
http-processes = 8
module = werkzeug.testapp:test_app
; add stats
stats = :5002

Notes

If you do not want to manually configure the cache UDP nodes and your network configuration supports it, you can use UDP multicast.

[uwsgi]
...
cache-udp-server = 225.1.1.1:7171
cache-udp-node = 225.1.1.1:7171

	A new gateway server is in development, named “udprepeater”. It will basically forward all of UDP packets it receives to the subscribed back-end nodes. It will allow you to maintain the zero-config style of the subscription system (basically you only need to configure a single cache UDP node pointing to the repeater).

	Currently there is no security between the cache nodes. For some users this may be a huge problem, so a security mode (encrypting the packets) is in development.

Setting POSIX Capabilities

POSIX capabilities [http://en.wikipedia.org/wiki/Capability-based_security] allow fine-grained permissions for processes. In addition
to the standard UNIX permission scheme, they define a new set of privileges for
system resources. To enable capabilities support (Linux Only) you have to
install the libcap headers (libcap-dev on Debian-based distros) before
building uWSGI. As usual your processes will lose practically all of the
capabilities after a setuid call. The uWSGI cap option allows you to
define a list of capabilities to maintain through the call.

For example, to allow your unprivileged app to bind on privileged ports and set
the system clock, you will use the following options.

uwsgi --socket :1000 --uid 5000 --gid 5000 --cap net_bind_service,sys_time

All of the processes generated by uWSGI will then inherit this behaviour. If
your system supports capabilities not available in the uWSGI list you can
simply specify the number of the constant:

uwsgi --socket :1000 --uid 5000 --gid 5000 --cap net_bind_service,sys_time,42

In addition to net_bind_service and sys_time, a new capability numbered ‘42’ is added.

Available capabilities

This is the list of available capabilities.

	audit_control
	CAP_AUDIT_CONTROL

	audit_write
	CAP_AUDIT_WRITE

	chown
	CAP_CHOWN

	dac_override
	CAP_DAC_OVERRIDE

	dac_read_search
	CAP_DAC_READ_SEARCH

	fowner
	CAP_FOWNER

	fsetid
	CAP_FSETID

	ipc_lock
	CAP_IPC_LOCK

	ipc_owner
	CAP_IPC_OWNER

	kill
	CAP_KILL

	lease
	CAP_LEASE

	linux_immutable
	CAP_LINUX_IMMUTABLE

	mac_admin
	CAP_MAC_ADMIN

	mac_override
	CAP_MAC_OVERRIDE

	mknod
	CAP_MKNOD

	net_admin
	CAP_NET_ADMIN

	net_bind_service
	CAP_NET_BIND_SERVICE

	net_broadcast
	CAP_NET_BROADCAST

	net_raw
	CAP_NET_RAW

	setfcap
	CAP_SETFCAP

	setgid
	CAP_SETGID

	setpcap
	CAP_SETPCAP

	setuid
	CAP_SETUID

	sys_admin
	CAP_SYS_ADMIN

	sys_boot
	CAP_SYS_BOOT

	sys_chroot
	CAP_SYS_CHROOT

	sys_module
	CAP_SYS_MODULE

	sys_nice
	CAP_SYS_NICE

	sys_pacct
	CAP_SYS_PACCT

	sys_ptrace
	CAP_SYS_PTRACE

	sys_rawio
	CAP_SYS_RAWIO

	sys_resource
	CAP_SYS_RESOURCE

	sys_time
	CAP_SYS_TIME

	sys_tty_config
	CAP_SYS_TTY_CONFIG

	syslog
	CAP_SYSLOG

	wake_alarm
	CAP_WAKE_ALARM

Running uWSGI in a Linux CGroup

Linux cgroups are an amazing feature available in recent Linux kernels. They
allow you to “jail” your processes in constrained environments with limited
CPU, memory, scheduling priority, IO, etc..

注解

uWSGI has to be run as root to use cgroups. uid and gid are very, very necessary.

Enabling cgroups

First you need to enable cgroup support in your system. Create the /cgroup
directory and add this to your /etc/fstab:

none /cgroup cgroup cpu,cpuacct,memory

Then mount /cgroup and you’ll have jails with controlled CPU and memory usage.
There are other Cgroup subsystems, but CPU and memory usage are the most useful
to constrain.

Let’s run uWSGI in a cgroup:

./uwsgi -M -p 8 --cgroup /cgroup/jail001 -w simple_app -m --http :9090

Cgroups are simple directories. With this command your uWSGI server and its
workers are “jailed” in the ‘cgroup/jail001’ cgroup. If you make a bunch of
requests to the server, you will see usage counters – cpuacct.* and
memoryfiles.* in the cgroup directory growing. You can also use pre-existing
cgroups by specifying a directory that already exists.

A real world example: Scheduling QoS for your customers

Suppose you’re hosting apps for 4 customers. Two of them are paying you $100 a
month, one is paying $200, and the last is paying $400. To have a good Quality
of Service implementation, the $100 apps should get 1/8, or 12.5% of your CPU
power, the $200 app should get 1/4 (25%) and the last should get 50%. To
implement this, we have to create 4 cgroups, one for each app, and limit their
scheduling weights.

./uwsgi --uid 1001 --gid 1001 -s /tmp/app1 -w app1 --cgroup /cgroup/app1 --cgroup-opt cpu.shares=125
./uwsgi --uid 1002 --gid 1002 -s /tmp/app2 -w app1 --cgroup /cgroup/app2 --cgroup-opt cpu.shares=125
./uwsgi --uid 1003 --gid 1003 -s /tmp/app3 -w app1 --cgroup /cgroup/app3 --cgroup-opt cpu.shares=250
./uwsgi --uid 1004 --gid 1004 -s /tmp/app4 -w app1 --cgroup /cgroup/app4 --cgroup-opt cpu.shares=500

The cpu.shares values are simply computed relative to each other, so you
can use whatever scheme you like, such as (125, 125, 250, 500) or even (1, 1,
2, 4). With CPU handled, we turn to limiting memory. Let’s use the same
scheme as before, with a maximum of 2 GB for all apps altogether.

./uwsgi --uid 1001 --gid 1001 -s /tmp/app1 -w app1 --cgroup /cgroup/app1 --cgroup-opt cpu.shares=125 --cgroup-opt memory.limit_in_bytes=268435456
./uwsgi --uid 1002 --gid 1002 -s /tmp/app2 -w app1 --cgroup /cgroup/app2 --cgroup-opt cpu.shares=125 --cgroup-opt memory.limit_in_bytes=268435456
./uwsgi --uid 1003 --gid 1003 -s /tmp/app3 -w app1 --cgroup /cgroup/app3 --cgroup-opt cpu.shares=250 --cgroup-opt memory.limit_in_bytes=536870912
./uwsgi --uid 1004 --gid 1004 -s /tmp/app4 -w app1 --cgroup /cgroup/app4 --cgroup-opt cpu.shares=500 --cgroup-opt memory.limit_in_bytes=1067459584

Using Linux KSM in uWSGI

Kernel Samepage Merging [http://www.linux-kvm.org/page/KSM] is a feature of
Linux kernels >= 2.6.32 which allows processes to share pages of memory with
the same content. This is accomplished by a kernel daemon that periodically
performs scans, comparisons, and, if possible, merges of specific memory areas.
Born as an enhancement for KVM it can be used for processes that use common data
(such as uWSGI processes with language interpreters and standard libraries).

If you are lucky, using KSM may exponentially reduce the memory usage of your
uWSGI instances. Especially in massive Emperor deployments:
enabling KSM for each vassal may result in massive memory savings.
KSM in uWSGI was the idea of Giacomo Bagnoli of Asidev s.r.l. [http://www.asidev.com/en/company.html]. Many thanks to him.

Enabling the KSM daemon

To enable the KSM daemon (ksmd), simply set /sys/kernel/mm/ksm/run to 1,
like so:

echo 1 > /sys/kernel/mm/ksm/run

注解

Remember to do this on machine startup, as the KSM daemon does not run by
default.

注解

KSM is an opt-in feature that has to be explicitly requested by processes,
so just enabling KSM will not be a savior for everything on your machine.

Enabling KSM support in uWSGI

If you have compiled uWSGI on a kernel with KSM support, you will be able to
use the ksm option. This option will instruct uWSGI to register process
memory mappings (via madvise syscall) after each request or master cycle.
If no page mapping has changed from the last scan, no expensive syscalls are
used.

Performance impact

Checking for process mappings requires parsing the /proc/self/maps file
after each request. In some setups this may hurt performance. You can tune the
frequency of the uWSGI page scanner by passing an argument to the ksm
option.

Scan for process mappings every 10 requests (or 10 master cycles)
./uwsgi -s :3031 -M -p 8 -w myapp --ksm=10

Check if KSM is working well

The /sys/kernel/mm/ksm/pages_shared and /sys/kernel/mm/ksm/pages_sharing
files contain statistics regarding KSM’s efficiency. The higher values, the
less memory consumption for your uWSGI instances.

KSM statistics with collectd

A simple Bash script like this is useful for keeping an eye on KSM’s efficiency:

#!/bin/bash

export LC_ALL=C

if [-e /sys/kernel/mm/ksm/pages_sharing]; then
 pages_sharing=`cat /sys/kernel/mm/ksm/pages_sharing`;
 page_size=`getconf PAGESIZE`;
 saved=$(echo "scale=0;$pages_sharing * $page_size"|bc);
 echo "PUTVAL <%= cn %>/ksm/gauge-saved interval=60 N:$saved"
fi

In your collectd [http://collectd.org/] configuration, add something like
this:

LoadPlugin exec
<Plugin exec>
 Exec "nobody" "/usr/local/bin/ksm_stats.sh"
</Plugin>

Jailing your apps using Linux Namespaces

If you have a recent Linux kernel (>2.6.26) you can use its support for namespaces.

What are namespaces?

They are an elegant (more elegant than most of the jailing systems you might find in other operating systems) way to “detach” your processes from a specific layer of the kernel and assign them to a new one.

The ‘chroot’ system available on UNIX/Posix systems is a primal form of namespaces: a process sees a completely new file system root and has no access to the original one.

Linux extends this concept to the other OS layers (PIDs, users, IPC, networking etc.), so a specific process can live in a “virtual OS” with a new group of pids, a new set of users, a completely unshared IPC system (semaphores, shared memory etc.), a dedicated network interface and its own hostname.

uWSGI got full namespaces support in 1.9/2.0 development cycle.

clone() vs unshare()

To place the current process in a new namespace you have two syscalls: the venerable clone(), that will create a new process in the specified namespace
and the new kid on the block, unshare(), that changes namespaces for the current running process.

clone() can be used by the Emperor to directly spawn vassals in new namespaces:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-clone = fs,net,ipc,uts,pid

will run each vassal with a dedicated filesystem, networking, SysV IPC and UTS view.

[uwsgi]
unshare = ipc,uts
...

will run the current instance in the specified namespaces.

Some namespace subsystems require additional steps for sane usage (see below).

Supported namespaces

	fs -> CLONE_NEWNS, filesystems

	ipc -> CLONE_NEWIPC, sysv ipc

	pid -> CLONE_NEWPID, when used with unshare() requires an additional fork(). Use one of the –refork-* options.

	uts -> CLONE_NEWUTS, hostname

	net -> CLONE_NEWNET, new networking, UNIX sockets from different namespaces are still usable, they are a good way for inter-namespaces communications

	user -> CLONE_NEWUSER, still complex to manage (and has differences in behaviours between kernel versions) use with caution

setns()

In addition to creating new namespaces for a process you can attach to already running ones using the setns() call.

Each process exposes its namespaces via the /proc/self/ns directory. The setns() syscall uses the file descriptors obtained from the files in that directory
to attach to namespaces.

As we have already seen, UNIX sockets are a good way to communicate between namespaces, the uWSGI setns() feature works by creating an UNIX socket that receives requests
from processes wanting to join its namespace. As UNIX sockets allow file descriptors passing, the “client” only need to call setns() on them.

	setns-socket <addr> exposes /proc/self/ns on the specified unix socket address

	setns <addr> connect to the specified unix socket address, get the filedescriptors and use setns() on them

	setns-preopen if enabled the /proc/self/ns files are opened on startup (before privileges drop) and cached. This is useful for avoiding running the main instance as root.

	setns-socket-skip <name> some file in /proc/self/ns can create problems (mostly the ‘user’ one). You can skip them specifying the name. (you can specify this option multiple times)

pivot_root

This option allows you to change the rootfs of your currently running instance.

It is better than chroot as it allows you to access the old file system tree before (manually) unmounting it.

It is a bit complex to master correctly as it requires a couple of assumptions:

pivot_root <new> <old>

<new> is the directory to mount as the new rootfs and <old> is where to access the old tree.

<new> must be a mounted file system, and <old> must be under this file system.

A common pattern is:

[uwsgi]
unshare = fs
hook-post-jail = mount:none /distros/precise /ns bind
pivot_root = /ns /ns/.old_root
...

(Remember to create /ns and /distro/precise/.old_root.)

When you have created the new file system layout you can umount /.old_root recursively:

[uwsgi]
unshare = fs
hook-post-jail = mount:none /distros/precise /ns bind
pivot_root = /ns /ns/.old_root
; bind mount some useful fs like /dev and /proc
hook-as-root = mount:proc none /proc nodev hidepid=2
hook-as-root = mount:none /.old_root/dev /dev bind
hook-as-root = mount:none /.old_root/dev/pts /dev/pts bind
; umount the old tree
hook-as-root = umount:/.old_root rec,detach

Why not lxc?

LXC (LinuX Containers) is a project allowing you to build full subsystems using Linux namespaces. You may ask why “reinvent the wheel” while LXC implements
a fully “virtualized” system. Apples and oranges...

LXC’s objective is giving users the view of a virtual server. uWSGI namespaces support is lower level – you can use it to detach
single components (for example you may only want to unshare IPC) to increase security and isolation.

Not all the scenario requires a full system-like view (and in lot of case is suboptimal, while in other is the best approach), try to
see namespaces as a way to increase security and isolation, when you need/can isolate a component do it with clone/unshare. When you want
to give users a full system-like access go with LXC.

The old way: the –namespace option

Before 1.9/2.0 a full featured system-like namespace support was added. It works as a chroot() on steroids.

It should be moved as an external plugin pretty soon, but will be always part of the main distribution, as it is used by lot of people
for its simplicity.

You basically need to set a root filesystem and an hostname to start your instance in a new namespace:

Let’s start by creating a new root filesystem for our jail. You’ll need debootstrap (or an equivalent package for your distribution).
We’re placing our rootfs in /ns/001, and then create a ‘uwsgi’ user that will run the uWSGI server.
We will use the chroot command to ‘adduser’ in the new rootfs, and we will install the Flask package, required by uwsgicc.

(All this needs to be executed as root)

mkdir -p /ns/001
debootstrap maverick /ns/001
chroot /ns/001
in the chroot jail now
adduser uwsgi
apt-get install mercurial python-flask
su - uwsgi
as uwsgi now
git clone https://github.com/unbit/uwsgicc.git .
exit # out of su - uwsgi
exit # out of the jail

Now on your real system run

uwsgi --socket 127.0.0.1:3031 --chdir /home/uwsgi/uwsgi --uid uwsgi --gid uwsgi --module uwsgicc --master --processes 4 --namespace /ns/001:mybeautifulhostname

If all goes well, uWSGI will set /ns/001 as the new root filesystem, assign mybeautifulhostname as the hostname and hide the PIDs and IPC of the host system.

The first thing you should note is the uWSGI master becoming PID 1 (the “init” process) in the new namespace.
All processes generated by the uWSGI stack will be reparented to it if something goes wrong. If the master dies, all jailed processes die.

Now point your web browser to your web server and you should see the uWSGI Control Center interface.

Pay attention to the information area. The node name (used by cluster subsystem) matches the real hostname as it does not make sense to have multiple jail in the same cluster group. In the hostname field instead you will see the hostname you have set.

Another important thing is that you can see all the jail processes from your real system (they will have a different set of PIDs), so if you want to take control of the jail
you can easily do it.

注解

A good way to limit hardware usage of jails is to combine them with the cgroups subsystem.

参见

Running uWSGI in a Linux CGroup

Reloading uWSGI

When running in a jail, uWSGI uses another system for reloading: it’ll simply tell workers to bugger off and then exit. The parent process living outside the namespace will see this and respawn the stack in a new jail.

How secure is this sort of jailing?

Hard to say! All software tends to be secure until a hole is found.

Additional filesystems

When app is jailed to namespace it only has access to its virtual jail root filesystem. If there is any other filesystem mounted inside the jail directory, it won’t be accessible, unless you use namespace-keep-mount.

app1 jail is located here
namespace = /apps/app1

nfs share mounted on the host side
namespace-keep-mount = /apps/app1/nfs

This will bind /apps/app1/nfs to jail, so that jailed app can access it under /nfs directory

app1 jail is located here
namespace = /apps/app1

nfs share mounted on the host side
namespace-keep-mount = /mnt/nfs1:/nfs

If the filesystem that we want to bind is mounted in path not contained inside our jail, than we can use “<source>:<dest>” syntax for –namespace-keep-mount. In this case the /mnt/nfs1 will be binded to /nfs directory inside the jail.

FreeBSD Jails

uWSGI 1.9.16 introduced native FreeBSD jails support.

FreeBSD jails can be seen as new-generation chroot() with fine-grained tuning of what this “jail” can see.

They are very similar to Linux namespaces even if a bit higher-level (from the API point of view).

Jails are available since FreeBSD 4

Why managing jails with uWSGI ?

Generally jails are managed using the system tool “jail” and its utilities.

Til now running uWSGI in FreeBSD jails was pretty common, but for really massive setups (read: hosting business)
where an Emperor (for example) manages hundreds of unrelated uWSGI instances, the setup could be really overkill.

Managing jails directly in uWSGI config files highly reduce sysadmin costs and helps having a better organization of the whole infrastructure.

Old-style jails (FreeBSD < 8)

FreeBSD exposes two main api for managing jails. The old (and easier) one is based on the jail() function.

It is available since FreeBSD 4 and allows you to set the rootfs, the hostname and one ore more ipv4/ipv6 addresses

Two options are needed for running a uWSGI instance in a jail: –jail and –jail-ip4/–jail-ip6 (effectively they are 3 if you use IPv6)

--jail <rootfs> [hostname] [jailname]

--jail-ip4 <address> (can be specified multiple times)

--jail-ip6 <address> (can be specified multiple times)

Showing how to create the rootfs for your jail is not the objective of this document, but personally i hate rebuilding from sources, so generally
i simply explode the base.tgz file from an official repository and chroot() to it to make the fine tuning.

An important thing you have to remember is that the ip addresses you attach to a jail must be available in the system (as aliases). As always we tend to abuse uWSGI facilities.
In our case the –exec-pre-jail hook will do the trick

[uwsgi]
; create the jail with /jails/001 as rootfs and 'foobar' as hostname
jail = /jails/001 foobar
; create the alias on 'em0'
exec-pre-jail = ifconfig em0 192.168.0.40 alias
; attach the alias to the jail
jail-ip4 = 192.168.0.40

; bind the http-socket (we are now in the jail)
http-socket = 192.168.0.40:8080

; load the application (remember we are in the jail)
wsgi-file = myapp.wsgi

; drop privileges
uid = kratos
gid = kratos

; common options
master = true
processes = 2

New style jails (FreeBSD >= 8)

FreeBSD 8 introdiced a new advanced api for managing jails. Based on the jail_set() syscall, libjail exposes dozens of features
and allows fine-tuning of your jails. To use the new api you need the –jail2 option (aliased as –libjail)

--jail2 <key>[=value]

Each –jail2 option maps 1:1 with a jail attribute so you can basically tune everything !

[uwsgi]
; create the jail with /jails/001 as rootfs
jail2 = path=/jails/001
; set hostname to 'foobar'
jail2 = host.hostname=foobar
; create the alias on 'em0'
exec-pre-jail = ifconfig em0 192.168.0.40 alias
; attach the alias to the jail
jail2 = ip4.addr=192.168.0.40

; bind the http-socket (we are now in the jail)
http-socket = 192.168.0.40:8080

; load the application (remember we are in the jail)
wsgi-file = myapp.wsgi

; drop privileges
uid = kratos
gid = kratos

; common options
master = true
processes = 2

Note for FreeBSD >= 8.4 but < 9.0

uWSGI uses ipc semaphores on FreeBSD < 9 (newer FreeBSD releases have POSIX semaphores support).

Since FreeBSD 8.4 you need to explicitely allows sysvipc in jails. So be sure to have

[uwsgi]
...
jail2 = allow.sysvipc=1
...

DevFS

The DevFS virtual filesystem manages the /dev directory on FreeBSD.

The /dev filesystem is not mounted in the jail, but you can need it for literally hundreds of reasons.

Two main approaches are available: mounting it in the /dev/ directory of the roots before creating the jail, or allowing the jail to mount it

[uwsgi]
; avoid re-mounting the file system every time
if-not-exists = /jails/001/dev/zero
 exec-pre-jail = mount -t devfs devfs /jails/001/dev
endif =
; create the jail with /jails/001 as rootfs
jail2 = path=/jails/001
; set hostname to 'foobar'
jail2 = host.hostname=foobar
; create the alias on 'em0'
exec-pre-jail = ifconfig em0 192.168.0.40 alias
; attach the alias to the jail
jail2 = ip4.addr=192.168.0.40

; bind the http-socket (we are now in the jail)
http-socket = 192.168.0.40:8080

; load the application (remember we are in the jail)
wsgi-file = myapp.wsgi

; drop privileges
uid = kratos
gid = kratos

; common options
master = true
processes = 2

or (allow the jail itself to mount it)

[uwsgi]
; create the jail with /jails/001 as rootfs
jail2 = path=/jails/001
; set hostname to 'foobar'
jail2 = host.hostname=foobar
; create the alias on 'em0'
exec-pre-jail = ifconfig em0 192.168.0.40 alias
; attach the alias to the jail
jail2 = ip4.addr=192.168.0.40

; allows mount of devfs in the jail
jail2 = enforce_statfs=1
jail2 = allow.mount
jail2 = allow.mount.devfs
; ... and mount it
if-not-exists = /dev/zero
 exec-post-jail = mount -t devfs devfs /dev
endif =

; bind the http-socket (we are now in the jail)
http-socket = 192.168.0.40:8080

; load the application (remember we are in the jail)
wsgi-file = myapp.wsgi

; drop privileges
uid = kratos
gid = kratos

; common options
master = true
processes = 2

Reloading

Reloading (or binary patching) is a bit annoying to manage as uWSGI need to re-exec itself, so you need a copy of the binary, plugins and the config file
in your jail (unless you can sacrifice graceful reload and simply delegate the Emperor to respawn the instance)

Another approach is (like with devfs) mounting the directory with the uwsgi binary (and the eventual plugins) in the jail itself and instruct
uWSGI to use this new path with –binary-path

The jidfile

Each jail can be referenced by a unique name (optional) or its “jid”. This is similar to a “pid”, as you can use it
to send commands (and updates) to an already running jail. The –jidfile <file> option allows you to store the jid in a file
for use with external applications.

Attaching to a jail

You can attach uWSGI instances to already running jails (they can be standard persistent jail too) using –jail-attach <id>

The id argument can be a jid or the name of the jail.

This feature requires FreeBSD 8

Debian/kFreeBSD

This is an official Debian project aiming at building an os with FreeBSD kernel and common Debian userspace.

It works really well, and it has support for jails too.

Let’s create a jail with debootstrap

debootstrap wheezy /jails/wheezy

add a network alias

ifconfig em0 192.168.173.105 netmask 255.255.255.0 alias

(change em0 with your network interface name)

and run it

uwsgi --http-socket 192.168.173.105:8080 --jail /jails/wheezy -jail-ip4 192.168.173.105

Jails with Forkpty Router

You can easily attach to FreeBSD jails with The Forkpty Router

Just remember to have /dev (well, /dev/ptmx) mounted in your jail to allow the forkpty() call

Learn how to deal with devfs_ruleset to increase security of your devfs

Notes

A jail is destroyed when the last process running in it dies

By default everything mounted under the rootfs (before entering the jail) will be seen by the jail it self (we have seen it before when dealing with devfs)

The Forkpty Router

Dealing with containers is now a common deployment pattern. One of the most annoying tasks when dealing with jails/namespaces
is ‘attaching’ to already running instances.

The forkpty router aims at simplifyng the process giving a pseudoterminal server to your uWSGI instances.

A client connect to the socket exposed by the forkpty router and get a new pseudoterminal connected to a process (generally a shell, but can be whatever you want)

uwsgi mode VS raw mode

Clients connecting to the forkpty router can use two protocols for data exchange: uwsgi and raw mode.

The raw mode simply maps the socket to the pty, for such a reason you will not be able to resize your terminal or send specific signals.
The advantage of this mode is in performance: no overhead for each char.

The uwsgi mode encapsulates every instruction (stdin, signals, window changes) in a uwsgi packet. This is very similar to how ssh works, so if you
plan to use the forkpty router for shell sessions the uwsgi mode is the best choice (in terms of user experience).

The overhead of the uwsgi protocol (worst case) is 5 bytes for each stdin event (single char)

Running the forkpty router

The plugin is not builtin by default, so you have to compile it:

uwsgi --build-plugin plugins/forkptyrouter

or, using the old plugin build system:

python uwsgiconfig.py --plugin plugins/forkptyrouter

generally compiling the pty plugin is required too (for client access)

uwsgi --build-plugin plugins/pty

or again, using the old build system:

python uwsgiconfig.py --plugin plugins/pty

Alternatively, you can build all in one shot with:

UWSGI_EMBED_PLUGINS=pty,forkptyrouter make

Now you can run the forkptyrouter as a standard gateway (we use UNIX socket as we want a communication channel with jails, and we unshare the uts namespace to give a new hostname)

[uwsgi]
master = true
unshare = uts
exec-as-root = hostname iaminajail
uid = kratos
gid = kratos
forkpty-router = /tmp/fpty.socket

and connect with the pty client:

uwsgi --pty-connect /tmp/fpty.socket

now you have a shell (/bin/sh by default) in the uWSGI instance. Running hostname will give you ‘iaminajail’

Eventually you can avoid using uWSGI to attacj to the pty and instead you can rely on this simple python script:

import socket
import sys
import os
import select
import copy
from termios import *
import atexit

s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
s.connect(sys.argv[1])

tcattr = tcgetattr(0)
orig_tcattr = copy.copy(tcattr)
atexit.register(tcsetattr, 0, TCSANOW, orig_tcattr)

tcattr[0] |= IGNPAR
tcattr[0] &= ~(ISTRIP | IMAXBEL | BRKINT | INLCR | IGNCR | ICRNL | IXON | IXANY | IXOFF);
tcattr[0] &= ~IUCLC;
tcattr[3] &= ~(ICANON | ECHO | ECHOE | ECHOK | ECHONL);
tcattr[3] &= ~IEXTEN;
tcattr[1] &= ~OPOST;
tcattr[6][VMIN] = 1;
tcattr[6][VTIME] = 0;

tcsetattr(0, TCSANOW, tcattr);

while True:
 (rl, wl, xl) = select.select([0, s], [], [])
 if s in rl:
 buf = s.recv(4096)
 if not buf: break
 os.write(1, buf)
 if 0 in rl:
 buf = os.read(0, 4096)
 if not buf: break
 s.send(buf)

The previous example uses raw mode, if you resize the client terminal you will se no updates.

To use the ‘uwsgi’ mode add a ‘u’:

[uwsgi]
master = true
unshare = uts
exec-as-root = hostname iaminajail
uid = kratos
gid = kratos
forkpty-urouter = /tmp/fpty.socket

uwsgi --pty-uconnect /tmp/fpty.socket

a single instance can expose both protocols on different sockets

[uwsgi]
master = true
unshare = uts
exec-as-root = hostname iaminajail
uid = kratos
gid = kratos
forkpty-router = /tmp/raw.socket
forkpty-urouter = /tmp/uwsgi.socket

Changing the default command

By default the forkpty router run /bin/sh on new connections.

You can change the command using the –forkptyrouter-command

[uwsgi]
master = true
unshare = uts
exec-as-root = hostname iaminajail
uid = kratos
gid = kratos
forkpty-router = /tmp/raw.socket
forkpty-urouter = /tmp/uwsgi.socket
forkptyrouter-command= /bin/zsh

The TunTap Router

The TunTap router is an ad-hoc solution for giving network connectivity to Linux processes running in a dedicated network namespace (well obviously it has other uses, but very probably this is the most interesting one, and the one for which it was developed)

The TunTap router is not compiled in by default.

For having it in one shot:

UWSGI_EMBED_PLUGINS=tuntap make

(yes the plugin is named only ‘tuntap’ as effectively it exposes various tuntap devices features)

The best way to use it is binding it to a unix socket, allowing processes in new namespaces to reach it (generally unix sockets are the best communication channel for linux namespaces).

The first config

We want our vassals to live in the 192.168.0.0/24 network, with 192.168.0.1 as default gateway.

The default gateway (read: the tuntap router) is managed by the Emperor itself

[uwsgi]
; create the tun device 'emperor0' and bind it to a unix socket
tuntap-router = emperor0 /tmp/tuntap.socket
; give it an ip address
exec-as-root = ifconfig emperor0 192.168.0.1 netmask 255.255.255.0 up
; setup nat
exec-as-root = iptables -t nat -F
exec-as-root = iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
; enable linux ip forwarding
exec-as-root = echo 1 >/proc/sys/net/ipv4/ip_forward
; force vassals to be created in a new network namespace
emperor-use-clone = net
emperor = /etc/vassals

The vassals spawned by this Emperor will born without network connectivity.

To give them access to the public network we create a new tun device (it will exist only in the vassal network namespace)
instructing it to route traffic to the Emperor tuntap unix socket:

[uwsgi]
; we need it as the vassal have no way to know it is jailed
; without it post_jail plugin hook would be never executed
jailed = true
; create uwsgi0 tun interface and force it to connect to the Emperor exposed unix socket
tuntap-device = uwsgi0 /tmp/tuntap.socket
; bring up loopback
exec-as-root = ifconfig lo up
; bring up interface uwsgi0
exec-as-root = ifconfig uwsgi0 192.168.0.2 netmask 255.255.255.0 up
; and set the default gateway
exec-as-root = route add default gw 192.168.0.1
; classic options
uid = customer001
gid = customer001
socket = /var/www/foobar.socket
psgi-file = foobar.pl
...

The embedded firewall

The TunTap router includes a very simple firewall for governing vassal’s traffic

Firewalling is based on 2 chains (in and out), and each rule is formed by 3 parameters: <action> <src> <dst>

The firewall is applied to traffic from the clients to the tuntap device (out) and the opposite (in)

The first matching rule stops the chain, if no rule applies, the policy is “allow”

the following rules allows access from vassals to the internet, but block vassals intercommunication

[uwsgi]
tuntap-router = emperor0 /tmp/tuntap.socket

tuntap-router-firewall-out = allow 192.168.0.0/24 192.168.0.1
tuntap-router-firewall-out = deny 192.168.0.0/24 192.168.0.0/24
tuntap-router-firewall-out = allow 192.168.0.0/24 0.0.0.0
tuntap-router-firewall-out = deny
tuntap-router-firewall-in = allow 192.168.0.1 192.168.0.0/24
tuntap-router-firewall-in = deny 192.168.0.0/24 192.168.0.0/24
tuntap-router-firewall-in = allow 0.0.0.0 192.168.0.0/24
tuntap-router-firewall-in = deny

exec-as-root = ifconfig emperor0 192.168.0.1 netmask 255.255.255.0 up
; setup nat
exec-as-root = iptables -t nat -F
exec-as-root = iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
; enable linux ip forwarding
exec-as-root = echo 1 >/proc/sys/net/ipv4/ip_forward
; force vassals to be created in a new network namespace
emperor-use-clone = net
emperor = /etc/vassals

Security

The “switching” part of the TunTap router (read: mapping ip addresses to vassals) is pretty simple: the first packet received from a vassal by the TunTap router
register the vassal for that ip address. A good approach (from a security point of view) is sending a ping packet soon after network setup in the vassal:

[uwsgi]
; create uwsgi0 tun interface and force it to connect to the Emperor exposed unix socket
tuntap-device = uwsgi0 /tmp/tuntap.socket
; bring up loopback
exec-as-root = ifconfig lo up
; bring up interface uwsgi0
exec-as-root = ifconfig uwsgi0 192.168.0.2 netmask 255.255.255.0 up
; and set the default gateway
exec-as-root = route add default gw 192.168.0.1

; ping something to register
exec-as-root = ping -c 1 192.168.0.1

; classic options
...

after a vassal/ip pair is registered, only that combo will be valid (so other vassals will not be able to use that address until the one holding it dies)

The Future

This is becoming a very important part of the unbit.it networking stack. We are currently working on:

	dynamic firewall rules (luajit resulted a great tool for writing fast networking rules)

	federation/proxy of tuntap router (the tuntaprouter can multiplex vassals networking over a tcp connection to an external tuntap router [that is why you can bind a tuntap router to a tcp address])

	authentication of vassals (maybe the old UNIX ancillary credentials could be enough)

	a stats server for network statistics (rx/tx/errors)

	a bandwidth shaper based on the blastbeat project

Monitoring uWSGI with Nagios

The official uWSGI distribution includes a plugin adding Nagios [http://www.nagios.com/]-friendly output.

To monitor, and eventually get warning messages, via Nagios, launch the following command, where node is the socket (UNIX or TCP) to monitor.

uwsgi --socket <node> --nagios

Setting warning messages

You can set a warning message directly from your app with the uwsgi.set_warning_message() function. All ping responses (used by Nagios too) will report this message.

The embedded SNMP server

The uWSGI server embeds a tiny SNMP server that you can use to integrate your web apps with your monitoring infrastructure.

To enable SNMP support, you must run the uWSGI UDP server and choose a SNMP community string (which is the rudimentary authentication system used by SNMP).

./uwsgi -s :3031 -w staticfilesnmp --udp 192.168.0.1:2222 --snmp --snmp-community foo
or the following. Using the SNMP option to pass the UDP address is a lot more elegant. ;)
./uwsgi -s :3031 -w myapp --master --processes 4 --snmp=192.168.0.1:2222 --snmp-community foo

This will run the uWSGI server on TCP port 3031 and UDP port 2222 with SNMP enabled with “foo” as the community string.

Please note that the SNMP server is started in the master process after dropping the privileges. If you want it to listen on a privileged port, you can either use Capabilities on Linux, or use the master-as-root option to run the master process as root. The staticfilesnmp.py file is included in the distribution and is a simple app that exports a counter via SNMP.

The uWSGI SNMP server exports 2 group of information:

	General information is managed by the uWSGI server itself. The base OID to access uWSGI SNMP information is 1.3.6.1.4.1.35156.17 (iso.org.dod.internet.private.enterprise.unbit.uwsgi). General options are mapped to 1.3.6.1.4.1.35156.17.1.x.

	Custom information is managed by the apps and accessed via 1.3.6.1.4.1.35156.17.2.x

So, to get the number of requests managed by the uWSGI server, you could do

snmpget -v2c -c foo 192.168.0.1:2222 1.3.6.1.4.1.35156.17.1.1 # 1.1 corresponds to ``general.requests``

Exporting custom values

To manage custom values from your app you have these Python functions,

	uwsgi.snmp_set_counter32()

	uwsgi.snmp_set_counter64()

	uwsgi.snmp_set_gauge()

	uwsgi.snmp_incr_counter32()

	uwsgi.snmp_incr_counter64()

	uwsgi.snmp_incr_gauge()

	uwsgi.snmp_decr_counter32()

	uwsgi.snmp_decr_counter64()

	uwsgi.snmp_decr_gauge()

So if you wanted to export the number of users currently logged in (this is a gauge as it can lower) as custom OID 40, you’d call

users_logged_in = random.randint(0, 1024) # a more predictable source of information would be better.
uwsgi.snmp_set_gauge(40, users_logged_in)

and to look it up,

snmpget -v2c -c foo 192.168.0.1:2222 1.3.6.1.4.1.35156.17.2.40

The system snmp daemon (net-snmp) can be configured to proxy SNMP requests to uwsgi. This allows you to run the system daemon and uwsgi at the same time, and runs all SNMP requests through the system daemon first. To configure the system snmp daemon (net-snmp) to proxy connections to uwsgi, add these lines to the bottom of /etc/snmp/snmpd.conf and restart the daemon:

proxy -v 2c -c foo 127.0.0.1:2222 .1.3.6.1.4.1.35156.17
view systemview included .1.3.6.1.4.1.35156.17

Replace ‘foo’ and ‘2222’ with the community and port configured in uwsgi.

Pushing statistics (from 1.4)

IMPORTANT: the Metrics subsystem offers a better introduction to the following concepts. See The Metrics subsystem

Starting from uWSGI 1.4 you can push statistics (the same JSON blob you get with the The uWSGI Stats Server)
via various systems (called stats pushers).

Statistics are pushed at regular intervals (default 3 seconds).

The ‘file’ stats pusher

By default the ‘file’ stats pusher is available up to 1.9.18. Starting from 1.9.19 is available as a plugin (stats_pusher_file).

It allows you to save json chunks to a file (open in appended mode)

[uwsgi]
socket = :3031
module = foobar
master = true
stats-push = file:path=/tmp/foobar,freq=10

this config will append JSON to the /tmp/foobar file every 10 seconds

The ‘mongodb’ stats pusher

This is the first developed stats pusher plugin, allowing you to store JSON
data directly on a mongodb collection

[uwsgi]
plugins = stats_pusher_mongodb
socket = :3031
module = foobar
master = true
stats-push = mongodb:addr=127.0.0.1:5151,collection=uwsgi.mystats,freq=4

This config will insert JSON data to the collection uwsgi.mystats on the mongodb server 127.0.0.1:5151
every 4 seconds.

To build the plugin you need mongodb development headers (mongodb-dev on Debian/Ubuntu)

python uwsgiconfig.py --plugin plugins/stats_pusher_mongodb

will do the trick

Notes

You can configure all of the stats pusher you need, just specify multiple stats-push options

[uwsgi]
plugins = stats_pusher_mongodb
socket = :3031
module = foobar
master = true
stats-push = mongodb:addr=127.0.0.1:5151,collection=uwsgi.mystats,freq=4
stats-push = mongodb:addr=127.0.0.1:5152,collection=uwsgi.mystats,freq=4
stats-push = mongodb:addr=127.0.0.1:5153,collection=uwsgi.mystats,freq=4
stats-push = mongodb:addr=127.0.0.1:5154,collection=uwsgi.mystats,freq=4

Integration with Graphite/Carbon

Graphite [http://graphite.wikidot.com/] is a kick-ass realtime graphing
application built on top of three components:

	Whisper – a data storage system

	Carbon – a server for receiving data

	Python web application for graph rendering and management.

The uWSGI Carbon plugin allows you to send uWSGI’s internal statistics to one
or more Carbon servers. It is compiled in by default as of uWSGI 1.0, though
it can also be built as a plugin.

Quickstart

For the sake of illustration, let’s say your Carbon server is listening on
127.0.0.1:2003 and your uWSGI instance is on the machine debian32,
listening on 127.0.0.1:3031 with 4 processes. By adding the --carbon
option to your uWSGI instance you’ll instruct it to send its statistics to
the Carbon server periodically. The default period is 60 seconds.

uwsgi --socket 127.0.0.1:3031 --carbon 127.0.0.1:2003 --processes 4

Metrics are named like uwsgi.<hostname>.<id>.requests and
uwsgi.<hostname>.<id>.worker<n>.requests, where:

	hostname – machine’s hostname

	id – name of the first uWSGI socket (with dots replaced by underscores)

	n – number of the worker processes (1-based).

Examples of names of Carbon metrics generated by uWSGI:

	uwsgi.debian32.127_0_0_1:3031.requests
(uwsgi.<hostname>.<id>.requests)

	uwsgi.debian32.127_0_0_1:3031.worker1.requests
(uwsgi.<hostname>.<id>.worker<n>.requests)

	uwsgi.debian32.127_0_0_1:3031.worker2.requests
(uwsgi.<hostname>.<id>.worker<n>.requests)

	uwsgi.debian32.127_0_0_1:3031.worker3.requests
(uwsgi.<hostname>.<id>.worker<n>.requests)

	uwsgi.debian32.127_0_0_1:3031.worker4.requests
(uwsgi.<hostname>.<id>.worker<n>.requests).

参见

Setting up Graphite on Ubuntu using the Metrics subsystem

The uWSGI Stats Server

In addition to SNMP, uWSGI also supports a Stats Server mechanism which exports the uWSGI state as a JSON object to a socket.

Simply use the stats option followed by a valid socket address.

--stats 127.0.0.1:1717
--stats /tmp/statsock
--stats :5050
--stats @foobar

If a client connects to the specified socket it will get a JSON object containing uWSGI internal statistics before the connection ends.

uwsgi --socket :3031 --stats :1717 --module welcome --master --processes 8

then

nc 127.0.0.1 1717
or for convenience...
uwsgi --connect-and-read 127.0.0.1:1717

will return something like this:

{
 "workers": [{
 "id": 1,
 "pid": 31759,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 2,
 "pid": 31760,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 3,
 "pid": 31761,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 4,
 "pid": 31762,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 5,
 "pid": 31763,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 6,
 "pid": 31764,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 7,
 "pid": 31765,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }, {
 "id": 8,
 "pid": 31766,
 "requests": 0,
 "exceptions": 0,
 "status": "idle",
 "rss": 0,
 "vsz": 0,
 "running_time": 0,
 "last_spawn": 1317235041,
 "respawn_count": 1,
 "tx": 0,
 "avg_rt": 0,
 "apps": [{
 "id": 0,
 "modifier1": 0,
 "mountpoint": "",
 "requests": 0,
 "exceptions": 0,
 "chdir": ""
 }]
 }]
}

uwsgitop

uwsgitop is a top-like command that uses the stats server. It is available on PyPI, so use easy_install or pip to install it (package name uwsgitop, naturally).

The sources are available on Github. https://github.com/unbit/uwsgitop

The Metrics subsystem

Available from 1.9.19.

The uWSGI metrics subsystem allows you to manage “numbers” from your app.

While the caching subsystem got some math capabilities during the 1.9 development cycle, the metrics subsystem
is optimized by design for storing numbers and applying functions over them. So, compared to the caching subsystem it’s way faster
and requires a fraction of the memory.

When enabled, the metric subsystem configures a vast amount of metrics (like requests per-core, memory usage, etc) but, in addition to this, you can configure your own metrics,
such as the number of active users or, say, hits of a particular URL, as well as the memory consumption of your app or the whole server.

To enable the metrics subsystem just add --enable-metrics to your options, or configure a stats pusher (see below).

The metrics subsystem is completely thread-safe.

By default uWSGI creates a lot of metrics (and more are planned), so before adding your own be sure uWSGI does not already expose the one(s) you need.

Metric names and oids

Each metric must have a name (containing only numbers, letters, underscores, dashes and dots) and an optional oid (required for mapping a metric to The embedded SNMP server).

Metric types

Before dealing with metrics you need to understand the various types represented by each metric:

COUNTER (type 0)

This is a generally-growing up number (like the number of requests).

GAUGE (type 1)

This is a number that can increase or decrease dynamically (like the memory used by a worker, or CPU load).

ABSOLUTE (type 2)

This is an absolute number, like the memory of the whole server, or the size of the hard disk.

ALIAS (type 3)

This is a virtual metric pointing to another one . You can use it to give different names to already existing metrics.

Metric collectors

Once you define a metric type, you need to tell uWSGI how to ‘collect’ the specific metric.

There are various collectors available (and more can be added via plugins).

	ptr – The value is collected from a memory pointer

	file – the value is collected from a file

	sum – the value is the sum of other metrics

	avg – compute the algebraic average of the children (added in 1.9.20)

	accumulator – always add the sum of children to the final value. See below for an example.

Round 1: child1 = 22, child2 = 17 -> metric_value = 39
Round 2: child1 = 26, child2 = 30 -> metric_value += 56

	multiplier - Multiply the sum of children by the specified argument (arg1n).

child1 = 22, child2 = 17, arg1n = 3 -> metric_value = (22+17)*3

	func - the value is computed calling a specific function every time

	manual - the NULL collector. The value must be updated manually from applications using the metrics API.

Custom metrics

You can define additional metrics to manage from your app.

The --metric option allows you to add more metrics.

It has two syntaxes: “simplified” and “keyval”.

uwsgi --http-socket :9090 --metric foobar

will create a metric ‘foobar’ with type ‘counter’, manual collector and no oid.

For creating advanced metrics you need the keyval way:

uwsgi --http-socket :9090 --metric name=foobar,type=gauge,oid=100.100.100

The following keys are available:

	name – set the metric name

	oid – set the metric oid

	type – set the metric type, can be counter, gauge, absolute, alias

	initial_value – set the metric to a specific value on startup

	freq – set the collection frequency in seconds (default to 1)

	reset_after_push – reset the metric to zero (or the configured initial_value) after it’s been pushed to the backend (so every freq seconds)

	children – maps children to the metric (see below)

	alias – the metric will be a simple alias for the specified one (–metric name=foobar,alias=worker.0.requests,type=alias)

	arg1 to arg3 – string based arguments (see below)

	arg1n to arg3n – number based arguments (see below)

	collector set the collector, can be ptr, file, sum, func or anything exposed by plugins. Not specifying a collector means the metric is manual (your app needs to update it).

The ptr is currently unimplemented, while the other collector requires a bit of additional configuration:

collector=file requires arg1 for the filename and an optional arg1n for the so-called split value.

uwsgi --metric name=loadavg,type=gauge,collector=file,arg1=/proc/loadavg,arg1n=1,freq=3

This will add a ‘loadavg` metric, of type gauge, updated every 3 seconds with the content of /proc/loadavg. The content is split (using \n, \t, spaces, \r and zero as separator) and the item 1 (the returned array is zero-based) used as the return value.

The splitter is very powerful, making it possible to gather information from more complex files, such as /proc/meminfo.

uwsgi --metric name=memory,type=gauge,collector=file,arg1=/proc/meminfo,arg1n=4,freq=3

Once split, /proc/meminfo has the MemFree value in the 4th slot.

collector=sum requires the list of metrics that must be summed up. Each metric has the concept of ‘children’. The sum collector
will sum the values of all of its children:

uwsgi --metric name=reqs,collector=sum,children=worker.1.requests;worker.2.requests

This will sum the value of worker.1.requests and worker.2.requests every second.

collector=func is a convenience collector avoiding you to write a whole plugin for adding a new collector.

Let’s define a C function (call the file mycollector.c or whatever you want):

int64_t my_collector(void *metric) {
 return 173;
}

and build it as a shared library...

gcc -shared -o mycollector.so mycollector.c

now run uWSGI loading the library...

uwsgi --dlopen ./mycollector.so --metric name=mine,collector=func,arg1=my_collector,freq=10

this will call the C function my_collector every 10 seconds and will set the value of the metric ‘mine’ to its return value.

The function must returns an int64_t value. The argument it takes is a uwsgi_metric pointer. You generally do not need to parse the metric, so just casting to void will avoid headaches.

The metrics directory

UNIX sysadmins love text files. They are generally the things they have to work on most of the time. If you want to make a UNIX sysadmin happy, just give him or her some text file to play with. (Or some coffee, or whiskey maybe, depending on their tastes. But generally, text files should do just fine.)

The metrics subsystem can expose all of its metrics in the form of text files in a directory:

uwsgi --metrics-dir mymetrics ...

The directory must exist in advance.

This will create a text file for each metric in the ‘mymetrics’ directory. The content of each file is the value of the metric (updated in real time).

Each file is mapped into the process address space, so do not worry if your virtual memory increases slightly.

Restoring metrics (persistent metrics)

When you restart a uWSGI instance, all of its metrics are reset.

This is generally the best thing to do, but if you want, you can restore the previous situation using the values stored in the metrics
directory defined before.

Just add the --metrics-dir-restore option to force the metric subsystem to read-back the values from the metric directory before
starting to collect values.

API

Your language plugins should expose at least the following api functions. Currently they are implemented in Perl, CPython, PyPy and Ruby

	metric_get(name)

	metric_set(name, value)

	metric_set_max(name, value) – only set the metric name if the give value is greater than the one currently stored

	metric_set_min(name, value) – only set the metric name if the give value is lower than the one currently stored

metric_set_max and metric_set_min can be used to avoid having to call metric_get when you need a metric to be set at a maximal or minimal value. Another simple use case is to use the avg collector to calculate an average between some max and min set metrics.

	metric_inc(name[, delta])

	metric_dec(name[, delta])

	metric_mul(name[, delta])

	metric_div(name[, delta])

	metrics (tuple/array of metric keys, should be immutable and not-callable, currently unimplemented)

Stats pushers

Collected metrics can be sent to external systems for analysis or chart generation.

Stats pushers are plugins aimed at sending metrics to those systems.

There are two kinds of stats pushers at the moment: JSON and raw.

The JSON stats pusher send the whole JSON stats blob (the same you get from the stats server), while ‘raw’ ones send the metrics list.

Currently available stats pushers:

rrdtool

	Type: raw

	Plugin: rrdtool (builtin by default)

	Requires (during runtime): librrd.so

	Syntax: --stats-push rrdtool:my_rrds ...

This will store an rrd file for each metric in the specified directory. Each rrd file has a single data source named ‘metric’.

Usage:

uwsgi --rrdtool my_rrds ...
or
uwsgi --stats-push rrdtool:my_rrds ...

By default the RRD files are updated every 300 seconds. You can tune this value with --rrdtool-freq

The librrd.so library is detected at runtime. If you need you can specify its absolute path with --rrdtool-lib.

statsd

	Type: raw

	Plugin: stats_pusher_statsd

	Syntax: --stats-push statsd:address[,prefix]

Push metrics to a statsd server.

Usage:

uwsgi --stats-push statsd:127.0.0.1:8125,myinstance ...

carbon

	Type: raw

	Plugin: carbon (built-in by default)

	See: Integration with Graphite/Carbon

zabbix

	Type: raw

	Plugin: zabbix

	Syntax: --stats-push zabbix:address[,prefix]

Push metrics to a zabbix server.

The plugin exposes a --zabbix-template option that will generate a zabbix template (on stdout or in the specified file) containing all of the exposed metrics as trapper items.

注解

On some Zabbix versions you will need to authorize the IP addresses allowed to push items.

Usage:

uwsgi --stats-push zabbix:127.0.0.1:10051,myinstance ...

mongodb

	Type: json

	Plugin: stats_pusher_mongodb

	Required (build time): libmongoclient.so

	Syntax (keyval): --stats-push mongodb:addr=<addr>,collection=<db>,freq=<freq>

Push statistics (as JSON) the the specified MongoDB database.

file

	Type: json

	Plugin: stats_pusher_file

Example plugin storing stats JSON in a file.

socket

	Type: raw

	Plugin: stats_pusher_socket (builtin by default)

	Syntax: --stats-push socket:address[,prefix]

Push metrics to a UDP server with the following format: <metric> <type> <value> (<type> is in the numeric form previously reported).

Example:

uwsgi --stats-push socket:127.0.0.1:8125,myinstance ...

Alarms/Thresholds

You can configure one or more “thresholds” for each metric.

Once this limit is reached the specified alarm (see The uWSGI alarm subsystem (from 1.3)) is triggered.

Once the alarm is delivered you may choose to reset the counter to a specific value (generally 0), or continue triggering alarms
with a specified rate.

[uwsgi]
...
metric-alarm = key=worker.0.avg_response_time,value=2000,alarm=overload,rate=30
metric-alarm = key=loadavg,value=3,alarm=overload,rate=120
metric-threshold = key=mycounter,value=1000,reset=0
...

Specifying an alarm is not required. Using the threshold value to automatically reset a metric is perfectly valid.

Note: --metric-threshold and --metric-alarm are aliases for the same option.

SNMP integration

The The embedded SNMP server server exposes metrics starting from the 1.3.6.1.4.1.35156.17.3 OID.

For example to get the value of worker.0.requests:

snmpget -v2c -c <snmp_community> <snmp_addr>:<snmp_port> 1.3.6.1.4.1.35156.17.3.0.1

Remember: only metrics with an associated OID can be used via SNMP.

Internal Routing integration

The ‘’router_metrics’’ plugin (builtin by default) adds a series of actions to the internal routing subsystem.

	metricinc:<metric>[,value] increase the <metric>

	metricdec:<metric>[,value] decrease the <metric>

	metricmul:<metric>[,value] multiply the <metric>

	metricdiv:<metric>[,value] divide the <metric>

	metricset:<metric>,<value> set <metric> to <value>

In addition to action, a route var named “metric” is added.

Example:

[uwsgi]
metric = mymetric
route = ^/foo metricinc:mymetric
route-run = log:the value of the metric 'mymetric' is ${metric[mymetric]}
log-format = %(time) - %(metric.mymetric)

Request logging

You can access metrics values from your request logging format using the %(metric.xxx) placeholder:

[uwsgi]
log-format = [hello] %(time) %(metric.worker.0.requests)

Officially Registered Metrics

This is a work in progress.

The best way to know which default metrics are exposed is enabling the stats server and querying it (or adding the --metrics-dir option).

	worker/3 (exports information about workers, example worker.1.requests [or 3.1.1] reports the number of requests served by worker 1)

	plugin/4 (namespace for metrics automatically added by plugins, example plugins.foo.bar)

	core/5 (namespace for general instance informations)

	router/6 (namespace for corerouters, example router.http.active_sessions)

	socket/7 (namespace for sockets, example socket.0.listen_queue)

	mule/8 (namespace for mules, example mule.1.signals)

	spooler/9 (namespace for spoolers, example spooler.1.signals)

	system/10 (namespace for system metrics, like loadavg or free memory)

OID assigment for plugins

If you want to write a plugin that will expose metrics, please add the OID namespace that you are going to use to the list below and make a pull request first.

This will ensure that all plugins are using unique OID namespaces.

Prefix all plugin metric names with plugin name to ensure no conflicts if same keys are used in multiple plugins (example plugin.myplugin.foo.bar, worker.1.plugin.myplugin.foo.bar)

	(3|4).100.1 - cheaper_busyness

External tools

Check: https://github.com/unbit/unbit-bars

uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9)

警告

Beware! Async modes will not speed up your app, they are aimed at improving concurrency.
Do not expect that enabling some of the modes will work flawlessly, asynchronous/evented/non-blocking
systems require app cooperation, so if your app is developed without taking specific async engine rules
into consideration, you are doing it wrong. Do not trust people suggesting you to blindly use
async/evented/non-blocking systems!

Glossary

uWSGI, following its modular approach, splits async engines into two families.

Suspend/Resume engines

They simply implement coroutine/green threads techniques. They have no event engine, so you have to use
the one supplied by uWSGI. An Event engine is generally a library exporting primitives for platform-independent
non-blocking I/O (libevent, libev, libuv, etc.). The uWSGI event engine is enabled using the --async <n> option.

Currently the uWSGI distribution includes the following suspend/resume engines:

	uGreen - Unbit’s green thread implementation (based on swapcontext())

	Greenlet - Python greenlet module

	Stackless - Stackless Python

	Fiber - Ruby 1.9 fibers

Running the uWSGI async mode without a proper suspend/resume engine will raise a warning, so for a minimal non-blocking app
you will need something like that:

uwsgi --async 100 --ugreen --socket :3031

An important aspect of suspend/resume engines is that they can easily destroy your process if it is not aware of them.
Some of the language plugins (most notably Python) have hooks to cooperate flawlessly with coroutines/green threads. Other languages
may fail miserably. Always check the uWSGI mailing list or IRC channel for updated information.

Older uWSGI releases supported an additional system: callbacks.
Callbacks is the approach used by popular systems like node.js. This approach requires heavy app cooperation, and for complex projects
like uWSGI dealing with this is extremely complex. For that reason, callback approach is not supported (even if technically
possible)
Software based on callbacks (like The Tornado loop engine) can be used to combine them with some form of suspend engine.

I/O engines (or event systems)

uWSGI includes an highly optimized evented technology, but can use alternative approaches too.

I/O engines always require some suspend/resume engine, otherwise ugly things happen (the whole uWSGI codebase is coroutine-friendly, so you can
play with stacks pretty easily).

Currently supported I/O engines are:

	The Tornado loop engine

	libuv (work in progress)

	libev (work in progress)

Loop engines

Loop engines are packages/libraries exporting both suspend/resume techniques and an event system. When loaded, they override
the way uWSGI manages connections and signal handlers (uWSGI signals, not POSIX signals).

Currently uWSGI supports the following loop engines:

	Gevent (Python, libev, greenlet)

	Coro::AnyEvent (Perl, coro, anyevent)

Although they are generally used by a specific language, pure-C uWSGI plugins (like the CGI one) can use them
to increase concurrency without problems.

Async switches

To enable async mode, you use the --async option (or some shortcut for it, exported by loop engine plugins).

The argument of the --async option is the number of “cores” to initialize. Each core can manage a single request, so the more core you
spawn, more requests you will be able to manage (and more memory you will use). The job of the suspend/resume engines
is to stop the current request management, move to another core, and eventually come back to the old one (and so on).

Technically, cores are simple memory structures holding request’s data, but to give the user the illusion of a multithreaded system
we use that term.

The switch between cores needs app cooperation. There are various ways to accomplish that, and generally, if you are using
a loop engine, all is automagic (or requires very little effort).

警告

If you are in doubt, do not use async mode.

Running uWSGI in Async mode

To start uWSGI in async mode, pass the --async option with the number of “async cores” you want.

./uwsgi --socket :3031 -w tests.cpubound_async --async 10

This will start uWSGI with 10 async cores. Each async core can manage a request, so with this setup you can accept 10 concurrent requests with only one process. You can also start more processes (with the --processes option), each will have its own pool of async cores.

When using harakiri mode, every time an async core accepts a request, the harakiri timer is reset. So even if a request blocks the async system, harakiri will save you.

The tests.cpubound_async app is included in the source distribution. It’s very simple:

def application(env, start_response):
 start_response('200 OK', [('Content-Type', 'text/html')])
 for i in range(1, 10000):
 yield "<h1>%s</h1>" % i

Every time the application does yield from the response function, the execution of the app is stopped, and a new request or a previously suspended request on another async core will take over. This means the number of async cores is the number of requests that can be queued.

If you run the tests.cpubound_async app on a non-async server, it will block all processing: will not accept other requests until the heavy cycle of 10000 <h1>s is done.

Waiting for I/O

If you are not under a loop engine, you can use the uWSGI API to wait for I/O events.

Currently only 2 functions are exported:

	uwsgi.wait_fd_read()

	uwsgi.wait_fd_write()

These functions may be called in succession to wait for multiple file descriptors:

uwsgi.wait_fd_read(fd0)
uwsgi.wait_fd_read(fd1)
uwsgi.wait_fd_read(fd2)
yield "" # yield the app, let uWSGI do its magic

Sleeping

On occasion you might want to sleep in your app, for example to throttle bandwidth.

Instead of using the blocking time.sleep(N) function, use uwsgi.async_sleep(N) to yield control for N seconds.

参见

See tests/sleeping_async.py for an example.

Suspend/Resume

Yielding from the main application routine is not very practical, as most of the time your app is more advanced than a simple callable and is formed of tons of functions and various levels of call depth.

Worry not! You can force a suspend (using coroutine/green thread) by simply calling uwsgi.suspend():

uwsgi.wait_fd_read(fd0)
uwsgi.suspend()

uwsgi.suspend() will automatically call the chosen suspend engine (uGreen, greenlet, etc.).

Static files

Static file server will automatically use the loaded async engine.

The Gevent loop engine

Gevent [http://www.gevent.org] is an amazing non-blocking Python network library built on top of
libev and greenlet. Even though uWSGI supports Greenlet as
suspend-resume/greenthread/coroutine library, it requires a lot of effort and
code modifications to work with gevent. The gevent plugin requires gevent
1.0.0 and uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9) mode.

Notes

	The SignalFramework is fully working with Gevent mode. Each handler
will be executed in a dedicated greenlet. Look at tests/ugevent.py for
an example.

	uWSGI multithread mode (threads option) will not work with Gevent.
Running Python threads in your apps is supported.

	Mixing uWSGI’s Async API with gevent’s is EXPLICITLY FORBIDDEN.

Building the plugin (uWSGI >= 1.4)

The gevent plugin is compiled in by default when the default profile is used.
Doing the following will install the python plugin as well as the gevent one:

pip install uwsgi

Building the plugin (uWSGI < 1.4)

A ‘gevent’ build profile can be found in the buildconf directory.

python uwsgiconfig --build gevent
or...
UWSGI_PROFILE=gevent make
or...
UWSGI_PROFILE=gevent pip install git+git://github.com/unbit/uwsgi.git
or...
python uwsgiconfig --plugin plugins/gevent # external plugin

Running uWSGI in gevent mode

uwsgi --gevent 100 --socket :3031 --module myapp

or for a modular build:

uwsgi --plugins python,gevent --gevent 100 --socket :3031 --module myapp

the argument of –gevent is the number of async cores to spawn

A crazy example

The following example shows how to sleep in a request, how to make asynchronous
network requests and how to continue doing logic after a request has been
closed.

import gevent
import gevent.socket

def bg_task():
 for i in range(1,10):
 print "background task", i
 gevent.sleep(2)

def long_task():
 for i in range(1,10):
 print i
 gevent.sleep()

def application(e, sr):
 sr('200 OK', [('Content-Type','text/html')])
 t = gevent.spawn(long_task)
 t.join()
 yield "sleeping for 3 seconds...
"
 gevent.sleep(3)
 yield "done
"
 yield "getting some ips...
"
 urls = ['www.google.com', 'www.example.com', 'www.python.org', 'projects.unbit.it']
 jobs = [gevent.spawn(gevent.socket.gethostbyname, url) for url in urls]
 gevent.joinall(jobs, timeout=2)

 for j in jobs:
 yield "ip = %s
" % j.value

 gevent.spawn(bg_task) # this task will go on after request end

Monkey patching

uWSGI uses native gevent api, so it does not need monkey patching. That said,
your code may need it, so remember to call gevent.monkey.patch_all() at the
start of your app. As of uWSGI 1.9, the convenience option
--gevent-monkey-patch will do that for you.

A common example is using psycopg2_gevent with django. Django will make a
connection to postgres for each thread (storing it in thread locals).

As the uWSGI gevent plugin runs on a single thread this approach will lead to a
deadlock in psycopg. Enabling monkey patch will allow you to map thread locals
to greenlets (though you could avoid full monkey patching and only call
gevent.monkey.patch_thread()) and solves the issue:

import gevent.monkey
gevent.monkey.patch_thread()
import gevent_psycopg2
gevent_psycopg2.monkey_patch()

or (to monkey patch everything)

import gevent.monkey
gevent.monkey.patch_all()
import gevent_psycopg2
gevent_psycopg2.monkey_patch()

Notes on clients and frontends

	If you’re testing a WSGI application that generates a stream of data, you
should know that curl by default buffers data until a newline. So make sure
you either disable curl’s buffering with the -N flag or have regular
newlines in your output.

	If you are using Nginx in front of uWSGI and wish to stream data from your
app, you’ll probably want to disable Nginx’s buffering.

uwsgi_buffering off;

The Tornado loop engine

Available from: `uWSGI 1.9.19-dev`

Supported suspend engines: `greenlet`

Supported CPython versions: `all of tornado supported versions`

The tornado loop engine allows you to integrate your uWSGI stack with the Tornado IOLoop class.

Basically every I/O operation of the server is mapped to a tornado IOLoop callback. Making RPC, remote caching, or simply writing responses
is managed by the Tornado engine.

As uWSGI is not written with a callback-based programming approach, integrating with those kind of libraries requires some form of “suspend” engine (green threads/coroutines)

Currently the only supported suspend engine is the “greenlet” one. Stackless python could work too (needs testing).

PyPy is currently not supported (albeit technically possibile thanks to continulets). Drop a mail to Unbit staff if you are interested.

Why ?

The Tornado project includes a simple WSGI server by itself. In the same spirit of the Gevent plugin, the purpose of Loop engines is allowing external prejects
to use (and abuse) the uWSGI api, for better performance, versatility and (maybe the most important thing) resource usage.

All of the uWSGI subsystems are available (from caching, to websockets, to metrics) in your tornado apps, and the WSGI engine is the battle-tested uWSGI one.

Installation

The tornado plugin is currently not built-in by default. To have both tornado and greenlet in a single binary you can do

UWSGI_EMBED_PLUGINS=tornado,greenlet pip install tornado greenlet uwsgi

or (from uWSGI sources, if you already have tornado and greenlet installed)

UWSGI_EMBED_PLUGINS=tornado,greenlet make

Running it

The --tornado option is exposed by the tornado plugin, allowing you to set optimal parameters:

uwsgi --http-socket :9090 --wsgi-file myapp.py --tornado 100 --greenlet

this will run a uWSGI instance on http port 9090 using tornado as I/O (and time) management and greenlet as suspend engine

100 async cores are allocated, allowing you to manage up to 100 concurrent requests

Integrating WSGI with the tornado api

For the way WSGI works, dealing with callback based programming is pretty hard (if not impossible).

Thanks to greenlet we can suspend the execution of our WSGI callable until a tornado IOLoop event is available:

from tornado.httpclient import AsyncHTTPClient
import greenlet
import functools

this gives us access to the main IOLoop (the same used by uWSGI)
from tornado.ioloop import IOLoop
io_loop = IOLoop.instance()

this is called at the end of the external HTTP request
def handle_request(me, response):
 if response.error:
 print("Error:", response.error)
 else:
 me.result = response.body
 # back to the WSGI callable
 me.switch()

 def application(e, sr):
 me = greenlet.getcurrent()
 http_client = AsyncHTTPClient()
 http_client.fetch("http://localhost:9191/services", functools.partial(handle_request, me))
 # suspend the execution until an IOLoop event is available
 me.parent.switch()
 sr('200 OK', [('Content-Type','text/plain')])
 return me.result

Welcome to Callback-Hell

As always, it is not the job of uWSGI to judge programming approaches. It is a tool for sysadmins, and sysadmins should be tolerant with developers choices.

One of the things you will pretty soon experiment with this approach to programming is the callback-hell.

Let’s extend the previous example to wait 10 seconds before sending back the response to the client

from tornado.httpclient import AsyncHTTPClient
import greenlet
import functools

this gives us access to the main IOLoop (the same used by uWSGI)
from tornado.ioloop import IOLoop
io_loop = IOLoop.instance()

def sleeper(me):
 #TIMED OUT
 # finally come back to WSGI callable
 me.switch()

this is called at the end of the external HTTP request
def handle_request(me, response):
 if response.error:
 print("Error:", response.error)
 else:
 me.result = response.body
 # add another callback in the chain
 me.timeout = io_loop.add_timeout(time.time() + 10, functools.partial(sleeper, me))

 def application(e, sr):
 me = greenlet.getcurrent()
 http_client = AsyncHTTPClient()
 http_client.fetch("http://localhost:9191/services", functools.partial(handle_request, me))
 # suspend the execution until an IOLoop event is available
 me.parent.switch()
 # unregister the timer
 io_loop.remove_timeout(me.timeout)
 sr('200 OK', [('Content-Type','text/plain')])
 return me.result

here we have chained two callbacks, with the last one being responsable for giving back control to the WSGI callable

The code could looks ugly or overcomplex (compared to other approaches like gevent) but this is basically the most efficient way to
increase concurrency (both in terms of memory usage and performance). Technologies like node.js are becoming popular thanks to the results they allow
to accomplish.

WSGI generators (aka yield all over the place)

Take the following WSGI app:

def application(e, sr):
 sr('200 OK', [('Content-Type','text/html')])
 yield "one"
 yield "two"
 yield "three"

if you have already played with uWSGI async mode, you knows that every yield internally calls the used suspend engine (greenlet.switch() in our case).

That means we will enter the tornado IOLoop engine soon after having called “application()”. How we can give the control back to our callable if we are not waiting for events ?

The uWSGI async api has been extended to support the “schedule_fix” hook. It allows you to call a hook soon after the suspend engine has been called.

In the tornado’s case this hook is mapped to something like:

io_loop.add_callback(me.switch)

in this way after every yield a me.switch() function is called allowing the resume of the callable.

Thanks to this hook you can transparently host standard WSGI applications without changing them.

Binding and listening with Tornado

The Tornado IOLoop is executed after fork() in every worker. If you want to bind to network addresses with Tornado, remember
to use different ports for each workers:

from uwsgidecorators import *
import tornado.web

this is our Tornado-managed app
class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

t_application = tornado.web.Application([
 (r"/", MainHandler),
])

here happens the magic, we bind after every fork()
@postfork
def start_the_tornado_servers():
 application.listen(8000 + uwsgi.worker_id())

this is our WSGI callable managed by uWSGI
def application(e, sr):
 ...

Remember: do no start the IOLoop class. uWSGI will do it by itself as soon as the setup is complete

uGreen – uWSGI Green Threads

uGreen is an implementation of green threads [http://en.wikipedia.org/wiki/Green_threads] on top of the uWSGI async platform.

It is very similar to Python’s greenlet but built on top of the POSIX swapcontext() function. To take advantage of uGreen you have to set the number of async cores that will be mapped to green threads.

For example if you want to spawn 30 green threads:

./uwsgi -w tests.cpubound_green -s :3031 --async 30 --ugreen

The ugreen option will enable uGreen on top of async mode.

Now when you call uwsgi.suspend() in your app, you’ll be switched off to another green thread.

Security and performance

To ensure (relative) isolation of green threads, every stack area is protected by so called “guard pages”.

An attempt to write out of the stack area of a green thread will result in a segmentation fault/bus error (and the process manager, if enabled, will respawn the worker without too much damage).

The context switch is very fast, we can see it as:

	On switch
	Save the Python Frame pointer

	Save the recursion depth of the Python environment (it is simply an int)

	Switch to the main stack

	On return
	Re-set the uGreen stack

	Re-set the recursion depth

	Re-set the frame pointer

The stack/registers switch is done by the POSIX swapcontext() call and we don’t have to worry about it.

Async I/O

For managing async I/O you can use the Async mode FD wait functions uwsgi.wait_fd_read() and uwsgi.wait_fd_write().

Stack size

You can choose the uGreen stack size using the ugreen-stacksize <pages> option. The argument is in pages, not bytes.

Is this better than Greenlet or Stackless Python?

Weeeeelll... it depends. uGreen is faster (the stack is preallocated) but requires more memory (to allocate a stack area for every core). Stackless and Greenlet probably require less memory... but Stackless requires a heavily patched version of Python.

If you’re heavily invested in making your app as async-snappy as possible, it’s always best to do some tests to choose the best one for you. As far as uWSGI is concerned, you can move from async engine to another without changing your code.

What about python-coev?

Lots of uGreen has been inspired by it. The author’s way to map Python threads to their implementation allows python-coev to be a little more “trustworthy” than Stackless Python. However, like Stackless, it requires a patched version of Python... :(

Can I use uGreen to write Comet apps?

Yeah! Sure! Go ahead. In the distribution you will find the ugreenchat.py script. It is a simple/dumb multiuser Comet chat. If you want to test it (for example 30 users) run it with

./uwsgi -s :3031 -w ugreenchat --async 30 --ugreen

The code has comments for every ugreen-related line. You’ll need Bottle [http://bottlepy.org/docs/dev/], an amazing Python web micro framework to use it.

Psycopg2 improvements

uGreen can benefit from the new psycopg2 async extensions and the psycogreen project. See the tests/psycopg2_green.py and tests/psycogreen_green.py files for examples.

The asyncio loop engine (CPython >= 3.4, uWSGI >= 2.0.4)

警告

Status: EXPERIMENTAL, lot of implications, especially in respect to the WSGI standard

The asyncio plugin exposes a loop engine built on top of the asyncio CPython API (https://docs.python.org/3.4/library/asyncio.html#module-asyncio).

As uWSGI is not callback based, you need a suspend engine (currently only the ‘greenlet’ one is supported) to manage the WSGI callable.

Why not map the WSGI callable to a coroutine?

The reason is pretty simple: this would break WSGI in every possible way. (Let’s not go into the details here.)

For this reason each uWSGI core is mapped to a greenlet (running the WSGI callable).

This greenlet registers events and coroutines in the asyncio event loop.

Callback vs. coroutines

When starting to playing with asyncio you may get confused between callbacks and coroutines.

Callbacks are executed when a specific event raises (for example when a file descriptor is ready for read). They are basically standard functions executed
in the main greenlet (and eventually they can switch back control to a specific uWSGI core).

Coroutines are more complex: they are pretty close to a greenlet, but internally they work on Python frames instead of C stacks. From a Python programmer point of view, coroutines are very special generators. Your WSGI callable can spawn coroutines.

Building uWSGI with asyncio support

An ‘asyncio’ build profile is available in the official source tree (it will build greenlet support too).

CFLAGS="-I/usr/local/include/python3.4" make PYTHON=python3.4 asyncio

or

CFLAGS="-I/usr/local/include/python3.4" UWSGI_PROFILE="asyncio" pip3 install uwsgi

be sure to use Python 3.4+ as the Python version and to add the greenlet include directory to CFLAGS (this may not be needed if you installed greenlet support from your distribution’s packages).

The first example: a simple callback

Let’s start with a simple WSGI callable triggering a function 2 seconds after the callable has returned (magic!).

import asyncio

def two_seconds_elapsed():
 print("Hello 2 seconds elapsed")

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 asyncio.get_event_loop().call_later(2, two_seconds_elapsed)
 return [b"Hello World"]

Once called, the application function will register a callable in the asyncio event loop and then will return to the client.

After two seconds the event loop will run the function.

You can run the example with:

uwsgi --asyncio 10 --http-socket :9090 --greenlet --wsgi-file app.py

--asyncio is a shortcut enabling 10 uWSGI async cores, enabling you to manage up to 10 concurrent requests with a single process.

But how to wait for a callback completion in the WSGI callable?
We can suspend our WSGI function using greenlets (remember our WSGI callable is wrapped on a greenlet):

import asyncio
import greenlet

def two_seconds_elapsed(me):
 print("Hello 2 seconds elapsed")
 # back to WSGI callable
 me.switch()

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 myself = greenlet.getcurrent()
 asyncio.get_event_loop().call_later(2, two_seconds_elapsed, myself)
 # back to event loop
 myself.parent.switch()
 return [b"Hello World"]

And we can go even further abusing the uWSGI support for WSGI generators:

import asyncio
import greenlet

def two_seconds_elapsed(me):
 print("Hello 2 seconds elapsed")
 me.switch()

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 myself = greenlet.getcurrent()
 asyncio.get_event_loop().call_later(2, two_seconds_elapsed, myself)
 myself.parent.switch()
 yield b"One"
 asyncio.get_event_loop().call_later(2, two_seconds_elapsed, myself)
 myself.parent.switch()
 yield b"Two"

Another example: Futures and coroutines

You can spawn coroutines from your WSGI callable using the asyncio.Task facility:

import asyncio
import greenlet

@asyncio.coroutine
def sleeping(me):
 yield from asyncio.sleep(2)
 # back to callable
 me.switch()

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 myself = greenlet.getcurrent()
 # enqueue the coroutine
 asyncio.Task(sleeping(myself))
 # suspend to event loop
 myself.parent.switch()
 # back from event loop
 return [b"Hello World"]

Thanks to Futures we can even get results back from coroutines...

import asyncio
import greenlet

@asyncio.coroutine
def sleeping(me, f):
 yield from asyncio.sleep(2)
 f.set_result(b"Hello World")
 # back to callable
 me.switch()

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 myself = greenlet.getcurrent()
 future = asyncio.Future()
 # enqueue the coroutine with a Future
 asyncio.Task(sleeping(myself, future))
 # suspend to event loop
 myself.parent.switch()
 # back from event loop
 return [future.result()]

A more advanced example using the aiohttp module (remember to pip install aiohttp it, it’s not a standard library module)

import asyncio
import greenlet
import aiohttp

@asyncio.coroutine
def sleeping(me, f):
 yield from asyncio.sleep(2)
 response = yield from aiohttp.request('GET', 'http://python.org')
 body = yield from response.read_and_close()
 # body is a byterray !
 f.set_result(body)
 me.switch()

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 myself = greenlet.getcurrent()
 future = asyncio.Future()
 asyncio.Task(sleeping(myself, future))
 myself.parent.switch()
 # this time we use yield, just for fun...
 yield bytes(future.result())

Status

	The plugin is considered experimental (the implications of asyncio with WSGI are currently unclear). In the future it could be built by default when Python >= 3.4 is detected.

	While (more or less) technically possible, mapping a WSGI callable to a Python 3 coroutine is not expected in the near future.

	The plugin registers hooks for non blocking reads/writes and timers. This means you can automagically use the uWSGI API with asyncio. Check the https://github.com/unbit/uwsgi/blob/master/tests/websockets_chat_asyncio.py example.

Apache support

Currently there are three uwsgi-protocol related apache2 modules available.

mod_uwsgi

This is the original module. It is solid, but incredibly ugly and does not follow a lot of apache coding convention style.

mod_uwsgi can be used in two ways:

	The “assbackwards” way (the default one). It is the fastest but somewhat far from the Apache2 API.
If you do not use Apache2 filters (including gzip) for content generated by uWSGI, use this mode.

	The “cgi” mode. This one is somewhat slower but better integrated with Apache. To use the CGI mode, pass -C to the uWSGI server.

Options

注解

All of the options can be set per-host or per-location.

uWSGISocket <path> [timeout] Absolute path and optional timeout in seconds of uwsgi server socket.

uWSGISocket2 <path> Absolute path of failover uwsgi server socket

uWSGIServer <host:port> Address and port of an UWSGI server (e.g. localhost:4000)

uWSGIModifier1 <int> Set uWSGI modifier1

uWSGIModifier2 <int> Set uWSGI modifier2

uWSGIForceScriptName <value> Force SCRIPT_NAME (app name)

uWSGIForceCGIMode <on/off> Force uWSGI CGI mode for perfect integration with apache filters

uWSGIForceWSGIScheme <value> Force the WSGI scheme var (set by default to “http”)

uWSGIMaxVars <int> Set the maximum allowed number of uwsgi protocol variables (default 128)

To pass custom variables use the SetEnv directive:

SetEnv UWSGI_SCRIPT yourapp

mod_proxy_uwsgi

This is the latest module and probably the best bet for the future. It is a
“proxy” module, so you will get all of the features exported by mod_proxy. It
is fully “apache api compliant” so it should be easy to integrate with the
available modules. Using it is easy; just remember to load mod_proxy and
mod_proxy_uwsgi modules in your apache config.

ProxyPass /foo uwsgi://127.0.0.1:3032/
ProxyPass /bar uwsgi://127.0.0.1:3033/
ProxyPass / uwsgi://127.0.0.1:3031/

The first two forms set SCRIPT_NAME respectively to /foo and /bar while the
last one use an empty SCRIPT_NAME. You can set additional uwsgi vars using the
SetEnv directive and load balance requests using mod_proxy_balancer.

<Proxy balancer://mycluster>
 BalancerMember uwsgi://192.168.1.50:3031/
 BalancerMember uwsgi://192.168.1.51:3031/
</Proxy>
ProxyPass / balancer://mycluster

Pay attention to the last slash in the member/node definition. It is optional
for non-empty SCRIPT_NAME/mountpoints but required for apps mounted in the root
of the domain. Currently the module lacks the ability to set modifiers, though
this will be fixed soon.

注解

mod_proxy_uwsgi is considered stable starting from uWSGI 2.0.6

注解

If you want to use this module (and help the uWSGI project), report any bugs
you find, rather than falling back to the ancient (and ugly) mod_uwsgi

Starting from Apache 2.4.9, support for Unix sockets has been added. The syntax is pretty simple:

ProxyPass / unix:/tmp/uwsgi.sock|uwsgi://

mod_Ruwsgi

This module is based on the SCGI module written by Roger Florkowski.

注解

This module is currently undocumented.

Cherokee support

注解

Recent official versions of Cherokee have an uWSGI configuration wizard. If
you want to use it you have to install uWSGI in a directory included in your
system PATH.

	Set the UWSGI handler for your target.

	If you are using the default target (/) remember to uncheck the check_file property.

	Configure an “information source” of type “Remote”, specifying the socket name of uWSGI. If your uWSGI has TCP support, you can build a cluster by spawning the uWSGI server on a different machine.

注解

Remember to add a target for all of your URI containing static files (ex.
/media /images ...) using an appropriate handler

Dynamic apps

If you want to hot-add apps specify the UWSGI_SCRIPT var in the uWSGI handler options:

	In the section: Add new custom environment variable specify UWSGI_SCRIPT as name and the name of your WSGI script (without the .py extension) as the value.

Your app will be loaded automatically at the first request.

Native HTTP support

	HTTPS support (from 1.3)

HTTP sockets

The http-socket <bind> option will make uWSGI natively speak HTTP. If your
web server does not support the uwsgi protocol but is able to
speak to upstream HTTP proxies, or if you are using a service like Webfaction
or Heroku to host your application, you can use http-socket. If you plan
to expose your app to the world with uWSGI only, use the http option
instead, as the router/proxy/load-balancer will then be your shield.

The uWSGI HTTP/HTTPS router

uWSGI includes an HTTP/HTTPS router/proxy/load-balancer that can forward
requests to uWSGI workers. The server can be used in two ways: embedded and
standalone. In embedded mode, it will automatically spawn workers and setup
the communication socket. In standalone mode you have to specify the address of
a uwsgi socket to connect to.

Embedded mode:

./uwsgi --http 127.0.0.1:8080 --master --module mywsgiapp --processes 4

This will spawn a HTTP server on port 8080 that forwards requests to a pool of
4 uWSGI workers managed by the master process.

Standalone mode:

./uwsgi --master --http 127.0.0.1:8080 --http-to /tmp/uwsgi.sock

This will spawn a HTTP router (governed by a master for your safety) that will
forward requests to the uwsgi socket /tmp/uwsgi.sock. You can bind to
multiple addresses/ports.

[uwsgi]

http = 0.0.0.0:8080
http = 192.168.173.17:8181
http = 127.0.0.1:9090

master = true

http-to = /tmp/uwsgi.sock

And load-balance to multiple nodes:

[uwsgi]

http = 0.0.0.0:8080
http = 192.168.173.17:8181
http = 127.0.0.1:9090

master = true

http-to = /tmp/uwsgi.sock
http-to = 192.168.173.1:3031
http-to = 192.168.173.2:3031
http-to = 192.168.173.3:3031

	If you want to go massive (virtualhosting and zero-conf scaling) combine the
HTTP router with the uWSGI Subscription Server.

	You can make the HTTP server pass custom uwsgi variables to workers with the
http-var KEY=VALUE option.

	You can use the http-modifier1 option to pass a custom modifier1 value
to workers.

HTTPS support

see HTTPS support (from 1.3)

HTTP Keep-Alive

If your backends set the correct HTTP headers, you can use the
http-keepalive option. Your backends will need to set a valid
Content-Length in each response or use chunked encoding. Simply setting
“Connection: close” is not enough. Also remember to set “Connection:
Keep-Alive” in your response. You can automate that using the add-header
"Connection: Keep-Alive" option.

Can I use uWSGI’s HTTP capabilities in production?

If you need a load balancer/proxy it can be a very good idea. It will
automatically find new uWSGI instances and can load balance in various ways.
If you want to use it as a real webserver you should take into account that
serving static files in uWSGI instances is possible, but not as good as using a
dedicated full-featured web server. If you host static assets in the cloud or
on a CDN, using uWSGI’s HTTP capabilities you can definitely avoid configuring
a full webserver.

注解

If you use Amazon’s ELB (Elastic Load Balancer) in HTTP mode in
front of uWSGI in HTTP mode, a valid Content-Length must be set by the
backend.

HTTPS support (from 1.3)

Use the https <socket>,<certificate>,<key> option. This option may be
specified multiple times. First generate your server key, certificate signing
request, and self-sign the certificate using the OpenSSL toolset:

注解

You’ll want a real SSL certificate for production use.

openssl genrsa -out foobar.key 2048
openssl req -new -key foobar.key -out foobar.csr
openssl x509 -req -days 365 -in foobar.csr -signkey foobar.key -out foobar.crt

Then start the server using the SSL certificate and key just generated:

uwsgi --master --https 0.0.0.0:8443,foobar.crt,foobar.key

As port 443, the port normally used by HTTPS, is privileged (ie. non-root
processes may not bind to it), you can use the shared socket mechanism and drop
privileges after binding like thus:

uwsgi --shared-socket 0.0.0.0:443 --uid roberto --gid roberto --https =0,foobar.crt,foobar.key

uWSGI will bind to 443 on any IP, then drop privileges to those of roberto,
and use the shared socket 0 (=0) for HTTPS.

注解

The =0 syntax is currently undocumented.

Setting SSL/TLS ciphers

The https option takes an optional fourth argument you can use to specify
the OpenSSL cipher suite.

[uwsgi]
master = true
shared-socket = 0.0.0.0:443
uid = www-data
gid = www-data

https = =0,foobar.crt,foobar.key,HIGH
http-to = /tmp/uwsgi.sock

This will set all of the HIGHest ciphers (whenever possible) for your
SSL/TLS transactions.

Client certificate authentication

The https option can also take an optional 5th argument. You can use it to
specify a CA certificate to authenticate your clients with. Generate your CA
key and certificate (this time the key will be 4096 bits and
password-protected):

openssl genrsa -des3 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -out ca.crt

Generate the server key and CSR (as before):

openssl genrsa -out foobar.key 2048
openssl req -new -key foobar.key -out foobar.csr

Sign the server certificate with your new CA:

openssl x509 -req -days 365 -in foobar.csr -CA ca.crt -CAkey ca.key -set_serial 01 -out foobar.crt

Create a key and a CSR for your client, sign it with your CA and package it as
PKCS#12. Repeat these steps for each client.

openssl genrsa -des3 -out client.key 2048
openssl req -new -key client.key -out client.csr
openssl x509 -req -days 365 -in client.csr -CA ca.crt -CAkey ca.key -set_serial 01 -out client.crt
openssl pkcs12 -export -in client.crt -inkey client.key -name "Client 01" -out client.p12

Then configure uWSGI for certificate client authentication

[uwsgi]
master = true
shared-socket = 0.0.0.0:443
uid = www-data
gid = www-data
https = =0,foobar.crt,foobar.key,HIGH,!ca.crt
http-to = /tmp/uwsgi.sock

注解

If you don’t want the client certificate authentication to be
mandatory, remove the ‘!’ before ca.crt in the https options.

HTTPS support (from 1.3)

Use the https <socket>,<certificate>,<key> option. This option may be
specified multiple times. First generate your server key, certificate signing
request, and self-sign the certificate using the OpenSSL toolset:

注解

You’ll want a real SSL certificate for production use.

openssl genrsa -out foobar.key 2048
openssl req -new -key foobar.key -out foobar.csr
openssl x509 -req -days 365 -in foobar.csr -signkey foobar.key -out foobar.crt

Then start the server using the SSL certificate and key just generated:

uwsgi --master --https 0.0.0.0:8443,foobar.crt,foobar.key

As port 443, the port normally used by HTTPS, is privileged (ie. non-root
processes may not bind to it), you can use the shared socket mechanism and drop
privileges after binding like thus:

uwsgi --shared-socket 0.0.0.0:443 --uid roberto --gid roberto --https =0,foobar.crt,foobar.key

uWSGI will bind to 443 on any IP, then drop privileges to those of roberto,
and use the shared socket 0 (=0) for HTTPS.

注解

The =0 syntax is currently undocumented.

Setting SSL/TLS ciphers

The https option takes an optional fourth argument you can use to specify
the OpenSSL cipher suite.

[uwsgi]
master = true
shared-socket = 0.0.0.0:443
uid = www-data
gid = www-data

https = =0,foobar.crt,foobar.key,HIGH
http-to = /tmp/uwsgi.sock

This will set all of the HIGHest ciphers (whenever possible) for your
SSL/TLS transactions.

Client certificate authentication

The https option can also take an optional 5th argument. You can use it to
specify a CA certificate to authenticate your clients with. Generate your CA
key and certificate (this time the key will be 4096 bits and
password-protected):

openssl genrsa -des3 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -out ca.crt

Generate the server key and CSR (as before):

openssl genrsa -out foobar.key 2048
openssl req -new -key foobar.key -out foobar.csr

Sign the server certificate with your new CA:

openssl x509 -req -days 365 -in foobar.csr -CA ca.crt -CAkey ca.key -set_serial 01 -out foobar.crt

Create a key and a CSR for your client, sign it with your CA and package it as
PKCS#12. Repeat these steps for each client.

openssl genrsa -des3 -out client.key 2048
openssl req -new -key client.key -out client.csr
openssl x509 -req -days 365 -in client.csr -CA ca.crt -CAkey ca.key -set_serial 01 -out client.crt
openssl pkcs12 -export -in client.crt -inkey client.key -name "Client 01" -out client.p12

Then configure uWSGI for certificate client authentication

[uwsgi]
master = true
shared-socket = 0.0.0.0:443
uid = www-data
gid = www-data
https = =0,foobar.crt,foobar.key,HIGH,!ca.crt
http-to = /tmp/uwsgi.sock

注解

If you don’t want the client certificate authentication to be
mandatory, remove the ‘!’ before ca.crt in the https options.

The SPDY router (uWSGI 1.9)

Starting from uWSGI 1.9 the HTTPS router has been extended to support version 3 of the SPDY protocol.

To run the HTTPS router with SPDY support, use the --https2 option:

uwsgi --https2 addr=0.0.0.0:8443,cert=foobart.crt,key=foobar.key,spdy=1 --module werkzeug.testapp:test_app

This will start an HTTPS router on port 8443 with SPDY support, forwarding requests to the Werkzeug’s test app the instance is running.
If you’ll go to https://address:8443/ with a SPDY-enabled browser, you will see additional WSGI variables reported by
Werkzeug [http://werkzeug.pocoo.org/]:

	SPDY – on

	SPDY.version – protocol version (generally 3)

	SPDY.stream – stream identifier (an odd number).

Opening privileged ports as a non-root user will require the use of the shared-socket option and a slightly different syntax:

uwsgi --shared-socket :443 --https2 addr==0,cert=foobart.crt,key=foobar.key,spdy=1 --module werkzeug.testapp:test_app --uid user

Both HTTP and HTTPS can be used at the same time (=0 and =1 are references to the privileged ports opened by shared-socket commands):

uwsgi --shared-socket :80 --shared-socket :443 --http =0 --https2 addr==1,cert=foobart.crt,key=foobar.key,spdy=1 --module werkzeug.testapp:test_app --uid user

Notes

	You need at least OpenSSL 1.x to use SPDY (all modern Linux distributions should have it).

	During uploads, the window size is constantly updated.

	The --http-timeout directive is used to set the SPDY timeout. This is the maximum amount of inactivity after the SPDY connection is closed.

	PING requests from the browsers are all acknowledged.

	On connect, the SPDY router sends a settings packet to the client with optimal values.

	If a stream fails in some catastrophic way, the whole connection is closed hard.

	RST messages are always honoured.

TODO

	Add old SPDY v2 support (is it worth it?)

	Allow PUSHing of resources from the uWSGI cache

	Allow tuning internal buffers

Lighttpd support

注解

Lighttpd support is experimental.

The uwsgi handler for Lighttpd lives in the /lighttpd directory of the
uWSGI distribution.

Building the module

First download the source of lighttpd and uncompress it. Copy the
lighttpd/mod_uwsgi.c file from the uWSGI distribution into Lighttpd’s
/src directory. Add the following to the lighttpd src/Makefile.am
file, after the accesslog block:

lib_LTLIBRARIES += mod_uwsgi.la
mod_uwsgi_la_SOURCES = mod_uwsgi.c
mod_uwsgi_la_LDFLAGS = -module -export-dynamic -avoid-version -no-undefined
mod_uwsgi_la_LIBADD = $(common_libadd)

Then launch

autoreconf -fi

and as usual,

./configure && make && make install

Configuring Lighttpd

Modify your configuration file:

server.modules = (
 ...
 "mod_uwsgi",
 ...
)

...

uwsgi.server = (
 "/pippo" => (("host" => "192.168.173.15", "port" => 3033)),
 "/" => (("host" => "127.0.0.1", "port" => 3031)),
)

If you specify multiple hosts under the same virtual path/URI, load balancing
will be activated with the “Fair” algorithm.

Attaching uWSGI to Mongrel2

Mongrel2 [http://mongrel2.org/] is a next-next-generation webserver that focuses on modern webapps.

Just like uWSGI, it is fully language agnostic, cluster-friendly and delightfully controversial :)

It uses the amazing ZeroMQ [http://www.zeromq.org/] library for communication, allowing reliable, easy message queueing and configuration-free scalability.

Starting from version 0.9.8-dev, uWSGI can be used as a Mongrel2 handler.

Requirements

To enable ZeroMQ/Mongrel2 support in uWSGI you need the zeromq library (2.1+) and the uuid library.

Mongrel2 can use JSON or tnetstring to pass data (such as headers and various other information) to handlers. uWSGI supports tnetstring out of the box but requires the Jansson [http://www.digip.org/jansson/] library to parse JSON data.
If you don’t install jansson or do not want to use JSON, make sure you specify protocol='tnetstring' in the Handler in the Mongrel2 configuration, as the default is to use JSON. This would result in a rather obscure “JSON support not enabled. Skip request” message in the uWSGI log.

Configuring Mongrel2

You can find mongrel2-uwsgi.conf shipped with the uWSGI source. You can use this file as a base to configure Mongrel2.

main = Server(
 uuid="f400bf85-4538-4f7a-8908-67e313d515c2",
 access_log="/logs/access.log",
 error_log="/logs/error.log",
 chroot="./",
 default_host="192.168.173.11",
 name="test",
 pid_file="/run/mongrel2.pid",
 port=6767,
 hosts = [
 Host(name="192.168.173.11", routes={
 '/': Handler(send_spec='tcp://192.168.173.11:9999',
 send_ident='54c6755b-9628-40a4-9a2d-cc82a816345e',
 recv_spec='tcp://192.168.173.11:9998', recv_ident='',
 protocol='tnetstring')
 })
]
)

settings = {'upload.temp_store':'tmp/mongrel2.upload.XXXXXX'}
servers = [main]

It is a pretty standard Mongrel2 configuration with upload streaming enabled.

Configuring uWSGI for Mongrel2

To attach uWSGI to Mongrel2, simply use the OptionZeromq option:

uwsgi --zeromq tcp://192.168.173.11:9999,tcp://192.168.173.11:9998

You can spawn multiple processes (each one will subscribe to Mongrel2 with a different uuid)

uwsgi --zeromq tcp://192.168.173.11:9999,tcp://192.168.173.11:9998 -p 4

You can use threads too. Each thread will subscribe to the Mongrel2 queue but the responder socket will be shared by all the threads and protected by a mutex.

uwsgi --zeromq tcp://192.168.173.11:9999,tcp://192.168.173.11:9998 -p 4 --threads 8
This will spawn 4 processes with 8 threads each, totaling 32 threads.

Test them all

Add an application to uWSGI (we will use the werkzeug.testapp as always)

uwsgi --zeromq tcp://192.168.173.11:9999,tcp://192.168.173.11:9998 -p 4 --threads 8 --module werkzeug.testapp:test_app

Now launch the command on all the servers you want, Mongrel2 will distribute requests to them automagically.

Async mode

警告

Async support for ZeroMQ is still under development, as ZeroMQ uses edge triggered events that complicate things in the uWSGI async architecture.

Chroot

By default Mongrel2 will chroot(). This is a good thing for security, but can cause headaches regarding file upload streaming. Remember that Mongrel2 will save the uploaded file
in its own chroot jail, so if your uWSGI instance does not live in the same chroot jail, you’ll have to choose the paths carefully. In the example Mongrel2 configuration file we have used a relative path to easily allow uWSGI to reach the file.

Performance

Mongrel2 is extremely fast and reliable even under huge loads. tnetstring and JSON are text-based (so they are a little less effective than the binary uwsgi protocol. However, as Mongrel2 does not require the expensive one-connection-for-request method, you should get pretty much the same (if not higher) results compared to a (for example) Nginx + uWSGI approach.

uWSGI clustering + ZeroMQ

You can easily mix uWSGI clustering with ZeroMQ.

Choose the main node and run

uwsgi --zeromq tcp://192.168.173.11:9999,tcp://192.168.173.11:9998 -p 4 --threads 8 --module werkzeug.testapp:test_app --cluster 225.1.1.1:1717

And on all the other nodes simply run

uwsgi --cluster 225.1.1.1:1717

Mixing standard sockets with ZeroMQ

You can add uwsgi/HTTP/FastCGI/... sockets to your uWSGI server in addition to ZeroMQ, but if you do, remember to disable threads! This limitation will probably be fixed in the future.

Logging via ZeroMQ

参见

ZeroMQLogging

Nginx support

Nginx natively includes support for upstream servers speaking the uwsgi protocol since version 0.8.40.

If you are unfortunate enough to use an older version (that nevertheless is 0.7.63 or newer), you can find a module in the nginx directory of the uWSGI distribution.

Building the module (Nginx 0.8.39 and older)

Download a >=0.7.63 release of nginx and untar it at the same level of your uWSGI distribution directory.
Move yourself into the nginx-0.7.x directory and ./configure nginx to add the uwsgi handler to its module list:

./configure --add-module=../uwsgi/nginx/

then make and make install it.

If all goes well you can now configure Nginx to pass requests to the uWSGI server.

Configuring Nginx

First of all copy the uwsgi_params file (available in the nginx directory of the uWSGI distribution) into your Nginx configuration directory, then in a location directive in your Nginx configuration add:

uwsgi_pass unix:///tmp/uwsgi.sock;
include uwsgi_params;

– or if you are using TCP sockets,

uwsgi_pass 127.0.0.1:3031;
include uwsgi_params;

Then simply reload Nginx and you are ready to rock your uWSGI powered applications through Nginx.

What is the uwsgi_params file?

It’s convenience, nothing more! For your reading pleasure, the contents of the file as of uWSGI 1.3:

uwsgi_param QUERY_STRING $query_string;
uwsgi_param REQUEST_METHOD $request_method;
uwsgi_param CONTENT_TYPE $content_type;
uwsgi_param CONTENT_LENGTH $content_length;
uwsgi_param REQUEST_URI $request_uri;
uwsgi_param PATH_INFO $document_uri;
uwsgi_param DOCUMENT_ROOT $document_root;
uwsgi_param SERVER_PROTOCOL $server_protocol;
uwsgi_param REMOTE_ADDR $remote_addr;
uwsgi_param REMOTE_PORT $remote_port;
uwsgi_param SERVER_ADDR $server_addr;
uwsgi_param SERVER_PORT $server_port;
uwsgi_param SERVER_NAME $server_name;

参见

uwsgi protocol magic variables

Clustering

Nginx has a beautiful integrated cluster support for all the upstream handlers.

Add an upstream directive outside the server configuration block:

upstream uwsgicluster {
 server unix:///tmp/uwsgi.sock;
 server 192.168.1.235:3031;
 server 10.0.0.17:3017;
}

Then modify your uwsgi_pass directive:

uwsgi_pass uwsgicluster;

Your requests will be balanced between the uWSGI servers configured.

Dynamic apps

The uWSGI server can load applications on demand when passed special vars.

uWSGI can be launched without passing it any application configuration:

./uwsgi -s /tmp/uwsgi.sock

If a request sets the UWSGI_SCRIPT var, the server will load the specified module:

location / {
 root html;
 uwsgi_pass uwsgicluster;
 uwsgi_param UWSGI_SCRIPT testapp;
 include uwsgi_params;
}

You can even configure multiple apps per-location:

location / {
 root html;
 uwsgi_pass uwsgicluster;
 uwsgi_param UWSGI_SCRIPT testapp;
 include uwsgi_params;
}

location /django {
 uwsgi_pass uwsgicluster;
 include uwsgi_params;
 uwsgi_param UWSGI_SCRIPT django_wsgi;
 uwsgi_param SCRIPT_NAME /django;
 uwsgi_modifier1 30;
}

The WSGI standard dictates that SCRIPT_NAME is the variable used to select a specific application.

The uwsgi_modifier1 30 option sets the uWSGI modifier UWSGI_MODIFIER_MANAGE_PATH_INFO.
This per-request modifier instructs the uWSGI server to rewrite the PATH_INFO value removing the SCRIPT_NAME from it.

Static files

For best performance and security, remember to configure Nginx to serve static files instead of letting your poor application handle that instead.

The uWSGI server can serve static files flawlessly but not as quickly and efficiently as a dedicated web server like Nginx.

For example you can the Django /media path could be mapped like this:

location /media {
 alias /var/lib/python-support/python2.6/django/contrib/admin/media;
}

Some applications need to pass control to the UWSGI server only if the requested filename does not exist:

if (!-f $request_filename) {
 uwsgi_pass uwsgicluster;
}

WARNING

If used incorrectly a configuration like this may cause security problems. For your sanity’s sake, double-triple-quadruple check that your application files, configuration files and any other sensitive files are outside of the root of the static files.

Virtual Hosting

You can use Nginx’s virtual hosting without particular problems.

If you run “untrusted” web apps (such as those of your clients if you happen to be an ISP) you should limit their memory/address space usage and use a different uid for each host/application:

server {
 listen 80;
 server_name customersite1.com;
 access_log /var/log/customersite1/access_log;
 location / {
 root /var/www/customersite1;
 uwsgi_pass 127.0.0.1:3031;
 include uwsgi_params;
 }
}

server {
 listen 80;
 server_name customersite2.it;
 access_log /var/log/customersite2/access_log;
 location / {
 root /var/www/customersite2;
 uwsgi_pass 127.0.0.1:3032;
 include uwsgi_params;
 }
}

server {
 listen 80;
 server_name sivusto3.fi;
 access_log /var/log/customersite3/access_log;
 location / {
 root /var/www/customersite3;
 uwsgi_pass 127.0.0.1:3033;
 include uwsgi_params;
 }
}

The customers’ applications can now be run (using the process manager of your choice, such as rc.local, Running uWSGI via Upstart, Supervisord or whatever strikes your fancy) with a different uid and a limited (if you want) address space for each socket:

uwsgi --uid 1001 -w customer1app --limit-as 128 -p 3 -M -s 127.0.0.1:3031
uwsgi --uid 1002 -w customer2app --limit-as 128 -p 3 -M -s 127.0.0.1:3032
uwsgi --uid 1003 -w django3app --limit-as 96 -p 6 -M -s 127.0.0.1:3033

Python support

	The uwsgi Python module

	uWSGI API - Python decorators

	Pump support

	Python Tracebacker

	Aliasing Python modules

参见

Python configuration options

Application dictionary

You can use the application dictionary mechanism to avoid setting up your application in your configuration.

import uwsgi
import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

def myapp(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 yield 'Hello World\n'

uwsgi.applications = {
 '': application,
 '/django': 'application',
 '/myapp': myapp
}

Passing this Python module name (that is, it should be importable and without the .py extension) to uWSGI’s module / wsgi option, uWSGI will search the uwsgi.applications dictionary for the URL prefix/callable mappings.

The value of every item can be a callable, or its name as a string.

Virtualenv support

virtualenv [http://www.virtualenv.org/] is a mechanism that lets you isolate one (or more) Python applications’ libraries (and interpreters, when not using uWSGI) from each other.
Virtualenvs should be used by any respectable modern Python application.

Quickstart

	Create your virtualenv:

$ virtualenv myenv
New python executable in myenv/bin/python
Installing setuptools...............done.
Installing pip.........done.

	Install all the modules you need (using Flask [http://flask.pocoo.org/] as an example):

$./myenv/bin/pip install flask
$ # Many modern Python projects ship with a `requirements.txt` file that you can use with pip like this:
$./myenv/bin/pip install -r requirements.txt

	Copy your WSGI module into this new environment (under lib/python2.x if you do not want to modify your PYTHONPATH).

注解

It’s common for many deployments that your application will live outside the virtualenv. How to configure this is not quite documented yet, but it’s probably very easy.

Run the uwsgi server using the home/virtualenv option (-H for short):

$ uwsgi -H myenv -s 127.0.0.1:3031 -M -w envapp

Python 3

The WSGI specification was updated for Python 3 as PEP3333 [http://www.python.org/dev/peps/pep-3333/].

One major change is that applications are required to respond only with bytes instances, not (Unicode) strings, back to the WSGI stack.

You should encode strings or use bytes literals:

def application(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 yield 'Hello '.encode('utf-8')
 yield b'World\n'

Paste support

If you are a user or developer of Paste-compatible frameworks, such as Pylons [http://www.pylonsproject.org] and Turbogears [http://turbogears.org] or applications using them, you can use the uWSGI --paste option to conveniently deploy your application.

For example, if you have a virtualenv in /opt/tg2env containing a Turbogears app called addressbook configured in /opt/tg2env/addressbook/development.ini:

uwsgi --paste config:/opt/tg2env/addressbook/development.ini --socket :3031 -H /opt/tg2env

That’s it! No additional configuration or Python modules to write.

警告

If you setup multiple process/workers (master mode) you will receive an error:

AssertionError: The EvalException middleware is not usable in a multi-process environment

in which case you’ll have to set the debug option in your paste configuration file to False – or revert to single process environment.

Pecan support

If you are a user or developer of the Pecan [http://pecanpy.org] WSGI framework, you can use the uWSGI --pecan option to conveniently deploy your application.

For example, if you have a virtualenv in /opt/pecanenv containing a Pecan app called addressbook configured in /opt/pecanenv/addressbook/development.py:

uwsgi --pecan /opt/pecanenv/addressbook/development.py --socket :3031 -H /opt/pecanenv

警告

If you setup multiple process/workers (master mode) you will receive an error:

AssertionError: The DebugMiddleware middleware is not usable in a multi-process environment

in which case you’ll have to set the debug option in your pecan configuration file to False – or revert to single process environment.

Using the uwsgi_admin Django app

First of all you need to get the uwsgi_admin app from https://github.com/unbit/uwsgi_django (once it was in the django directory of the distribution).

It plugs into Django’s admin app, so if uwsgi_admin is importable, just add it into your INSTALLED_APPS.

INSTALLED_APPS = (
 # ...
 'django.contrib.admin',
 'uwsgi_admin',
 # ...
)

Then modify your urls.py accordingly. For example:

...
url(r'^admin/uwsgi/', include('mysite.uwsgi_admin.urls')),
url(r'^admin/', include(admin.site.urls)),
...

Be sure to place the URL pattern for uwsgi_admin before the one for the admin site, or it will never match.

/admin/uwsgi/ will then serve uWSGI statistics and has a button for graceful reloading of the server (when running under a Master). Note that memory usage is reported only when the memory-report option is enabled.

The uwsgi Python module

The uWSGI server automagically adds a uwsgi module into your Python apps.

This is useful for configuring the uWSGI server, use its internal functions and get statistics (as well as detecting whether you’re actually running under uWSGI).

注解

Many of these functions are currently woefully undocumented.

Module-level globals

	
uwsgi.numproc

	The number of processes/workers currently running.

	
uwsgi.buffer_size

	The current configured buffer size in bytes.

	
uwsgi.started_on(int)

	The Unix timestamp of uWSGI’s startup.

	
uwsgi.fastfuncs

	This is the dictionary used to define FastFuncs.

	
uwsgi.applist

	This is the list of applications currently configured.

	
uwsgi.applications

	This is the dynamic applications dictionary.

参见

Application dictionary

	
uwsgi.message_manager_marshal

	The callable to run when the uWSGI server receives a marshalled message.

	
uwsgi.magic_table

	The magic table of configuration placeholders.

	
uwsgi.opt

	The current configuration options, including any custom placeholders.

Cache functions

	
uwsgi.cache_get(key[, cache_server])

	Get a value from the cache.

	参数:	
	key – The cache key to read.

	cache_server – The UNIX/TCP socket where the cache server is listening. Optional.

	
uwsgi.cache_set(key, value[, expire, cache_server])

	Set a value in the cache.

	参数:	
	key – The cache key to write.

	value – The cache value to write.

	expire – Expiry time of the value, in seconds.

	cache_server – The UNIX/TCP socket where the cache server is listening. Optional.

	
uwsgi.cache_update(key, value[, expire, cache_server])

	

	
uwsgi.cache_del(key[, cache_server])

	Delete the given cached value from the cache.

	参数:	
	key – The cache key to delete.

	cache_server – The UNIX/TCP socket where the cache server is listening. Optional.

	
uwsgi.cache_exists(key[, cache_server])

	Quickly check whether there is a value in the cache associated with the given key.

	参数:	
	key – The cache key to check.

	cache_server – The UNIX/TCP socket where the cache server is listening. Optional.

	
uwsgi.cache_clear()

	

Queue functions

	
uwsgi.queue_get()

	

	
uwsgi.queue_set()

	

	
uwsgi.queue_last()

	

	
uwsgi.queue_push()

	

	
uwsgi.queue_pull()

	

	
uwsgi.queue_pop()

	

	
uwsgi.queue_slot()

	

	
uwsgi.queue_pull_slot()

	

SNMP functions

	
uwsgi.snmp_set_community(str)

	

	参数:	str – The string containing the new community value.

Sets the SNMP community string.

	
uwsgi.snmp_set_counter32(oidnum, value)

	

	
uwsgi.snmp_set_counter64(oidnum, value)

	

	
uwsgi.snmp_set_gauge(oidnum, value)

	

	参数:	
	oidnum – An integer containing the oid number target.

	value – An integer containing the new value of the counter or gauge.

Sets the counter or gauge to a specific value.

	
uwsgi.snmp_incr_counter32(oidnum, value)

	

	
uwsgi.snmp_incr_counter64(oidnum, value)

	

	
uwsgi.snmp_incr_gauge(oidnum, value)

	

	
uwsgi.snmp_decr_counter32(oidnum, value)

	

	
uwsgi.snmp_decr_counter64(oidnum, value)

	

	
uwsgi.snmp_decr_gauge(oidnum, value)

	

	参数:	
	oidnum – An integer containing the oid number target.

	value – An integer containing the amount to increase or decrease the counter or gauge. If not specified the default is 1.

Increases or decreases the counter or gauge by a specific amount.

注解

uWSGI OID tree starts at 1.3.6.1.4.1.35156.17

Spooler functions

	
uwsgi.send_to_spooler(message_dict=None, spooler=None, priority=None, at=None, body=None, **kwargs)

	

	参数:	
	message_dict – The message (string keys, string values) to spool. Either this, or **kwargs may be set.

	spooler – The spooler (id or directory) to use.

	priority – The priority of the message. Larger = less important.

	at – The minimum UNIX timestamp at which this message should be processed.

	body – A binary (bytestring) body to add to the message, in addition to the message dictionary itself. Its value will be available in the key body in the message.

Send data to the The uWSGI Spooler. Also known as spool().

注解

Any of the keyword arguments may also be passed in the message dictionary. This means they’re reserved words, in a way...

	
uwsgi.set_spooler_frequency(seconds)

	Set how often the spooler runs.

	
uwsgi.spooler_jobs()

	

	
uwsgi.spooler_pid()

	

Advanced methods

	
uwsgi.send_message()

	Send a generic message using The uwsgi Protocol.

注解

Until version 2f970ce58543278c851ff30e52758fd6d6e69fdc this function was called send_uwsgi_message().

	
uwsgi.route()

	

	
uwsgi.send_multi_message()

	Send a generic message to multiple recipients using The uwsgi Protocol.

注解

Until version 2f970ce58543278c851ff30e52758fd6d6e69fdc this function was called send_multi_uwsgi_message().

参见

Clustering for examples

	
uwsgi.reload()

	Gracefully reload the uWSGI server stack.

参见

Reload

	
uwsgi.stop()

	

	
uwsgi.workers() → dict

	Get a statistics dictionary of all the workers for the current server. A dictionary is returned.

	
uwsgi.masterpid() → int

	Return the process identifier (PID) of the uWSGI master process.

	
uwsgi.total_requests() → int

	Returns the total number of requests managed so far by the pool of uWSGI workers.

	
uwsgi.get_option()

	Also available as getoption().

	
uwsgi.set_option()

	Also available as setoption().

	
uwsgi.sorry_i_need_to_block()

	

	
uwsgi.request_id()

	

	
uwsgi.worker_id()

	

	
uwsgi.mule_id()

	

	
uwsgi.log()

	

	
uwsgi.log_this_request()

	

	
uwsgi.set_logvar()

	

	
uwsgi.get_logvar()

	

	
uwsgi.disconnect()

	

	
uwsgi.grunt()

	

	
uwsgi.lock(locknum=0)

	

	参数:	locknum – The lock number to lock. Lock 0 is always available.

	
uwsgi.is_locked()

	

	
uwsgi.unlock(locknum=0)

	

	参数:	locknum – The lock number to unlock. Lock 0 is always available.

	
uwsgi.cl()

	

	
uwsgi.setprocname()

	

	
uwsgi.listen_queue()

	

	
uwsgi.register_signal(num, who, function)

	

	参数:	
	num – the signal number to configure

	who – a magic string that will set which process/processes receive the signal.

	worker/worker0 will send the signal to the first available worker. This is the default if you specify an empty string.

	workers will send the signal to every worker.

	workerN (N > 0) will send the signal to worker N.

	mule/mule0 will send the signal to the first available mule. (See uWSGI Mules)

	mules will send the signal to all mules

	muleN (N > 0) will send the signal to mule N.

	cluster will send the signal to all the nodes in the cluster. Warning: not implemented.

	subscribed will send the signal to all subscribed nodes. Warning: not implemented.

	spooler will send the signal to the spooler.

cluster and subscribed are special, as they will send the signal to the master of all cluster/subscribed nodes. The other nodes will have to define a local handler though, to avoid a terrible signal storm loop.

	function – A callable that takes a single numeric argument.

	
uwsgi.signal(num)

	

	参数:	num – the signal number to raise

	
uwsgi.signal_wait([signum])

	Block the process/thread/async core until a signal is received. Use signal_received to get the number of the signal received.
If a registered handler handles a signal, signal_wait will be interrupted and the actual handler will handle the signal.

	参数:	signum – Optional - the signal to wait for

	
uwsgi.signal_registered()

	

	
uwsgi.signal_received()

	Get the number of the last signal received. Used in conjunction with signal_wait.

	
uwsgi.add_file_monitor()

	

	
uwsgi.add_timer(signum, seconds[, iterations=0])

	

	参数:	
	signum – The signal number to raise.

	seconds – The interval at which to raise the signal.

	iterations – How many times to raise the signal. 0 (the default) means infinity.

	
uwsgi.add_probe()

	

	
uwsgi.add_rb_timer(signum, seconds[, iterations=0])

	Add an user-space (red-black tree backed) timer.

	参数:	
	signum – The signal number to raise.

	seconds – The interval at which to raise the signal.

	iterations – How many times to raise the signal. 0 (the default) means infinity.

	
uwsgi.add_cron(signal, minute, hour, day, month, weekday)

	For the time parameters, you may use the syntax -n to denote “every n”. For instance hour=-2 would declare the signal to be sent every other hour.

	参数:	
	signal – The signal number to raise.

	minute – The minute on which to run this event.

	hour – The hour on which to run this event.

	day – The day on which to run this event. This is “OR”ed with weekday.

	month – The month on which to run this event.

	weekday – The weekday on which to run this event. This is “OR”ed with day. (In accordance with the POSIX standard, 0 is Sunday, 6 is Monday)

	
uwsgi.register_rpc()

	

	
uwsgi.rpc()

	

	
uwsgi.rpc_list()

	

	
uwsgi.call()

	

	
uwsgi.sendfile()

	

	
uwsgi.set_warning_message()

	

	
uwsgi.mem()

	

	
uwsgi.has_hook()

	

	
uwsgi.logsize()

	

	
uwsgi.send_multicast_message()

	

	
uwsgi.cluster_nodes()

	

	
uwsgi.cluster_node_name()

	

	
uwsgi.cluster()

	

	
uwsgi.cluster_best_node()

	

	
uwsgi.connect()

	

	
uwsgi.connection_fd()

	

	
uwsgi.is_connected()

	

	
uwsgi.send()

	

	
uwsgi.recv()

	

	
uwsgi.recv_block()

	

	
uwsgi.recv_frame()

	

	
uwsgi.close()

	

	
uwsgi.i_am_the_spooler()

	

	
uwsgi.fcgi()

	

	
uwsgi.parsefile()

	

	
uwsgi.embedded_data(symbol_name)

	

	参数:	string – The symbol name to extract.

Extracts a symbol from the uWSGI binary image.

参见

Embedding an application in uWSGI

	
uwsgi.extract()

	

	
uwsgi.mule_msg(string[, id])

	

	参数:	
	string – The bytestring message to send.

	id – Optional - the mule ID to receive the message. If you do not specify an ID, the message will go to the first available programmed mule.

Send a message to a mule.

	
uwsgi.farm_msg()

	

	
uwsgi.mule_get_msg()

	

	返回:	A mule message, once one is received.

Block until a mule message is received and return it. This can be called from multiple threads in the same programmed mule.

	
uwsgi.farm_get_msg()

	

	
uwsgi.in_farm()

	

	
uwsgi.ready()

	

	
uwsgi.set_user_harakiri()

	

Async functions

	
uwsgi.async_sleep(seconds)

	Suspend handling the current request for seconds seconds and pass control to the next async core.

	参数:	seconds – Sleep time, in seconds.

	
uwsgi.async_connect()

	

	
uwsgi.async_send_message()

	

	
uwsgi.green_schedule()

	

	
uwsgi.suspend()

	Suspend handling the current request and pass control to the next async core clamoring for attention.

	
uwsgi.wait_fd_read(fd[, timeout])

	Suspend handling the current request until there is something to be read on file descriptor fd.
May be called several times before yielding/suspending to add more file descriptors to the set to be watched.

	参数:	
	fd – File descriptor number.

	timeout – Optional timeout (infinite if omitted).

	
uwsgi.wait_fd_write(fd[, timeout])

	Suspend handling the current request until there is nothing more to be written on file descriptor fd.
May be called several times to add more file descriptors to the set to be watched.

	参数:	
	fd – File descriptor number.

	timeout – Optional timeout (infinite if omitted).

SharedArea functions

参见

SharedArea – share memory pages between uWSGI components

	
uwsgi.sharedarea_read(pos, len) → bytes

	Read a byte string from the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	
	pos – Starting position to read from.

	len – Number of bytes to read.

	返回:	Bytes read, or None if the shared area is not enabled or the read request is invalid.

	
uwsgi.sharedarea_write(pos, str) → long

	Write a byte string into the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	
	pos – Starting position to write to.

	str – Bytestring to write.

	返回:	Number of bytes written, or None if the shared area is not enabled or the write could not be fully finished.

	
uwsgi.sharedarea_readbyte(pos) → int

	Read a single byte from the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	pos – The position to read from.

	返回:	Bytes read, or None if the shared area is not enabled or the read request is invalid.

	
uwsgi.sharedarea_writebyte(pos, val) → int

	Write a single byte into the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	
	pos – The position to write the value to.

	val (integer) – The value to write.

	返回:	The byte written, or None if the shared area is not enabled or the write request is invalid.

	
uwsgi.sharedarea_readlong(pos) → int

	Read a 64-bit (8-byte) long from the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	pos – The position to read from.

	返回:	The value read, or None if the shared area is not enabled or the read request is invalid.

	
uwsgi.sharedarea_writelong(pos, val) → int

	Write a 64-bit (8-byte) long into the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	
	pos – The position to write the value to.

	val (long) – The value to write.

	返回:	The value written, or None if the shared area is not enabled or the write request is invalid.

	
uwsgi.sharedarea_inclong(pos) → int

	Atomically increment a 64-bit long value in the uWSGI SharedArea – share memory pages between uWSGI components.

	参数:	pos – The position of the value.

	返回:	The new value at the given position, or None if the shared area is not enabled or the read request is invalid.

Erlang functions

	
uwsgi.erlang_send_message(node, process_name, message)

	

	
uwsgi.erlang_register_process(process_name, callable)

	

	
uwsgi.erlang_recv_message(node)

	

	
uwsgi.erlang_connect(address)

	

	返回:	File descriptor or -1 on error

	
uwsgi.erlang_rpc(node, module, function, argument)

	

uWSGI API - Python decorators

The uWSGI API is very low-level, as it must be language-independent.

That said, being too low-level is not a Good Thing for many languages, such as Python.

Decorators are, in our humble opinion, one of the more kick-ass features of Python, so in the uWSGI source tree you will find a module exporting a bunch of decorators that cover a good part of the uWSGI API.

Notes

Signal-based decorators execute the signal handler in the first available worker.
If you have enabled the spooler you can execute the signal handlers in it, leaving workers free to manage normal requests. Simply pass target='spooler' to the decorator.

@timer(3, target='spooler')
def hello(signum):
 print("hello")

Example: a Django session cleaner and video encoder

Let’s define a task.py module and put it in the Django project directory.

from uwsgidecorators import *
from django.contrib.sessions.models import Session
import os

@cron(40, 2, -1, -1, -1)
def clear_django_session(num):
 print("it's 2:40 in the morning: clearing django sessions")
 Session.objects.all().delete()

@spool
def encode_video(arguments):
 os.system("ffmpeg -i \"%s\" image%%d.jpg" % arguments['filename'])

The session cleaner will be executed every day at 2:40, to enqueue a video encoding we simply need to spool it from somewhere else.

from task import encode_video

def index(request):
 # launching video encoding
 encode_video.spool(filename=request.POST['video_filename'])
 return render_to_response('enqueued.html')

Now run uWSGI with the spooler enabled:

[uwsgi]
; a couple of placeholder
django_projects_dir = /var/www/apps
my_project = foobar
; chdir to app project dir and set pythonpath
chdir = %(django_projects_dir)/%(my_project)
pythonpath = %(django_projects_dir)
; load django
module = django.core.handlers:WSGIHandler()
env = DJANGO_SETTINGS_MODULE=%(my_project).settings
; enable master
master = true
; 4 processes should be enough
processes = 4
; enable the spooler (the mytasks dir must exist!)
spooler = %(chdir)/mytasks
; load the task.py module
import = task
; bind on a tcp socket
socket = 127.0.0.1:3031

The only especially relevant option is the import one. It works in the same way as module but skips the WSGI callable search.
You can use it to preload modules before the loading of WSGI apps. You can specify an unlimited number of ‘’‘import’‘’ directives.

Example: web2py + spooler + timer

First of all define your spooler and timer functions (we will call it :file:mytasks.py)

from uwsgidecorators import *

@spool
def a_long_task(args):
 print(args)

@spool
def a_longer_task(args)
 print("longer.....")

@timer(3)
def three_seconds(signum):
 print("3 seconds elapsed")

@timer(10, target='spooler')
def ten_seconds_in_the_spooler(signum):
 print("10 seconds elapsed in the spooler")

Now run web2py.

uwsgi --socket :3031 --spooler myspool --master --processes 4 --import mytasks --module web2py.wsgihandler

As soon as the application is loaded, you will see the 2 timers running in your logs.

Now we want to enqueue tasks from our web2py controllers.

Edit one of them and add

import mytasks # be sure mytasks is importable!

def index(): # this is a web2py action
 mytasks.a_long_task.spool(foo='bar')
 return "Task enqueued"

uwsgidecorators API reference

	
uwsgidecorators.postfork(func)

	uWSGI is a preforking (or “fork-abusing”) server, so you might need to execute a fixup task after each fork(). The postfork decorator is just the ticket.
You can declare multiple postfork tasks. Each decorated function will be executed in sequence after each fork().

@postfork
def reconnect_to_db():
 myfoodb.connect()

@postfork
def hello_world():
 print("Hello World")

	
uwsgidecorators.spool(func)

	The uWSGI spooler can be very useful. Compared to Celery or other queues it is very “raw”. The spool decorator will help!

@spool
def a_long_long_task(arguments):
 print(arguments)
 for i in xrange(0, 10000000):
 time.sleep(0.1)

@spool
def a_longer_task(args):
 print(args)
 for i in xrange(0, 10000000):
 time.sleep(0.5)

enqueue the tasks
a_long_long_task.spool(foo='bar',hello='world')
a_longer_task.spool({'pippo':'pluto'})

The functions will automatically return uwsgi.SPOOL_OK so they will be executed one time independently by their return status.

	
uwsgidecorators.spoolforever(func)

	Use spoolforever when you want to continuously execute a spool task.
A @spoolforever task will always return uwsgi.SPOOL_RETRY.

@spoolforever
def a_longer_task(args):
 print(args)
 for i in xrange(0, 10000000):
 time.sleep(0.5)

enqueue the task
a_longer_task.spool({'pippo':'pluto'})

	
uwsgidecorators.spoolraw(func)

	Advanced users may want to control the return value of a task.

@spoolraw
def a_controlled_task(args):
 if args['foo'] == 'bar':
 return uwsgi.SPOOL_OK
 return uwsgi.SPOOL_RETRY

a_controlled_task.spool(foo='bar')

	
uwsgidecorators.rpc("name", func)

	uWSGI uWSGI RPC Stack is the fastest way to remotely call functions in applications hosted in uWSGI instances. You can easily define exported functions with the @rpc decorator.

@rpc('helloworld')
def ciao_mondo_function():
 return "Hello World"

	
uwsgidecorators.signal(num)(func)

	You can register signals for the signal framework in one shot.

@signal(17)
def my_signal(num):
 print("i am signal %d" % num)

	
uwsgidecorators.timer(interval, func)

	Execute a function at regular intervals.

@timer(3)
def three_seconds(num):
 print("3 seconds elapsed")

	
uwsgidecorators.rbtimer(interval, func)

	Works like @timer but using red black timers.

	
uwsgidecorators.cron(min, hour, day, mon, wday, func)

	Easily register functions for the CronInterface.

@cron(59, 3, -1, -1, -1)
def execute_me_at_three_and_fiftynine(num):
 print("it's 3:59 in the morning")

Since 1.2, a new syntax is supported to simulate crontab-like intervals (every Nth minute, etc.). */5 * * * * can be specified in uWSGI like thus:

@cron(-5, -1, -1, -1, -1)
def execute_me_every_five_min(num):
 print("5 minutes, what a long time!")

	
uwsgidecorators.filemon(path, func)

	Execute a function every time a file/directory is modified.

@filemon("/tmp")
def tmp_has_been_modified(num):
 print("/tmp directory has been modified. Great magic is afoot")

	
uwsgidecorators.erlang(process_name, func)

	Map a function as an Erlang process.

@erlang('foobar')
def hello():
 return "Hello"

	
uwsgidecorators.thread(func)

	Mark function to be executed in a separate thread.

重要

Threading must be enabled in uWSGI with the enable-threads or threads <n> option.

@thread
def a_running_thread():
 while True:
 time.sleep(2)
 print("i am a no-args thread")

@thread
def a_running_thread_with_args(who):
 while True:
 time.sleep(2)
 print("Hello %s (from arged-thread)" % who)

a_running_thread()
a_running_thread_with_args("uWSGI")

You may also combine @thread with @postfork to spawn the postfork handler in a new thread in the freshly spawned worker.

@postfork
@thread
def a_post_fork_thread():
 while True:
 time.sleep(3)
 print("Hello from a thread in worker %d" % uwsgi.worker_id())

	
uwsgidecorators.lock(func)

	This decorator will execute a function in fully locked environment, making it impossible for other workers or threads (or the master, if you’re foolish or brave enough) to run it simultaneously.
Obviously this may be combined with @postfork.

@lock
def dangerous_op():
 print("Concurrency is for fools!")

	
uwsgidecorators.mulefunc([mulespec,]func)

	Offload the execution of the function to a mule. When the offloaded function is called, it will return immediately and execution is delegated to a mule.

@mulefunc
def i_am_an_offloaded_function(argument1, argument2):
 print argument1,argument2

You may also specify a mule ID or mule farm to run the function on. Please remember to register your function with a uwsgi import configuration option.

@mulefunc(3)
def on_three():
 print "I'm running on mule 3."

@mulefunc('old_mcdonalds_farm')
def on_mcd():
 print "I'm running on a mule on Old McDonalds' farm."

	
uwsgidecorators.harakiri(time, func)

	Starting from uWSGI 1.3-dev, a customizable secondary harakiri subsystem has been added. You can use this decorator to kill a worker if the given call is taking too long.

@harakiri(10)
def slow_function(foo, bar):
 for i in range(0, 10000):
 for y in range(0, 10000):
 pass

or the alternative lower level api

uwsgi.set_user_harakiri(30) # you have 30 seconds. fight!
slow_func()
uwsgi.set_user_harakiri(0) # clear the timer, all is well

Pump support

注解

Pump is not a PEP nor a standard.

Pump [http://adeel.github.com/pump/] is a new project aiming at a “better” WSGI.

An example Pump app, for your convenience:

def app(req):
 return {
 "status": 200,
 "headers": {"content_type": "text/html"},
 "body": "<h1>Hello!</h1>"
 }

To load a Pump app simply use the pump option to declare the callable.

uwsgi --http-socket :8080 -M -p 4 --pump myapp:app

myapp is the name of the module (that must be importable!) and app is the callable. The callable part is optional – by default uWSGI will search for a callable named ‘application’.

Python Tracebacker

1.3-dev 新版功能.

Usually if you want to get a real-time traceback from your app you’d have to modify your code to add a hook or entry point for that as described on the TipsAndTricks page.

Starting from 1.3-dev, uWSGI includes a similar technique allowing you to get realtime traceback via a UNIX socket.

To enable the tracebacker, add the option py-tracebacker=<socket> where <socket> is the _basename_ for the created UNIX sockets.

If you have 4 uWSGI workers and you add py-tracebacker=/tmp/tbsocket, four sockets named /tmp/tbsocket1 through /tmp/tbsocket4 will be created.

Connecting to one of them will return the current traceback of the threads running in the worker. To connect to those sockets you can use whatever application or method you like the best, but uWSGI includes a convenience option connect-and-read you can use:

uwsgi --connect-and-read /tmp/tbsocket1

An example

Let’s write a silly test application called slow.py:

import time

def dormi():
 time.sleep(60)

def dormi2():
 dormi()

def dormi3():
 dormi2()

def dormi4():
 dormi3()

def dormi5():
 dormi4()

def application(e, start_response):
 start_response('200 OK', [('Content-Type', 'text/html')])
 dormi5()
 return "hello"

And then run it:

uwsgi --http :8080 -w slow --master --processes 2 --threads 4 --py-tracebacker /tmp/tbsocket.

Then make a bunch of requests into it:

curl http://localhost:8080 &
curl http://localhost:8080 &
curl http://localhost:8080 &
curl http://localhost:8080 &

Now, while these requests are running (they’ll take pretty much exactly a minute to complete each), you can retrieve the traceback for, let’s say, the two first workers:

./uwsgi --connect-and-read /tmp/tbsocket.1
./uwsgi --connect-and-read /tmp/tbsocket.2

The tracebacker output will be something like this:

*** uWSGI Python tracebacker output ***

thread_id = uWSGIWorker1Core1 filename = ./slow.py lineno = 22 function = application line = dormi5()
thread_id = uWSGIWorker1Core1 filename = ./slow.py lineno = 14 function = dormi5 line = def dormi5(): dormi4()
thread_id = uWSGIWorker1Core1 filename = ./slow.py lineno = 13 function = dormi4 line = def dormi4(): dormi3()
thread_id = uWSGIWorker1Core1 filename = ./slow.py lineno = 12 function = dormi3 line = def dormi3(): dormi2()
thread_id = uWSGIWorker1Core1 filename = ./slow.py lineno = 11 function = dormi2 line = def dormi2(): dormi()
thread_id = uWSGIWorker1Core1 filename = ./slow.py lineno = 9 function = dormi line = time.sleep(60)

thread_id = uWSGIWorker1Core3 filename = ./slow.py lineno = 22 function = application line = dormi5()
thread_id = uWSGIWorker1Core3 filename = ./slow.py lineno = 14 function = dormi5 line = def dormi5(): dormi4()
thread_id = uWSGIWorker1Core3 filename = ./slow.py lineno = 13 function = dormi4 line = def dormi4(): dormi3()
thread_id = uWSGIWorker1Core3 filename = ./slow.py lineno = 12 function = dormi3 line = def dormi3(): dormi2()
thread_id = uWSGIWorker1Core3 filename = ./slow.py lineno = 11 function = dormi2 line = def dormi2(): dormi()
thread_id = uWSGIWorker1Core3 filename = ./slow.py lineno = 9 function = dormi line = time.sleep(60)

thread_id = MainThread filename = ./slow.py lineno = 22 function = application line = dormi5()
thread_id = MainThread filename = ./slow.py lineno = 14 function = dormi5 line = def dormi5(): dormi4()
thread_id = MainThread filename = ./slow.py lineno = 13 function = dormi4 line = def dormi4(): dormi3()
thread_id = MainThread filename = ./slow.py lineno = 12 function = dormi3 line = def dormi3(): dormi2()
thread_id = MainThread filename = ./slow.py lineno = 11 function = dormi2 line = def dormi2(): dormi()
thread_id = MainThread filename = ./slow.py lineno = 9 function = dormi line = time.sleep(60)

Combining the tracebacker with Harakiri

If a request is killed by the harakiri feature, a traceback is automatically logged during the Harakiri phase.

Aliasing Python modules

Having multiple version of a Python package/module/file is very common.

Manipulating PYTHONPATH or using virtualenvs are a way to use various versions without changing your code.

But hey, why not have an aliasing system that lets you arbitrarily map module names to files? That’s why we have the pymodule-alias option!

Case 1 - Mapping a simple file to a virtual module

Let’s say we have swissknife.py that contains lots of useful classes and functions.

It’s imported in gazillions of places in your app. Now, we’ll want to modify it, but keep the original file intact for whichever reason, and call it swissknife_mk2.

Your options would be

	to modify all of your code to import and use swissknife_mk2 instead of swissknife. Yeah, no, not’s going to happen.

	modify the first line of all your files to read import swissknife_mk2 as swissknife. A lot better but you make software for money... and time is money, so why the fuck not use something more powerful?

So don’t touch your files – just remap!

./uwsgi -s :3031 -w myproject --pymodule-alias swissknife=swissknife_mk2
Kapow! uWSGI one-two ninja punch right there!
You can put the module wherever you like, too:
./uwsgi -s :3031 -w myproject --pymodule-alias swissknife=/mnt/floppy/KNIFEFAC/SWISSK~1.PY
Or hey, why not use HTTP?
./uwsgi -s :3031 -w myproject --pymodule-alias swissknife=http://uwsgi.it/modules/swissknife_extreme.py

You can specify multiple pymodule-alias directives.

uwsgi:
 socket: :3031
 module: myproject
 pymodule-alias: funnymodule=/opt/foo/experimentalfunnymodule.py
 pymodule-alias: uglymodule=/opt/foo/experimentaluglymodule.py

Case 2 - mapping a packages to directories

You have this shiny, beautiful Django project and something occurs to you: Would it work with Django trunk? On to set up a new virtualenv... nah. Let’s just use pymodule-alias!

./uwsgi -s :3031 -w django_uwsgi --pymodule-alias django=django-trunk/django

Case 3 - override specific submodules

You have a Werkzeug project where you want to override - for whichever reason - werkzeug.test_app with one of your own devising. Easy, of course!

./uwsgi -s :3031 -w werkzeug.testapp:test_app() --pymodule-alias werkzeug.testapp=mytestapp

The PyPy plugin

Requires uWSGI >= 2.0.9

Introduction

Idea/Design: Maciej Fijalkowski

Contributors: Alex Gaynor, Armin Rigo

A new PyPy plugin based on cffi is available since uWSGI 1.9.11. The old slow cpyext-based one has been removed from the tree.

The plugin is currently supported only on Linux systems. Following releases will support other platforms as well.

The plugin loads libpypy-c.so on startup, sets the home of the PyPy installation and executes a special Python module
implementing the plugin logic. So yes, most of the plugin is implemented in Python, and theoretically this approach will allow
writing uWSGI plugins directly in Python in addition to C, C++ and Objective-C.

As of December 2014 all of the required patches to PyPy have been merged, so you can get an official nightly build (or a stable version released after december 2014)
and use it with uWSGI.

Install uWSGI with PyPy support

As always with uWSGI, you have different ways to install uWSGI based on your needs.

If you have installed pip in your PyPy home, you can run

pip install uwsgi

The uwsgi setup.py file will recognize the PyPy environment and will build a PyPy-only uWSGI binary.

In the same way, you can execute the setup.py supplied in uWSGI sources:

pypy setup.py install

(this two approaches will hardcode the pypy home in the uWSGI binary, so you will not need to set pypy-home in your options)

Or you can compile manually:

UWSGI_PROFILE=pypy make

Or you can use the network installer:

curl http://uwsgi.it/install | bash -s pypy /tmp/uwsgi

This will build a uWSGI + PyPy binary in /tmp/uwsgi.

Or you can build PyPy support as a plugin.

uwsgi --build-plugin plugins/pypy

or (old-style)

python uwsgiconfig.py --plugin plugins/pypy

The PyPy home

The uWSGI Python plugin (more exactly the CPython plugin) works by linking in libpython. That means you need to rebuild the plugin for every different version of Python. The PyPy plugin is different, as libpypy-c is loaded on startup and its symbols are resolved at runtime. This allows you to migrate to a different PyPy version on the fly.

The “downside” of this approach is that you need to inform uWSGI where your PyPy installation is at runtime (unless you installed uwsgi via pip or with the setup.py script, in such a case the home will be found automatically)

Supposing your PyPy is in /opt/pypy you can start uWSGI with:

uwsgi --http-socket :9090 --pypy-home /opt/pypy

With this command line uWSGI will search for /opt/pypy/bin/libpypy-c.so and if found, it will set that path as the PyPy home.

If your libpypy-c.so is outside of the PyPy home (and in a directory not reachable by the dynamic linker), you can use the ``–pypy-lib``option.

uwsgi --http-socket :9090 --pypy-home /opt/pypy --pypy-lib /opt/libs/libpypy-c.so

With this approach you are able to use the library from a specific PyPy build and the home from another one.

注解

Remember to prefix –pypy-lib with ./ if you want to point to a .so file in your current directory!

The PyPy setup file

As said before, most of the uWSGI PyPy plugin is written in Python. This code is loaded at runtime, and you can also customize it.

Yes, this does mean you can change the way the plugin works without rebuilding uWSGI.

A default version of the pypy_setup.py file is embedded in the uWSGI binary, and it is automatically loaded on startup.

If you want to change it, just pass another filename via the --pypy-setup option.

uwsgi --http-socket :9090 --pypy-home /opt/pypy --pypy-lib /opt/libs/libpypy-c.so --pypy-setup /home/foobar/foo.py

This Python module implements uWSGI hooks and the virtual uwsgi python module for accessing the uWSGI API from your apps.

If you want to retrieve the contents of the embedded pypy_setup.py file you can read it from the binary symbols with the print-sym convenience option.

uwsgi --print-sym uwsgi_pypy_setup

WSGI support

The plugin implements PEP 333 and PEP 3333. You can load both WSGI modules and mod_wsgi style .wsgi files.

To load a WSGI module (it must be in your Python path):

uwsgi --http-socket :9090 --pypy-home /opt/pypy --pypy-wsgi myapp

To load a WSGI file:

uwsgi --http-socket :9090 --pypy-home /opt/pypy --pypy-wsgi-file /var/www/myapp/myapp.wsgi

RPC support

You can register RPC functions using the uwsgi.register_rpc() API function, like you would with the vanilla Python plugin.

import uwsgi

def hello():
 return "Hello World"

uwsgi.register_rpc('hello', hello)

To call RPC functions, both uwsgi.rpc() and uwsgi.call() are available.

import uwsgi

uwsgi.rpc('192.168.173.100:3031', 'myfunc', 'myarg')
uwsgi.call('myfunc', 'myarg')
uwsgi.call('myfunc@192.168.173.100:3031', 'myarg')

Integration (with local RPC) has been tested between PyPy and PyPy, PyPy and JVM, and PyPy and Lua. All of these worked flawlessly... so that means you can call Java functions from PyPy.

IPython trick

Having a runtime shell for making tests is very nice to have. You can use IPython for this.

uwsgi --socket :3031 --pypy-home /opt/pypy --pypy-eval "import IPython; IPython.embed()" --honour-stdin

uWSGI API status

The following API functions, hooks and attributes are supported as of 20130526.

	uwsgi.opt

	uwsgi.post_fork_hook

	uwsgi.add_cron()

	uwsgi.setprocname()

	uwsgi.alarm()

	uwsgi.signal_registered()

	uwsgi.mule_id()

	uwsgi.worker_id()

	uwsgi.masterpid()

	uwsgi.lock()

	uwsgi.unlock()

	uwsgi.add_file_monitor()

	uwsgi.add_timer()

	uwsgi.add_rb_timer()

	uwsgi.cache_get()

	uwsgi.cache_set()

	uwsgi.cache_update()

	uwsgi.cache_del()

	uwsgi.signal()

	uwsgi.call()

	uwsgi.rpc()

	uwsgi.register_rpc()

	uwsgi.register_signal()

Options

	pypy-lib - load the specified libpypy-s.so

	pypy-setup - load the specified pypy_setup script file

	pypy-home - set the pypy home

	pypy-wsgi - load a WSGI module

	pypy-wsgi-file - load a mod_wsgi compatible .wsgi file

	pypy-eval - execute the specified string before fork()

	pypy-eval-post-fork - execute the specified string after each fork()

	pypy-exec - execute the specified python script before fork()

	pypy-exec-post-fork - execute the specified python script after each fork()

	pypy-pp/pypy-python-path/pypy-pythonpath - add the specified item to the pythonpath

	pypy-paste - load a paste.deploy .ini configuration

	pypy-ini-paste - load a paste.deploy .ini configuration and use its [uwsgi] section

Notes

	Mixing libpython with libpypy-c is explicitly forbidden. A check in the pypy plugin prevents you from doing such a hellish thing.

	The PyPy plugin is generally somewhat more “orthodox” from a Python programmer point of view, while the CPython one may be a little blasphemous in many areas. We have been able to make that choice as we do not need backward compatibility with older uWSGI releases.

	The uWSGI API is still incomplete.

	The WSGI loader does not update the uWSGI internal application list, so things like --need-app will not work. The server will report “dynamic mode” on startup even if the app has been successfully loaded. This will be fixed soon.

Running PHP scripts in uWSGI

You can safely run PHP scripts using uWSGI’s CGI support. The downside of this approach is the latency caused by the spawn of a new PHP interpreter at each request.

To get far superior performance you will want to embed the PHP interpreter in the uWSGI core and use the PHP plugin.

Building

A bunch of distros (such as Fedora, Red Hat and CentOS) include a php-embedded package.
Install it, along with php-devel and you should be able to build the php plugin:

python uwsgiconfig.py --plugin plugins/php
You can set the path of the php-config script with UWSGICONFIG_PHPPATH.
UWSGICONFIG_PHPPATH=/opt/php53/bin/php-config python uwsgiconfig.py --plugin plugins/php
or directly specify the directory in which you have installed your php environment
UWSGICONFIG_PHPDIR=/opt/php53 python uwsgiconfig.py --plugin plugins/php

If you get linkage problems (such as libraries not found), install those missing packages (ncurses-devel, gmp-devel, pcre-devel...) but be warned that if you add development packages modifying the uWSGI core behaviour (pcre is one of these) you _need_ to recompile the uWSGI server too, or strange problems will arise.

For distros that do not supply a libphp package (all Debian-based distros, for instance), you have to rebuild PHP with the --enable-embed flag to ./configure:

./configure --prefix=/usr/local --with-mysql --with-mysqli --with-pdo-mysql --with-gd --enable-mbstring --enable-embed
That's a good starting point

Ubuntu 10.04 (newer versions include official libphp-embed sapi)

Add ppa with libphp5-embed package
sudo add-apt-repository ppa:l-mierzwa/lucid-php5
Update to use package from ppa
sudo apt-get update
Install needed dependencies
sudo apt-get install php5-dev libphp5-embed libonig-dev libqdbm-dev
Compile uWSGI PHP plugin
python uwsgiconfig --plugin plugins/php

Multiple PHP versions

Sometimes (always, if you are an ISP) you might have multiple versions of PHP installed in the system. In such a case, you will need one uWSGI plugin for each version of PHP:

UWSGICONFIG_PHPDIR=/opt/php51 python uwsgiconfig.py --plugin plugins/php default php51
UWSGICONFIG_PHPDIR=/opt/php52 python uwsgiconfig.py --plugin plugins/php default php52
UWSGICONFIG_PHPDIR=/opt/php53 python uwsgiconfig.py --plugin plugins/php default php53

‘default’ is the build profile of your server core. If you build uWSGI without a specific profile, it will be ‘default’.

You can then load a specific plugin with plugins php51, etc. You cannot load multiple PHP versions in the same uWSGI process.

Running PHP apps with nginx

If you have simple apps (based on file extensions) you can use something like this:

location ~ \.php$ {
 root /your_document_root;
 include uwsgi_params;
 uwsgi_modifier1 14;
 uwsgi_pass 127.0.0.1:3030;
}

You might want to check for all of URIs containing the string .php:

location ~ \.php {
 root /your_document_root;
 include uwsgi_params;
 uwsgi_modifier1 14;
 uwsgi_pass 127.0.0.1:3030;
}

Now simply run the uWSGI server with a bunch of processes:

uwsgi -s :3030 --plugin php -M -p 4
Or abuse the adaptive process spawning with the --cheaper option
uwsgi -s :3030 --plugin php -M -p 40 --cheaper 4

This will allow up to 40 concurrent php requests but will try to spawn (or destroy) workers only when needed, maintaining a minimal pool of 4 processes.

Advanced configuration

By default, the PHP plugin will happily execute whatever script you pass to it. You may want to limit it to only a subset of extensions with the php-allowed-ext option.

uwsgi --plugin php --master --socket :3030 --processes 4 --php-allowed-ext .php --php-allowed-ext .inc

Run PHP apps without a frontend server

This is an example configuration with a “public” uWSGI instance running a PHP app and serving static files. It is somewhat complex for an example, but should be a good starting point for trickier configurations.

[uwsgi]
; load the required plugins, php is loaded as the default (0) modifier
plugins = http,0:php

; bind the http router to port 80
http = :80
; leave the master running as root (to allows bind on port 80)
master = true
master-as-root = true

; drop privileges
uid = serena
gid = serena

; our working dir
project_dir = /var/www

; chdir to it (just for fun)
chdir = %(project_dir)
; check for static files in it
check-static = %(project_dir)
; ...but skip .php and .inc extensions
static-skip-ext = .php
static-skip-ext = .inc
; search for index.html when a dir is requested
static-index = index.html

; jail our php environment to project_dir
php-docroot = %(project_dir)
; ... and to the .php and .inc extensions
php-allowed-ext = .php
php-allowed-ext = .inc
; and search for index.php and index.inc if required
php-index = index.php
php-index = index.inc
; set php timezone
php-set = date.timezone=Europe/Rome

; disable uWSGI request logging
disable-logging = true
; use a max of 17 processes
processes = 17
; ...but start with only 2 and spawn the others on demand
cheaper = 2

A more extreme example that mixes CGI with PHP using internal routing and a dash of configuration logic.

[uwsgi]
; load plugins
plugins-dir = /proc/unbit/uwsgi
plugins = cgi,php,router_uwsgi

; set the docroot as a config placeholder
docroot = /accounts/unbit/www/unbit.it

; reload whenever this config file changes
; %p is the full path of the current config file
touch-reload = %p

; set process names to something meaningful
auto-procname = true
procname-prefix-spaced = [unbit.it]

; run with at least 2 processes but increase upto 8 when needed
master = true
processes = 8
cheaper = 2

; check for static files in the docroot
check-static = %(docroot)
; check for cgi scripts in the docroot
cgi = %(docroot)

logto = /proc/unbit/unbit.log
;rotate logs when filesize is higher than 20 megs
log-maxsize = 20971520

; a funny cycle using 1.1 config file logic
for = .pl .py .cgi
 static-skip-ext = %(_)
 static-index = index%(_)
 cgi-allowed-ext = %(_)
endfor =

; map cgi modifier and helpers
; with this trick we do not need to give specific permissions to cgi scripts
cgi-helper = .pl=perl
route = \.pl$ uwsgi:,9,0
cgi-helper = .cgi=perl
route = \.cgi$ uwsgi:,9,0
cgi-helper = .py=python
route = \.py$ uwsgi:,9,0

; map php modifier as the default
route = .* uwsgi:,14,0
static-skip-ext = .php
php-allowed-ext = .php
php-allowed-ext = .inc
php-index = index.php

; show config tree on startup, just to see
; how cool is 1.1 config logic
show-config = true

uWSGI API support

Preliminary support for some of the uWSGI API has been added in 1.1. This is the list of supported functions:

	uwsgi_version()

	uwsgi_setprocname($name)

	uwsgi_worker_id()

	uwsgi_masterpid()

	uwsgi_signal($signum)

	uwsgi_rpc($node, $func, ...)

	uwsgi_cache_get($key)

	uwsgi_cache_set($key, $value)

	uwsgi_cache_update($key, $value)

	uwsgi_cache_del($key)

Yes, this means you can call Python functions from PHP using RPC.

from uwsgidecorators import *

define a python function exported via uwsgi rpc api
@rpc('hello')
def hello(arg1, arg2, arg3):
 return "%s-%s-%s" (arg3, arg2, arg1)

Python says the value is <? echo uwsgi_rpc("", "hello", "foo", "bar", "test"); ?>

Setting the first argument of uwsgi_rpc to empty, will trigger local rpc.

Or you can share the uWSGI cache...

uwsgi.cache_set("foo", "bar")

<? echo uwsgi_cache_get("foo"); ?>

Sessions over uWSGI caches (uWSGI >=2.0.4)

Starting from uWSGI 2.0.4, you can store PHP sessions in uWSGI caches.

[uwsgi]
plugins = php
http-socket = :9090
http-socket-modifier1 = 14
; create a cache with 1000 items named 'mysessions'
cache2 = name=mysessions,items=1000
; set the 'uwsgi' session handler
php-set = session.save_handler=uwsgi
; use the 'mysessions' cache for storing sessions
php-set = session.save_path=mysessions

; or to store sessions in remote caches...
; use the 'foobar@192.168.173.22:3030' cache for storing sessions
php-set = session.save_path=foobar@192.168.173.22:3030

Zend Opcode Cache (uWSGI >= 2.0.6)

For some mysterious reason, the opcode cache is disabled in the embed SAPI.

You can bypass the problem by telling the PHP engine that is running under the apache SAPI (using the php-sapi-name option):

[uwsgi]
plugins = php
php-sapi-name = apache
http-socket = :9090
http-socket-modifier1 = 14

ForkServer (uWSGI >= 2.1)

The Fork Server (sponsored by Intellisurvey) is one of the main features of the 2.1 branch. It allows you to inherit your vassals from specific parents instead of the Emperor.

The PHP plugin has been extended to support a fork-server so you can have a pool of php base instances from which vassals can fork(). This means you can share the opcode cache and do other tricks.

Thanks to the vassal attributes in uWSGI 2.1 we can choose from wich parent a vassal will call fork().

注解

You need Linux kernel >= 3.4 (the feature requires PR_SET_CHILD_SUBREAPER) for “solid” use. Otherwise your Emperor will not be able to correctly wait() on children (and this will slow-down your vassal’s respawns, and could lead to various form of race conditions).

In the following example we will spawn 3 vassals, one (called base.ini) will initialize a PHP engine, while the others two will fork() from it.

[uwsgi]
; base.ini

; force the sapi name to 'apache', this will enable the opcode cache
early-php-sapi-name = apache
; load a php engine as soon as possible
early-php = true

; ... and wait for fork() requests on /run/php_fork.socket
fork-server = /run/php_fork.socket

then the 2 vassals

[emperor]
; tell the emperor the address of the fork server
fork-server = /run/php_fork.socket

[uwsgi]
; bind to port :4001
socket = 127.0.0.1:4001
; force all requests to be mapped to php
socket-modifier1 = 14
; enforce a DOCUMENT_ROOT
php-docroot = /var/www/one
; drop privileges
uid = one
gid = one

[emperor]
; tell the emperor the address of the fork server
fork-server = /run/php_fork.socket

[uwsgi]
; bind to port :4002
socket = 127.0.0.1:4002
; force all requests to be mapped to php
socket-modifier1 = 14
; enforce a DOCUMENT_ROOT
php-docroot = /var/www/two
; drop privileges
uid = two
gid = two

The two vassals are completely unrelated (even if they fork from the same parent), so you can drop privileges, have different process policies and so on.

Now spawn the Emperor:

uwsgi --emperor phpvassals/ --emperor-collect-attr fork-server --emperor-fork-server-attr fork-server

The --emperor-collect-attr forces the Emperor to search for the ‘fork-server’ attribute in the [emperor] section of the vassal file, while --emperor-fork-server-attr tells it to use this parameter as the address of the fork server.

Obviously if a vassal does not expose such an attribute, it will normally fork() from the Emperor.

uWSGI Perl support (PSGI)

PSGI is the equivalent of WSGI in the Perl world.

	http://plackperl.org/

	https://github.com/plack/psgi-specs/blob/master/PSGI.pod

The PSGI plugin is officially supported and has an officially assigned uwsgi modifier, 5. So as usual, when you’re in the business of dispatching requests to Perl apps, set the modifier1 value to 5 in your web server configuration.

Compiling the PSGI plugin

You can build a PSGI-only uWSGI server using the supplied buildconf/psgi.ini file. Make sure that
the ExtUtils::Embed module and its prerequisites are installed before building the PSGI plugin.

python uwsgiconfig --build psgi
or compile it as a plugin...
python uwsgiconfig --plugin plugins/psgi
and if you have not used the default configuration
to build the uWSGI core, you have to pass
the configuration name you used while doing that:
python uwsgiconfig --plugin plugins/psgi core

or (as always) you can use the network installer:

curl http://uwsgi.it/install | bash -s psgi /tmp/uwsgi

to have a single-file uwsgi binary with perl support in /tmp/uwsgi

Usage

There is only one option exported by the plugin: psgi <app>

You can simply load applications using

./uwsgi -s :3031 -M -p 4 --psgi myapp.psgi -m
or when compiled as a plugin,
./uwsgi --plugins psgi -s :3031 -M -p 4 --psgi myapp.psgi -m

Tested PSGI frameworks/applications

The following frameworks/apps have been tested with uWSGI:

	MojoMojo [http://mojomojo.org/]

	Mojolicious [http://mojolicio.us/]

	Mojolicious+perlbrew+uWSGI+nginx [https://github.com/kraih/mojo/wiki/nginx-&-uwsgi(psgi)-&-perlbrew-&-mojolicious] install bundle

Multi-app support

You can load multiple almost-isolated apps in the same uWSGI process using the mount option or using the UWSGI_SCRIPT/UWSGI_FILE request variables.

[uwsgi]

mount = app1=foo1.pl
mount = app2=foo2.psgi
mount = app3=foo3.pl

server {
 server_name example1.com;
 location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_param UWSGI_APPID app1;
 uwsgi_param UWSGI_SCRIPT foo1.pl;
 uwsgi_modifier1 5;
 }
}

server {
 server_name example2.com;
 location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_param UWSGI_APPID app2;
 uwsgi_param UWSGI_SCRIPT foo2.psgi;
 uwsgi_modifier1 5;
 }
}

server {
 server_name example3.com;
 location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_param UWSGI_APPID app3;
 uwsgi_param UWSGI_SCRIPT foo3.pl;
 uwsgi_modifier1 5;
 }
}

The auto reloader (from uWSGI 1.9.18)

The option –perl-auto-reload <n> allows you to instruct uWSGI to monitor every single module imported by the perl vm.

Whenever one of the module changes, the whole instance will be (gracefully) reloaded.

The monitor works by iterating over %INC after a request is served and the specified number of seconds (from the last run) is elapsed (this number of seconds is the value of the option)

This could look sub-optimal (you wil get the new content starting from from the following request) but it is the more solid (and safe) approach for the way perl works.

If you want to skip specific files from the monitoring, just add them with –perl-auto-reload-ignore

Notes

	Async support should work out-of-the-box.

	Threads are supported on ithreads-enabled perl builds. For each app, a new interpreter will be created for each thread. This shouldn’t be too different from a simple multi-process fork()-based subsystem.

	There are currently no known memory leaks.

Real world example, HTML::Mason

	Install the HTML::Mason PSGI handler from CPAN and create a directory for your site.

cpan install HTML::Mason::PSGIHandler
mkdir mason

	Create mason/index.html:

% my $noun = 'World';
% my $ua = $r->headers_in;
% foreach my $hh (keys %{$ua}) {
 <% $hh %>

% }
Hello <% $noun %>!

How are ya?

Request <% $r->method %> <% $r->uri %>

	Create the PSGI file (mason.psgi):

use HTML::Mason::PSGIHandler;

my $h = HTML::Mason::PSGIHandler->new(
 comp_root => "/Users/serena/uwsgi/mason", # required
);

my $handler = sub {
 my $env = shift;
 $h->handle_psgi($env);
};

Pay attention to comp_root, it must be an absolute path!

	Now run uWSGI:

./uwsgi -s :3031 -M -p 8 --psgi mason.psgi -m

	Then go to /index.html with your browser.

Ruby support

	Ruby API support

Starting from version 0.9.7-dev a Ruby (Rack/Rails) plugin is officially available. The official modifier number for Ruby apps is 7, so remember to set it in your web server configuration.

The plugin can be embedded in the uWSGI core or built as a dynamically loaded plugin.

Some uWSGI standard features still aren’t supported by the plugin, such as:

	UDP request management

	SharedArea – share memory pages between uWSGI components (support on the way)

	The uWSGI queue framework

See the Ruby API support page for a list of features currently supported.

Building uWSGI for Ruby support

You can find rack.ini in the buildconf directory. This configuration will build uWSGI with a Ruby interpreter embedded. To build uWSGI with this configuration, you’ll need the Ruby headers/development package.

python uwsgiconfig.py --build rack

The resulting uWSGI binary can run Ruby apps.

A rackp.ini build configuration also exists; this will build uWSGI with Ruby support as a plugin; in this case remember to invoke uWSGI with the plugins=rack option.

A note regarding memory consumption

By default the memory management of this plugin is very aggressive (as Ruby can easily devour memory like it was going out of fashion). The Ruby garbage collector is invoked after every request by default. This may hurt your performance if your app creates lots of objects on every request. You can tune the frequency of the collection with the OptionRubyGcFreq option. As usual, there is no one-value-fits-all setting for this, so experiment a bit.

If your app leaks memory without control, consider limiting the number of requests a worker can manage before being restarted with the max-requests option. Using limit-as can help too.

A note regarding threads and fibers

Adding threading support in Ruby 1.8 is out of discussion. Thread support in this versions is practically useless in a server like uWSGI.
Ruby 1.9 has a threading mode very similar to the Python one, its support is available starting from uWSGI 1.9.14 using the “rbthreads” plugin.

Fibers are a new feature of Ruby 1.9. They are an implementation of coroutines/green threads/stop resume/cooperative multithreading, or whatever you’d like to call this class of funny technologies. See FiberLoop.

Running Rack applications on uWSGI

This example shows you how to run a Sinatra application on uWSGI.

config.ru

require 'rubygems'
require 'sinatra'

get '/hi' do
"Hello World!"
end

run Sinatra::Application

Then invoke uWSGI (with --plugins if you built Ruby support as a plugin):

./uwsgi -s :3031 -M -p 4 -m --post-buffering 4096 --rack config.ru
./uwsgi --plugins rack -s :3031 -M -p 4 -m --post-buffering 4096 --rack config.ru

注解

post-buffering is required by the Rack specification.

注解

As Sinatra has a built-in logging system, you may wish to disable uWSGI’s logging of requests with the disable-logging option.

Running Ruby on Rails applications on uWSGI

As writing formal documentation isn’t very interesting, here’s a couple of examples of Rails apps on uWSGI.

Running Typo

sudo gem install typo
typo install /tmp/mytypo
./uwsgi -s :3031 --lazy-apps --master --processes 4 --memory-report --rails /tmp/mytypo --post-buffering 4096 --env RAILS_ENV=production

–lazy-apps is vital here as typo (like a lot of apps) is not fork-friendly (it does not expect is loaded in the master and then fork() is called). With this option
the app is fully loaded one-time per-worker.

Nginx configuration:

location / {
 root "/tmp/mytypo/public";
 include "uwsgi_params";
 uwsgi_modifier1 7;
 if (!-f $request_filename) {
 uwsgi_pass 127.0.0.1:3031;
 }
}

Running Radiant

sudo gem install radiant
radiant /tmp/myradiant
cd /tmp/myradiant
(edit config/database.yml to fit)
rake production db:bootstrap
./uwsgi -s :3031 -M -p 2 -m --rails /tmp/myradiant --post-buffering 4096 --env RAILS_ENV=production

Apache configuration (with static paths mapped directly):

DocumentRoot /tmp/myradiant/public

<Directory /tmp/myradiant/public>
 Allow from all
</Directory>

<Location />
 uWSGISocket 127.0.0.1:3032
 SetHandler uwsgi-handler
 uWSGIForceScriptName /
 uWSGImodifier1 7
</Location>

<Location /images>
 SetHandler default-handler
</Location>

<Location /stylesheets>
 SetHandler default-handler
</Location>

<Location /javascripts>
 SetHandler default-handler
</Location>

Rails and SSL

You may wish to use the HTTPS / UWSGI_SCHEME https uwsgi protocol parameters to inform the app that it is running under HTTPS.

For Nginx:

uwsgi_param HTTPS on; # Rails 2.x apps
uwsgi_param UWSGI_SCHEME https; # Rails 3.x apps

Ruby API support

Status

The uWSGI API for Ruby is still incomplete (QueueFramework, SharedArea, custom routing and SNMP being the most missing players). The DSL will be extended as soon as the various API calls are ready.

Currently available API functions and constants (available in the UWSGI ruby module) are

	UWSGI.suspend

	UWSGI.masterpid

	UWSGI.async_sleep

	UWSGI.wait_fd_read

	UWSGI.wait_fd_write

	UWSGI.async_connect

	UWSGI.signal

	UWSGI.register_signal

	UWSGI.register_rpc

	UWSGI.signal_registered

	UWSGI.signal_wait

	UWSGI.signal_received

	UWSGI.add_cron

	UWSGI.add_timer

	UWSGI.add_rb_timer

	UWSGI.add_file_monitor

	UWSGI.cache_get

	UWSGI.cache_get!

	UWSGI.cache_exists

	UWSGI.cache_exists?

	UWSGI.cache_del

	UWSGI.cache_set

	UWSGI.cache_set

	UWSGI.cache_set!

	UWSGI.cache_update

	UWSGI.cache_update!

	UWSGI.setprocname

	UWSGI.set_warning_message

	UWSGI.lock

	UWSGI.unlock

	UWSGI.mem

	UWSGI.mule_get_msg

	UWSGI.request_id

	UWSGI.mule_id

	UWSGI.mule_msg

	UWSGI.worker_id

	UWSGI.log

	UWSGI.logsize

	UWSGI.i_am_the_spooler

	UWSGI.send_to_spooler

	UWSGI.spool

	UWSGI::OPT

	UWSGI::VERSION

	UWSGI::HOSTNAME

	UWSGI::NUMPROC

	UWSGI::PIDFILE

	UWSGI::SPOOL_OK

	UWSGI::SPOOL_RETRY

	UWSGI::SPOLL_IGNORE

uWSGI DSL

In parallel to the uWSGI API Python decorators, a DSL for Ruby is available, allowing elegant access to the uWSGI API.

The module is available as uwsgidsl.rb in the source distribution. You can put this code in your config.ru file, or use the rbrequire option to auto-include it.

timer(n, block)

Execute code at regular intervals.

timer 30 do |signum|
 puts "30 seconds elapsed"
end

rbtimer(n, block)

As timer, but using a red-black tree timer.

rbtimer 30 do |signum|
 puts "30 seconds elapsed"
end

filemon(path, block)

Execute code at file modifications.

filemon '/tmp' do |signum|
 puts "/tmp has been modified"
end

cron(hours, mins, dom, mon, dow, block)

Execute a task periodically using the CronInterface.

cron 20,16,-1,-1,-1 do |signum|
 puts "It's time for tea."
end

signal(signum, block)

Register code as a signal handler for the SignalFramework.

signal 17 do |signum|
 puts "Signal #{signum} was invoked."
end

postfork(block)

Execute code after each fork().

postfork do
 puts "uWSGI server called fork()"
end

rpc(name, block)

Register code as a uWSGI RPC Stack function.

rpc 'helloworld' do
 return "Hello World"
end

rpc 'advancedhelloworld' do |x,y|
 return "x = #{x}, y = #{y}"
end

mule(id?, block)

Execute code as a Mule brain.

mule 1 do # Run in mule 1
 puts "I am the mule #{UWSGI.mule_id}"
end

mule do # Run in first available mule
 puts "I am the mule #{UWSGI.mule_id}"
end

After the function returns, the mule will be brainless. To avoid this, put the code in a loop, or use muleloop.

muleloop(id?, block)

Execute code in a mule in looped context.

muleloop 3 do
 puts "I am the mule #{UWSGI.mule_id}"
 sleep(2)
end

SpoolProc

A subclass of Proc, allowing you to define a task to be executed in the Spooler.

define the function
my_long_running_task = SpoolProc.new {|args|
 puts "I am a task"
 UWSGI::SPOOL_OK
}

spool it
my_long_running_task.call({'foo' => 'bar', 'one' => 'two'})

MuleFunc

Call a function from any process (such as a worker), but execute in a mule

i_am_a_long_running_function = MuleFunc.new do |pippo, pluto|
 puts "i am mule #{UWSGI.mule_id} #{pippo}, #{pluto}"
end

i_am_a_long_running_function.call("serena", "alessandro")

The worker calls i_am_a_long_running_function() but the function will be execute asynchronously in the first available mule.

If you want to run the function on a specific mule, add an ID parameter. The following would only use mule #5.

i_am_a_long_running_function = MuleFunc.new 5 do |pippo,pluto|
 puts "i am mule #{UWSGI.mule_id} #{pippo}, #{pluto}"
end

i_am_a_long_running_function.call("serena", "alessandro")

Real world usage

A simple Sinatra app printing messages every 30 seconds:

This is config.ru

require 'rubygems'
require 'sinatra'
require 'uwsgidsl'

timer 30 do |signum|
 puts "30 seconds elapsed"
end

get '/hi' do
 "Hello World!"
end

run Sinatra::Application

Or you can put your code in a dedicated file (mytasks.rb here)

require 'uwsgidsl'

timer 30 do |signum|
 puts "30 seconds elapsed"
end

timer 60 do |signum|
 puts "60 seconds elapsed"
end

and then load it with

uwsgi --socket :3031 --rack config.ru --rbrequire mytasks.rb --master --processes 4

Using Lua/WSAPI with uWSGI

Updated for uWSGI 2.0

Building the plugin

The lua plugin is part of the official uWSGI distribution (official modifier 6) and it is availale in the plugins/lua directory.

The plugin support lua 5.1, lua 5.2 and luajit.

By default lua 5.1 is assumed

As always there are various ways to build and install Lua support:

from sources directory:

make lua

with the installer (the resulting binary will be in /tmp/uwsgi)

curl http://uwsgi.it/install | bash -s lua /tmp/uwsgi

or you can build it as a plugin

python uwsgiconfig.py --plugin plugins/lua

or (if you already have a uwsgi binary)

uwsgi --build-plugin plugins/lua

The build system (check uwsgiplugin.py in plugins/lua directory for more details) uses pkg-config to find headers and libraries.

You can specify the pkg-config module to use with the UWSGICONFIG_LUAPC environment variable.

As an example

UWSGICONFIG_LUAPC=lua5.2 make lua

will build a uwsgi binary for lua 5.2

as well as

UWSGICONFIG_LUAPC=luajit make lua

will build a binary with luajit

If you do not want to rely on the pkg-config tool you can manually specify the includes and library directories as well as the lib name with the following environment vars:

UWSGICONFIG_LUAINC=<directory>
UWSGICONFIG_LUALIBPATH=<directory>
UWSGICONFIG_LUALIB=<name>

Why Lua ?

If you came from other object oriented languages, you may find lua for web development a strange choice.

Well, you have to consider one thing when exploring Lua: it is fast, really fast and consume very few resources.

The uWSGI plugin allows you to write web applications in lua, but another purpose (if not the main one) is using Lua to
extend the uWSGI server (and your application) using the signals framework, the rpc subsystem or the simple hooks engine.

If you have slow-area in your code (independently by the language used) consider rewriting them in Lua (before dealing with C)
and use uWSGI to safely call them.

Your first WSAPI application

We will use the official WSAPI example, let’s call it pippo.lua:

function hello(wsapi_env)
 local headers = { ["Content-type"] = "text/html" }
 local function hello_text()
 coroutine.yield("<html><body>")
 coroutine.yield("<p>Hello Wsapi!</p>")
 coroutine.yield("<p>PATH_INFO: " .. wsapi_env.PATH_INFO .. "</p>")
 coroutine.yield("<p>SCRIPT_NAME: " .. wsapi_env.SCRIPT_NAME .. "</p>")
 coroutine.yield("</body></html>")
 end
 return 200, headers, coroutine.wrap(hello_text)
end

return hello

Now run uWSGI with the lua option (remember to add --plugins lua as the
first command line option if you are using it as a plugin)

./uwsgi --http :8080 --http-modifier1 6 --lua pippo.lua

This command line starts an http router that forward requests to a single worker in which pippo.lua is loaded.

As you can see the modifier 6 is enforced.

Obviously you can directly attach uWSGI to your frontline webserver (like nginx) and bind it to a uwsgi socket:

./uwsgi --socket 127.0.0.1:3031 --lua pippo.lua

(remember to set modifier1 to 6 in your webserver of choice)

Concurrency

Basically Lua is available in all of the supported uWSGI concurrency models

you can go multiprocess:

./uwsgi --socket 127.0.0.1:3031 --lua pippo.lua --processes 8 --master

or multithread:

./uwsgi --socket 127.0.0.1:3031 --lua pippo.lua --threads 8 --master

or both

./uwsgi --socket 127.0.0.1:3031 --lua pippo.lua --processes 4 --threads 8 --master

you can run it in coroutine mode (see below) using uGreen – uWSGI Green Threads as the suspend engine

./uwsgi --socket 127.0.0.1:3031 --lua pippo.lua --async 1000 --ugreen

Both threading and async modes will initialize a lua state each (you can see it as a whole independent lua VM)

Abusing coroutines

One of the most exciting feature of Lua are coroutines (cooperative
multithreading) support. uWSGI can benefit from this using its async engine. The
Lua plugin will initialize a lua_State for every async core. We will use a
CPU-bound version of our pippo.lua to test it:

function hello(wsapi_env)
 local headers = { ["Content-type"] = "text/html" }

 local function hello_text()
 coroutine.yield("<html><body>")
 coroutine.yield("<p>Hello Wsapi!</p>")
 coroutine.yield("<p>PATH_INFO: " .. wsapi_env.PATH_INFO .. "</p>")
 coroutine.yield("<p>SCRIPT_NAME: " .. wsapi_env.SCRIPT_NAME .. "</p>")
 for i=0, 10000, 1 do
 coroutine.yield(i .. "
")
 end
 coroutine.yield("</body></html>")
 end

 return 200, headers, coroutine.wrap(hello_text)
end

return hello

and run uWSGI with 8 async cores...

./uwsgi --socket :3031 --lua pippo.lua --async 8

And just like that, you can manage 8 concurrent requests within a single worker!

Lua coroutines do not work over C stacks (meaning you cannot manage them with your C code), but thanks to uGreen – uWSGI Green Threads (the uWSGI official coroutine/greenthread engine)
you can bypass this limit.

Thanks to uGreen you can use the uWSGI async API in your Lua apps and gain a very high level of concurrency.

uwsgi.async_connect
uwsgi.wait_fd_read
uwsgi.wait_fd_write
uwsgi.is_connected
uwsgi.send
uwsgi.recv
uwsgi.close
uwsgi.ready_fd

Threading example

The Lua plugin is “thread-safe” as uWSGI maps a lua_State to each internal
pthread. For example you can run the Sputnik [http://sputnik.freewisdom.org/] wiki engine very easily. Use
LuaRocks [http://www.luarocks.org/] to install Sputnik and versium-sqlite3. A database-backed storage
is required as the default filesystem storage does not support being accessed
by multiple interpreters concurrently. Create a wsapi compliant file:

require('sputnik')
return sputnik.wsapi_app.new{
 VERSIUM_STORAGE_MODULE = "versium.sqlite3",
 VERSIUM_PARAMS = {'/tmp/sputnik.db'},
 SHOW_STACK_TRACE = true,
 TOKEN_SALT = 'xxx',
 BASE_URL = '/',
}

And run your threaded uWSGI server

./uwsgi --plugins lua --lua sputnik.ws --threads 20 --socket :3031

A note on memory

As we all know, uWSGI is parsimonious with memory. Memory is a precious
resource. Do not trust software that does not care for your memory! The Lua
garbage collector is automatically called (by default) after each request.

You can tune the frequency of the GC call with the --lua-gc-freq <n> option, where n
is the number of requests after the GC will be called:

[uwsgi]
plugins = lua
socket = 127.0.0.1:3031
processes = 4
master = true
lua = foobar.lua
; run the gc every 10 requests
lua-gc-freq = 10

RPC and signals

The Lua shell

Using Lua as ‘configurator’

uWSGI api status

JVM in the uWSGI server (updated to 1.9)

	The JWSGI interface

	The Clojure/Ring JVM request handler

Introduction

As of uWSGI 1.9, you can have a full, thread-safe and versatile JVM embedded in
the core. All of the plugins can call JVM functions (written in Java, JRuby,
Jython, Clojure, whatever new fancy language the JVM can run) via the RPC
subsystem or using uWSGI The uWSGI Signal Framework The JVM plugin itself can
implement request handlers to host JVM-based web applications. Currently
The JWSGI interface and The Clojure/Ring JVM request handler (Clojure) apps are supported. A long-term goal is
supporting servlets, but it will require heavy sponsorship and funding (feel
free to ask for more information about the project at info@unbit.it).

Building the JVM support

First of all, be sure to have a full JDK distribution installed. The uWSGI
build system will try to detect common JDK setups (Debian, Ubuntu, Centos,
OSX...), but if it is not able to find a JDK installation it will need some
information from the user (see below). To build the JVM plugin simply run:

python uwsgiconfig.py --plugin plugins/jvm default

Change ‘default’, if needed, to your alternative build profile. For example if
you have a Perl/PSGI monolithic build just run

python uwsgiconfig.py --plugin plugins/jvm psgi

or for a fully-modular build

python uwsgiconfig.py --plugin plugins/jvm core

If all goes well the jvm_plugin will be built. If the build system cannot find
a JDK installation you will ned to specify the path of the headers directory
(the directory containing the jni.h file) and the lib directory (the directory
containing libjvm.so). As an example, if jni.h is in /opt/java/includes and
libjvm.so is in /opt/java/lib/jvm/i386, run the build system in that way:

UWSGICONFIG_JVM_INCPATH=/opt/java/includes UWSGICONFIG_JVM_LIBPATH=/opt/java/lib/jvm/i386 python uwsgiconfig --plugin plugins/jvm

After a successful build, you will get the path of the uwsgi.jar file. That
jarball containes classes to access the uWSGI API, and you should copy it into
your CLASSPATH or at the very least manually load it from uWSGI’s
configuration.

Exposing functions via the RPC subsystem

In this example we will export a “hello” Java function (returning a string) and
we will call it from a Python WSGI application. This is our base configuration
(we assume a modular build).

[uwsgi]
plugins = python,jvm
http = :9090
wsgi-file = myapp.py
jvm-classpath = /opt/uwsgi/lib/uwsgi.jar

The jvm-classpath is an option exported by the JVM plugin that allows you
to add directories or jarfiles to your classpath. You can specify as many
jvm-classpath options you need. Here we are manually adding uwsgi.jar
as we did not copy it into our CLASSPATH. This is our WSGI example script.

import uwsgi

def application(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 yield "<h1>"
 yield uwsgi.call('hello')
 yield "</h1>"

Here we use uwsgi.call() instead of uwsgi.rpc() as a shortcut (little
performance gain in options parsing). We now create our Foobar.java class. Its
static void main() function will be run by uWSGI on startup.

public class Foobar {
 static void main() {

 // create an anonymous function
 uwsgi.RpcFunction rpc_func = new uwsgi.RpcFunction() {
 public String function(String... args) {
 return "Hello World";
 }
 };

 // register it in the uWSGI RPC subsystem
 uwsgi.register_rpc("hello", rpc_func);
 }
}

The uwsgi.RpcFunction interface allows you to easily write uWSGI-compliant
RPC functions. Now compile the Foobar.java file:

javac Foobar.java

(eventually fix the classpath or pass the uwsgi.jar path with the -cp option)
You now have a Foobar.class that can be loaded by uWSGI. Let’s complete the
configuration...

[uwsgi]
plugins = python,jvm
http = :9090
wsgi-file = myapp.py
jvm-classpath = /opt/uwsgi/lib/uwsgi.jar
jvm-main-class = Foobar

The last option (jvm-main-class) will load a java class and will execute
its main() method. We can now visit localhost:9090 and we should see the
Hello World message.

Registering signal handlers

In the same way as the RPC subsystem you can register signal handlers. You
will be able to call Java functions on time events, file modifications, cron...
Our Sigbar.java:

public class Sigbar {
 static void main() {

 // create an anonymous function
 uwsgi.SignalHandler sh = new uwsgi.SignalHandler() {
 public void function(int signum) {
 System.out.println("Hi, i am the signal " + signum);
 }
 };

 // register it in the uWSGI signal subsystem
 uwsgi.register_signal(17, "", sh);
 }
}

uwsgi.SignalHandler is the interface for signal handlers.

Whenever signal 17 is rased, the corresponding JVM function will be run.
Remember to compile the file, load it in uWSGI and to enable to master process
(without it the signal subsystem will not work).

The fork() problem and multithreading

The JVM is not fork() friendly. If you load a virtual machine in the master
and then you fork() (like generally you do in other languages) the children JVM
will be broken (this is mainly because threads required by the JVM are not
inherited). For that reason a JVM for each worker, mule and spooler is
spawned. Fortunately enough, differently from the vast majority of other
platforms, the JVM has truly powerful multithreading support. uWSGI supports
it, so if you want to run one of the request handlers (JWSGI, Clojure/Ring)
just remember to spawn a number of threads with the --threads option.

How does it work?

uWSGI embeds the JVM using the JNI interface. Unfortunately we cannot rely on
JVM’s automatic garbage collector, so we have to manually unreference all of
the allocated objects. This is not a problem from a performance and usage point
of view, but makes the development of plugins a bit more difficult compared to
other JNI-based products. Fortunately the current API simplifies that task.

Passing options to the JVM

You can pass specific options to the JVM using the --jvm-opt option.

For example to limit heap usage to 10 megabytes:

[uwsgi]
...
jvm-opt = -Xmx10m

Loading classes (without main method)

We have already seen how to load classes and run their main() method on
startup. Often you will want to load classes only to add them to the JVM
(allowing access to external modules needing them) To load a class you can use
--jvm-class.

[uwsgi]
...
jvm-class = Foobar
jvm-class = org/unbit/Unbit

Remember class names must use the ‘/’ format instead of dots! This rule applies
to --jvm-main-class too.

Request handlers

Although the Java(TM) world has its J2EE environment for deploying web
applications, you may want to follow a different approach. The uWSGI project
implements lot of features that are not part of J2EE (and does not implement
lot of features that are a strong part of J2EE), so you may find its approach
more suited for your setup (or taste, or skills).

The JVM plugin exports an API to allow hooking web requests. This approach
differs a bit from “classic” way uWSGI works. The JVM plugin registers itself
as a handler for modifier1==8, but will look at the modifier2 value to know
which of its request handlers has to manage it. For example the The Clojure/Ring JVM request handler
plugin registers itself in the JVM plugin as the modifier2 number ‘1’. So to
pass requests to it you need something like that:

[uwsgi]
http = :9090
http-modifier1 = 8
http-modifier2 = 1

or with nginx:

location / {
 include uwsgi_params;
 uwsgi_modifier1 8;
 uwsgi_modifier2 1;
 uwsgi_pass /tmp/uwsgi.socket;
}

Currently there are 2 JVM request handlers available:

	The JWSGI interface

	The Clojure/Ring JVM request handler (for Clojure)

As already said, the idea of developing a servlet request handler is there, but
it will require a sponsorship (aka. money) as it’ll be a really big effort.

Notes

	You do not need special jar files to use UNIX sockets – the JVM plugin has
access to all of the uWSGI features.

	You may be addicted to the log4j module. There is nothing wrong with it, but
do take a look at uWSGI’s logging capabilities (less resources needed, less
configuration, and more NoEnterprise)

	The uWSGI API access is still incomplete (will be updated after 1.9)

	The JVM does not play well in environments with limited address space. Avoid
using --limit-as if you load the JVM in your instances.

The JWSGI interface

注解

JWSGI is not a standard. Yet. If you like JWSGI, why not send an RFC to the uWSGI mailing list. We have no specific interest in a standard, but who knows...

JWSGI is a port of the WSGI/PSGI/Rack way of thinking for Java.

If, for some obscure reason, you’d feel like developing apps with JVM languages
and you don’t feel like deploying a huge servlet stack, JWSGI should be up your
alley.

It is a very simple protocol: you call a public method that takes a HashMap
as its sole argument. This HashMap contains CGI style variables and
jwsgi.input containing a Java InputStream object.

The function has to returns an array of 3 Objects:

	status (java.lang.Integer) (example: 200)

	headers (HashMap) (example: {“Content-type”: “text/html”, “Server”:
“uWSGI”, “Foo”: [“one”,”two”]})

	body (may be a String, an array of Strings, a File or an InputStream
object)

Example

A simple JWSGI app looks like this:

import java.util.*;
public class MyApp {

 public static Object[] application(HashMap env) {

 int status = 200;

 HashMap<String,Object> headers = new HashMap<String,Object>();
 headers.put("Content-type", "text/html");
 // a response header can have multiple values
 String[] servers = {"uWSGI", "Unbit"};
 headers.put("Server", servers);

 String body = "<h1>Hello World</h1>" + env.get("REQUEST_URI");

 Object[] response = { status, headers, body };

 return response;
 }
}

How to use it ?

You need both the ‘jvm’ plugin and the ‘jwsgi’ plugin. A build profile named
‘jwsgi’, is available in the project to allow a monolithic build with
jvm+jwsgi:

UWSGI_PROFILE=jwsgi make

	Compile your class with javac.

javac MyApp.java

	Run uWSGI and specify the method to run (in the form class:method)

./uwsgi --socket /tmp/uwsgi.socket --plugins jvm,jwsgi --jwsgi
MyApp:application --threads 40

This will run a JWSGI application on UNIX socket /tmp/uwsgi.socket with 40
threads.

Reading request body

The jwsgi.input item is an uwsgi.RequestBody object (subclass of
java/io/InputStream). You it to access the request body.

import java.util.*;
public class MyApp {

 public static Object[] application(HashMap env) {

 int status = 200;

 HashMap<String,Object> headers = new HashMap<String,Object>();
 headers.put("Content-type", "text/plain");

 int body_len = Integer.parseInt((String) env.get("CONTENT_LENGTH"));
 byte[] chunk = new byte[body_len];

 uwsgi.RequestBody input = (uwsgi.RequestBody) env.get("jwsgi.input");

 int len = input.read(chunk);

 System.out.println("read " + len + " bytes");

 String body = new String(chunk, 0, len);

 Object[] response = { status, headers, body };

 return response;
 }
}

Pay attention to the use of read(byte[]) instead of the classical
read(). The latter inefficiently reads one byte at time, while the former
reads a larger chunk at a time.

JWSGI and Groovy

Being low-level, the JWSGI standard can be used as-is in other languages
running on the JVM. As an example this is a “Hello World” Groovy example:

static def Object[] application(java.util.HashMap env) {
 def headers = ["Content-Type":"text/html", "Server":"uWSGI"]
 return [200, headers, "<h1>Hello World</h1"]
}

One serving a static file:

static def Object[] application(java.util.HashMap env) {
 def headers = ["Content-Type":"text/plain", "Server":"uWSGI"]
 return [200, headers, new File("/etc/services")]
}

The second approach is very efficient as it will abuse uWSGI internal
facilities. For example if you have offloading enabled, your worker thread will
be suddenly freed. To load Groovy code, remember to compile it:

groovyc Foobar.groovy

Then run it:

./uwsgi --socket /tmp/uwsgi.socket --plugins jvm,jwsgi --jwsgi Foobar:application --threads 40

JWSGI and Scala

Like Groovy, you can write JWSGI apps with Scala. You only need the entry point
function to use native Java objects:

object HelloWorld {
 def application(env:java.util.HashMap[String, Object]): Array[Object] = {
 var headers = new java.util.HashMap[String, Object]()
 headers.put("Content-Type", "text/html")
 headers.put("Server", "uWSGI")
 return Array(200:java.lang.Integer, headers , "Hello World")
 }
}

Or in a more Scala-ish way:

object HelloWorld {
 def application(env:java.util.HashMap[String, Object]): Array[Object] = {
 val headers = new java.util.HashMap[String, Object]() {
 put("Content-Type", "text/html")
 put("Server", Array("uWSGI", "Unbit"))
 }
 return Array(200:java.lang.Integer, headers , "Hello World")
 }
}

Once compiled with scalac <filename> you run like this:

./uwsgi --socket /tmp/uwsgi.socket --plugins jvm,jwsgi --jwsgi HelloWorld:application --threads 40

The Clojure/Ring JVM request handler

Thanks to the JVM in the uWSGI server (updated to 1.9) plugin available from 1.9, Clojure web apps can be run on uWSGI.

The supported gateway standard is Ring, https://github.com/ring-clojure/ring . Its full specification is available here: https://github.com/ring-clojure/ring/blob/master/SPEC

A uWSGI build profile named “ring” is available for generating a monolithic build with both the JVM and Ring plugins.

From the uWSGI sources:

UWSGI_PROFILE=ring make

The build system will try to detect your JDK installation based on various presets (for example on CentOS you can yum install
java-1.6.0-openjdk.x86_64-devel or java-1.7.0-openjdk-devel.x86_64 or on Debian/Ubuntu openjdk-6-jdk and so on...).

OSX/Xcode default paths are searched too.

After a successful build you will have the uwsgi binary and a uwsgi.jar file that you should copy in your CLASSPATH (or just remember
to set it in the uwsgi configuration every time).

参见

For more information on the JVM plugin check JVM in the uWSGI server (updated to 1.9)

Our first Ring app

A basic Clojure/Ring app could be the following (save it as myapp.clj):

(ns myapp)

(defn handler [req]
 {:status 200
 :headers { "Content-Type" "text/plain" , "Server" "uWSGI" }
 :body (str "<h1>The requested uri is " (get req :uri) "</h1>")
 }
)

The code defines a new namespace called ‘myapp’, in which the ‘handler’ function is the Ring entry point (the function called at each web request)

We can now build a configuration serving that app on the HTTP router on port 9090 (call it config.ini):

[uwsgi]
http = :9090
http-modifier1 = 8
http-modifier2 = 1

jvm-classpath = plugins/jvm/uwsgi.jar
jvm-classpath = ../.lein/self-installs/leiningen-2.0.0-standalone.jar

clojure-load = myapp.clj
ring-app = myapp:handler

Run uWSGI:

./uwsgi config.ini

Now connect to port 9090 and you should see the app response.

As you can note we have manually added uwsgi.jar and the Leiningen standalone jar (it includes the whole Clojure distribution) to our classpath.

Obviously if you do not want to use Leiningen, just add the Clojure jar to your classpath.

The clojure-load option loads a Clojure script in the JVM (very similar to what jvm-class do with the basic jvm plugin).

The ring-app option specify the class/namespace in which to search for the ring function entry point.

In our case the function is in the ‘myapp’ namespace and it is called ‘handler’ (you can understand that the syntax is namespace:function)

Pay attention to the modifier configuration. The JVM plugin registers itself as 8, while Ring registers itself as modifier 2 #1, yielding an effective configuration of “modifier1 8, modifier2 1”.

Using Leiningen

Leiningen is a great tool for managing Clojure projects. If you use Clojure, you are very probably a Leiningen user.

One of the great advantages of Leiningen is the easy generation of a single JAR distribution. That means you can deploy a whole app
with a single file.

Let’s create a new “helloworld” Ring application with the lein command.

lein new helloworld

Move it to the just created ‘helloworld’ directory and edit the project.clj file

 (defproject helloworld "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.Clojure/Clojure "1.4.0"]])

We want to add the ring-core package to our dependencies (it contains a set of classes/modules to simplify the writing of ring apps) and obviously we need to change the description and URL:

 (defproject helloworld "0.1.0-SNAPSHOT"
:description "My second uWSGI ring app"
:url "https://uwsgi-docs.readthedocs.org/en/latest/Ring.html"
:license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.Clojure/Clojure "1.4.0"] [ring/ring-core "1.2.0-beta1"]])

Now save it and run...

lein repl

This will install all of the jars we need and move us to the Clojure console (just exit from it for now).

Now we want to write our Ring app, just edit the file src/helloworld/core.clj and place the following content in it:

(ns helloworld.core
 (:use ring.util.response))

(defn handler [request]
 (-> (response "Hello World")
 (content-type "text/plain")))

Then re-edit project.clj to instruct Leiningen on which namespaces to build:

 (defproject helloworld "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}

:aot [helloworld.core]

:dependencies [[org.Clojure/Clojure "1.4.0"] [ring/ring-core "1.2.0-beta1"]])

As you can see we have added helloworld.core in the :aot keyword.

Now let’s compile our code:

lein compile

And build the full jar (the uberjar):

lein uberjar

If all goes well you should see a message like this at the end of the procedure:

Created /home/unbit/helloworld/target/helloworld-0.1.0-SNAPSHOT-standalone.jar

Take a note of the path so we can configure uWSGI to run our application.

[uwsgi]
http = :9090
http-modifier1 = 8
http-modifier2 = 1

jvm-classpath = plugins/jvm/uwsgi.jar
jvm-classpath = /home/unbit/helloworld/target/helloworld-0.1.0-SNAPSHOT-standalone.jar

jvm-class = helloworld/core__init

ring-app = helloworld.core:handler

This time we do not load Clojure code, but directly a JVM class.

Pay attention: when you specify a JVM class you have to use the ‘/’ form, not the usual dotted form.

The __init suffix is automatically added by the Clojure system when your app is compiled.

The ring-app set the entry point to the helloworld.core namespace and the function ‘handler’.

We can access that namespace as we have loaded it with jvm-class

Concurrency

As all of the JVM plugin request handlers, multi-threading is the best way to achieve concurrency.

Threads in the JVM are really solid, do not be afraid to use them (even if you can spawn multiple processes too)

[uwsgi]
http = :9090
http-modifier1 = 8
http-modifier2 = 1

jvm-classpath = plugins/jvm/uwsgi.jar
jvm-classpath = /home/unbit/helloworld/target/helloworld-0.1.0-SNAPSHOT-standalone.jar

jvm-class = helloworld/core__init

ring-app = helloworld.core:handler

master = true
processes = 4
threads = 8

This setup will spawn 4 uWSGI processes (workers) with 8 threads each (for a total of 32 threads).

Accessing the uWSGI api

Clojure can call native Java classes too, so it is able to access the uWSGI API exposed by the JVM plugin.

The following example shows how to call a function (written in python) via Clojure:

(ns myapp
 (import uwsgi)
)

(defn handler [req]
 {:status 200
 :headers { "Content-Type" "text/html" , "Server" "uWSGI" }
 :body (str "<h1>The requested uri is " (get req :uri) "</h1>" "<h2>reverse is " (uwsgi/rpc (into-array ["" "reverse" (get req :uri)])) "</h2>")
 }
)

The “reverse” function has been registered from a Python module:

from uwsgidecorators import *

@rpc('reverse')
def contrario(arg):
 return arg[::-1]

This is the used configuration:

[uwsgi]
http = :9090
http-modifier1 = 8
http-modifier2 = 1
jvm-classpath = plugins/jvm/uwsgi.jar
jvm-classpath = /usr/share/java/Clojure-1.4.jar
Clojure-load = myapp.clj
plugin = python
import = pyrpc.py
ring-app = myapp:handler
master = true

Another useful feature is accessing the uwsgi cache. Remember that cache keys are string while values are bytes.

The uWSGI Ring implementation supports byte array in addition to string for the response. This is obviously a violation of the standard
but avoids you to re-encode bytes every time (but obviously you are free to do it if you like).

Notes and status

	A shortcut option allowing to load compiled code and specifying the ring app would be cool.

	As with the The JWSGI interface handler, all of the uWSGI performance features are automatically used (like when sending static files or buffering input)

	The plugin has been developed with the cooperation and ideas of Mingli Yuan. Thanks!

The Mono ASP.NET plugin

uWSGI 1.9 added support for the Mono platform, especially for the ASP.NET infrastructure.

The most common way to deploy Mono ASP.NET applications is with the XSP project, a simple web server gateway
implementing HTTP and FastCGI protocols.

With the Mono plugin you will be able to host ASP.net applications directly in uWSGI, gaining all of its features in your application for free.

As all of the other uWSGI plugin you can call functions exported from the other languages using the uWSGI RPC Stack subsystem.

Building uWSGI + Mono

You can build Mono support as a plugin or in a monolithic build.

A build profile named “mono” is available, making the task pretty simple.

Be sure to have mono installed in your system. You need the Mono headers, the mcs compiler and the System.Web assembly. They are available in standard mono distributions.

On recent Debian/Ubuntu systems you can use

apt-get install build-essential python mono-xsp4 asp.net-examples

mono-xsp4 is a trick to install all we need in a single shot, as ASP.net examples will be used for testing our setup.

We can build a monolithic uWSGI distribution with Mono embedded:

UWSGI_PROFILE=mono make

At the end of the procedure (if all goes well) you will get the path to the uwsgi.dll assembly.

You may want to install it in your GAC (with gacutil -i <path>) to avoid specifying its path every time. This library allows access to the uWSGI api from Mono applications.

Starting the server

The Mono plugin has an official modifier1, 15.

[uwsgi]
http = :9090
http-modifier1 = 15
mono-app = /usr/share/asp.net-demos
mono-index = index.asp

The previous setup assumes uwsgi.dll has been installed in the GAC, if it is not your case you can force its path with:

[uwsgi]
http = :9090
http-modifier1 = 15
mono-app = /usr/share/asp.net-demos
mono-index = index.asp
mono-assembly = /usr/lib/uwsgi/uwsgi.dll

/usr/share/asp.net-demos is the directory containing Mono’s example ASP.net applications.

If starting uWSGI you get an error about not being able to find uwsgi.dll, you can enforce a specific search path with

[uwsgi]
http = :9090
http-modifier1 = 15
mono-app = /usr/share/asp.net-demos
mono-index = index.asp
mono-assembly = /usr/lib/uwsgi/uwsgi.dll
env = MONO_PATH=/usr/lib/uwsgi/

Or you can simply copy uwsgi.dll into the /bin directory of your site directory (/usr/share/asp.net-demos in this case).

The mono-index option is used to set the file to search when a directory is requested. You can specify it multiple times.

Under the hood: the mono key

The previous example should have worked flawlessly, but internally lot of assumptions have been made.

The whole mono plugin relies on the “key” concept. A key is a unique identifier for a .net application. In the example case the key for the application
is “/usr/share/asp.net-demos”. This is a case where the key maps 1:1 with the virtualhost map. To map a virtualhost path to a specific key you can use the form

[uwsgi]
http = :9090
http-modifier1 = 15
mono-app = /foobar=/usr/share/asp.net-demos

now the /foobar key maps to the /usr/share/asp.net-demos .net app.

By default the requested key is mapped to the DOCUMENT_ROOT variable. So in this new case /foobar should be the DOCUMENT_ROOT value.

But the uWSGI http router has no concept of DOCUMENT_ROOT so how the previous example could work ? This is because the first loaded app is generally the default one, so the mono plugin, being not able to
find an app returned the default one.

Using DOCUMENT_ROOT as the key could be quite limiting. So the –mono-key option is available. Let’s build a massive virtualhosting stack using uWSGI internal routing

[uwsgi]
http = :9090
http-modifier1 = 15
mono-key = MONO_APP
route-run = addvar:MONO_APP=/var/www/asp/${HTTP_HOST}

MONO_APP is not the variable the mono plugin will search for applications (instead of DOCUMENT_ROOT).

Thanks to internal routing we set it (dynamically) to the path of host-specific application root, so a request to example.com
will map to /var/www/asp/example.com

Concurrency and fork() unfriendliness

As the Mono VM is not fork() friendly, a new VM is spawned for each worker. This ensures you can run your application in multiprocessing mode.

Mono has really solid multithreading support and it works great with uWSGI’s thread support.

[uwsgi]
http = :9090
http-modifier1 = 15
mono-app = /usr/share/asp.net-demos
mono-index = index.asp
mono-assembly = /usr/lib/uwsgi/uwsgi.dll
env = MONO_PATH=/usr/lib/uwsgi/

master = true
processes = 4
threads = 20

With this setup you will spawn 4 processes each with 20 threads. Try to not rely on a single process. Albeit it is a common setup in the so-called “Enterprise environments”, having multiple processes ensures you greater availability (thanks to the master work).
This rule (as an example) applies even to the JVM in the uWSGI server (updated to 1.9) plugin.

API access

This is a work in progress. Currently only a couple of functions are exported. High precedence will be given to the uWSGI RPC Stack and Signal subsystem and to the The uWSGI caching framework framework.

Tricks

As always uWSGI tries to optimize (where possible) the “common” operations of your applications. Serving static files is automatically accelerated (or offloaded if offloading is enabled) and all of the path resolutions are cached.

Running CGI scripts on uWSGI

The CGI plugin provides the ability to run CGI scripts using the uWSGI server.

Web servers/clients/load balancers send requests to the uWSGI server using modifier 9. uWSGI then uses the variables passed from the client as CGI variables (on occasion fixing them) and calls the corresponding script/executable, re-forwarding its output to the client.

The plugin tries to resemble Apache’s behavior, allowing you to run CGI scripts even on webservers that do not support CGI natively, such as Nginx.

Enabling the plugin

The CGI plugin is by default not built in to the core. You need to build a binary with cgi embedded or build the cgi plugin.

To build a single binary with CGI support:

curl http://uwsgi.it/install | bash -s cgi /tmp/uwsgi

To compile it as a plugin,

python uwsgiconfig.py --plugin plugins/cgi

or, from sources directory:

make PROFILE=cgi

Configuring CGI mode

The cgi <[mountpoint=]path> option is the main entry point for configuring your CGI environment.

path may be a directory or an executable file.
In the case of a directory, the CGI plugin will use the URI to find the path of the script. If an executable is passed, it will be run, with SCRIPT_NAME, SCRIPT_FILENAME and PATH_INFO set in its environment.

The mountpoint is optional. You can use it to map different URIs to different CGI directories/scripts.

Notes

	Remember to use uWSGI’s resource limiting and jailing techniques (namespaces, chroot, capability, unshare....) with your CGI apps to limit the damage they might cause.

	Asynchronous mode is not at all supported with CGI applications. Each CGI application will block the worker running it.

	If not mapped to a helper, each CGI script must have read and execution permissions.

Examples

Example 1: Dumb CGI-enabled directory

[uwsgi]
plugins = cgi
socket = uwsgi.sock
cgi = /var/www/cgi-bin

Each request will search for the specified file in /var/www/cgi-bin and execute it.

A request to http://example.com/foo.cgi would run /var/www/cgi-bin/foo.cgi.

Example 2: old-style cgi-bin directory

[uwsgi]
plugins = cgi
socket = uwsgi.sock
cgi = /cgi-bin=/var/lib/cgi-bin

A call to http://example.com/cgi-bin/foo will run /var/lib/cgi-bin/foo.

Example 3: restricting usage to certain extensions

We want only .cgi and .pl files to be executed:

[uwsgi]
plugins = cgi
socket = uwsgi.sock
cgi = /cgi-bin=/var/lib/cgi-bin
cgi-allowed-ext = .cgi
cgi-allowed-ext = .pl

Example 4: mapping scripts to interpreters using their extension

We want to run files ending with .php in the directory /var/www via the php5-cgi binary:

[uwsgi]
plugins = cgi
socket = uwsgi.sock
cgi = /var/www
cgi-allowed-ext = .php
cgi-helper = .php=php5-cgi

If a file is run with an helper, the file to be run will not require the execute permission bit. The helper of course does.

Extension comparison is not case sensitive.

Example 5: running PHP scripts as CGI via Nginx

Configure Nginx to pass .php requests to uWSGI, with /var/www/foo as the document root.

location ~ .php$ {
 include uwsgi_params;
 uwsgi_param REDIRECT_STATUS 200; # required by php 5.3
 uwsgi_modifier1 9;
 uwsgi_pass 127.0.0.1:3031;
}

And configure uWSGI like this:

[uwsgi]
plugins = cgi
socket = 127.0.0.1:3031
cgi = /var/www/foo
cgi-allowed-ext = .php
cgi-helper = .php=php5-cgi

Example 6: Concurrency

By default each uWSGI worker will be able to run a single CGI script.
This mean that using one process, will block your incoming requests until the first request has been ended.

Adding more workers will mitigate the problem, but will consume a lot of memory.

Threads are a better choice. Let’s configure each worker process to run 20 worker threads and thus run 20 CGI scripts concurrently.

[uwsgi]
plugins = cgi
threads = 20
socket = 127.0.0.1:3031
cgi = /var/www/foo
cgi-allowed-ext = .php
cgi-helper = .php=php5-cgi

Starting from uWSGI 2.0.2 you can have even more cheap concurrency thanks to async mode support:

[uwsgi]
plugins = cgi
async = 200
ugreen = true
socket = 127.0.0.1:3031
cgi = /var/www/foo
cgi-allowed-ext = .php
cgi-helper = .php=php5-cgi

this will spawn 200 coroutines, each able to manage a CGI script (with few K of memory)

Example 7: Mailman web interface behind Nginx

location /cgi-bin/mailman {
 include uwsgi_params;
 uwsgi_modifier1 9;
 uwsgi_pass 127.0.0.1:3031;
}

[uwsgi]
plugins = cgi
threads = 20
socket = 127.0.0.1:3031
cgi = /cgi-bin/mailman=/usr/lib/cgi-bin/mailman
cgi-index = listinfo

The cgi-index directive specifies which script is run when a path ending with a slash is requested. This way /cgi-bin/mailman/ will be mapped to the /cgi-bin/mailman/listinfo script.

Example 8: Viewvc as CGI in a subdir

Using the Mountpoint option.

[uwsgi]
plugins = cgi
threads = 20
socket = 127.0.0.1:3031
cgi = /viewvc=/usr/lib/cgi-bin/viewvc.cgi

Example 9: using the uWSGI HTTP router and the check-static option

This is pretty much a full-stack solution using only uWSGI running on port 8080.

[uwsgi]
plugins = http, cgi

; bind on port 8080 and use the modifier 9
http = :8080
http-modifier1 = 9

; set the document_root as a placeholder
my_document_root = /var/www

; serve static files, skipping .pl and .cgi files
check-static = %(my_document_root)
static-skip-ext = .pl
static-skip-ext = .cgi

; run cgi (ending in .pl or .cgi) in the document_root
cgi = %(my_document_root)
cgi-index = index.pl
cgi-index = index.cgi
cgi-allowed-ext = .pl
cgi-allowed-ext = .cgi

Example 10: optimizing CGIs (advanced)

You can avoid the overhead of re-running interpreters at each request, loading the interpreter(s) on startup and calling a function in them instead of execve() ing the interpreter itself.

The contrib/cgi_python.c file in the source distribution is a tiny example on how to optimize Python CGI scripts.

The Python interpreter is loaded on startup, and after each fork(), uwsgi_cgi_run_python is called.

To compile the library you can use something like this:

gcc -shared -o cgi_python.so -fPIC -I /usr/include/python2.7/ cgi_python.c -lpython2.7

And then map .py files to the uwsgi_cgi_run_python function.

[uwsgi]
plugins = cgi

cgi = /var/www
cgi-loadlib = ./cgi_python.so:uwsgi_cgi_load_python
cgi-helper = .py=sym://uwsgi_cgi_run_python

}}}

Remember to prefix the symbol in the helper with sym:// to enable uWSGI to find it as a loaded symbol instead of a disk file.

The GCCGO plugin

uWSGI 1.9.20 officially substituted the old uWSGI Go support (1.4 only) plugin with a new one based on GCCGO.

The usage of GCCGO allows more features and better integration with the uWSGI deployment styles.

GCC suite >= 4.8 is expected (and strongly suggested).

How it works

When the plugin is enabled, a new go runtime is initialized after each fork().

If a main Go function is available in the process address space it will be executed in the Go runtime, otherwise the control goes back to the uWSGI loop engine.

Why not use plain Go?

Unfortunately the standard Go runtime is currently not embeddable and does not support compiling code as shared libraries.

Both are requisite for meaningful uWSGI integration.

Starting from GCC 4.8.2, its libgo has been improved a lot and building shared libraries as well as initializing the Go runtime works like a charm (even if it required a bit of... not very elegant hacks).

Building the plugin

A build profile is available allowing you to build a uWSGI+gccgo binary ready to load Go shared libraries:

make gccgo

The first app

You do not need to change the way you write webapps in Go. The net/http package can be used flawlessly:

package main

import "uwsgi"
import "net/http"
import "fmt"

func viewHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "<h1>Hello World</h1>")
}

func main() {
 http.HandleFunc("/view/", viewHandler)
 uwsgi.Run()
}

The only difference is in calling uwsgi.Run() instead of initializing the Go HTTP server.

To build the code as shared library simply run:

gcc -fPIC -shared -o myapp.so myapp.go

If you get an error about gcc not able to resolve uWSGI symbols, just add -I<path_to_uwsgi_binary> to the command line (see below):

gcc -fPIC -shared -I/usr/bin -o myapp.so myapp.go

Now let’s run it under uWSGI:

uwsgi --http-socket :9090 --http-socket-modifier1 11 --go-load ./myapp.so

The gccgo plugin registers itself as modifier1 11, so remember to set it to run Go code.

uwsgi.gox

By default when building the gccgo profile, a uwsgi.gox file is created. This can be used when building
go apps using the uWSGI API, to resolve symbols.

Remember that if you add the directory containing the uwsgi binary (as seen before) to
the includes (-I path) path of gcc, the binary itself will be used for resolving symbols.

Shared libraries VS monolithic binaries

One of the main selling points for Go for many developers is the “static-all-in-one” binary approach.

A Go app basically does not have dependencies, so half of the common deployment problems just automagically disappear.

The uWSGI-friendly way for hosting Go apps is having a uWSGI binary loading a specific Go app in the form of a library.

If this is not acceptable, you can build a single binary with both uWSGI and the Go app:

CFLAGS=-DUWSGI_GCCGO_MONOLITHIC UWSGI_ADDITIONAL_SOURCES=myapp.go UWSGI_PROFILE=gccgo make

Goroutines

Thanks to the new GCC split stack feature, goroutines are sanely (i.e. they do not require a full pthread) implemented in gccgo.

A loop engine mapping every uWSGI core to a goroutine is available in the plugin itself.

To start uWSGI in goroutine mode just add --goroutines <n> where <n> is the maximum number of concurrent goroutines to spawn.

Like The Gevent loop engine, uWSGI signal handlers are executed in a dedicated goroutine.

In addition to this, all blocking calls make use of the netpoll Go api. This means you can run internal routing actions, rpc included, in a goroutine.

Options

	--go-load <path> load the specified go shared library in the process address space

	--gccgo-load <path> alias for go-load

	--go-args <arg1> <arg2> <argN> set arguments passed to the virtual go command line

	--gccgo-args <arg1> <arg2> <argN> alias for go-args

	--goroutines <n> enable goroutines loop engine with the specified number of async cores

uWSGI API

注解

This section may, or may not, be out of date. Who knows!

Unfortunately only few pieces of the uWSGI API have been ported to the gccgo plugin. More features will be added in time for uWSGI 2.0.

Currently exposed API functions:

	uwsgi.CacheGet(key string, cache string) string

	uwsgi.RegisterSignal(signum uint8, receiver string, handler func(uint8)) bool

Notes

	Please, please do not enable multithreading, it will not work and probably will never work.

	All uWSGI native features (like internal routing) work in goroutines mode. However do not expect languages like Python or Perl to work over them anytime soon.

The Symcall plugin

The symcall plugin (modifier 18) is a convenience plugin allowing you to write native uWSGI request handlers without the need of developing a full uWSGI plugin.

You tell it which symbol to load on startup and then it will run it at every request.

注解

The “symcall” plugin is built-in by default in standard build profiles.

Step 1: preparing the environment

The uWSGI binary by itself allows you to develop plugins and libraries without the need of external development packages or headers.

The first step is getting the uwsgi.h C/C++ header:

uwsgi --dot-h > uwsgi.h

Now, in the current directory, we have a fresh uwsgi.h ready to be included.

Step 2: our first request handler:

Our C handler will print the REMOTE_ADDR value with a couple of HTTP headers.

(call it mysym.c or whatever you want/need)

#include "uwsgi.h"

int mysym_function(struct wsgi_request *wsgi_req) {

 // read request variables
 if (uwsgi_parse_vars(wsgi_req)) {
 return -1;
 }

 // get REMOTE_ADDR
 uint16_t vlen = 0;
 char *v = uwsgi_get_var(wsgi_req, "REMOTE_ADDR", 11, &vlen);

 // send status
 if (uwsgi_response_prepare_headers(wsgi_req, "200 OK", 6)) return -1;
 // send content_type
 if (uwsgi_response_add_content_type(wsgi_req, "text/plain", 10)) return -1;
 // send a custom header
 if (uwsgi_response_add_header(wsgi_req, "Foo", 3, "Bar", 3)) return -1;

 // send the body
 if (uwsgi_response_write_body_do(wsgi_req, v, vlen)) return -1;

 return UWSGI_OK;
}

Step 3: building our code as a shared library

The uwsgi.h file is an ifdef hell (so it’s probably better not to look at it too closely).

Fortunately the uwsgi binary exposes all of the required CFLAGS via the –cflags option.

We can build our library in one shot:

gcc -fPIC -shared -o mysym.so `uwsgi --cflags` mysym.c

you now have the mysym.so library ready to be loaded in uWSGI

Final step: map the symcall plugin to the mysym_function symbol

uwsgi --dlopen ./mysym.so --symcall mysym_function --http-socket :9090 --http-socket-modifier1 18

With --dlopen we load a shared library in the uWSGI process address space.

The --symcall option allows us to specify which symbol to call when modifier1 18 is in place

We bind the instance to HTTP socket 9090 forcing modifier1 18.

Hooks and symcall unleashed: a TCL handler

We want to write a request handler running the following TCL script (foo.tcl) every time:

call it foo.tcl
proc request_handler { remote_addr path_info query_string } {
 set upper_pathinfo [string toupper $path_info]
 return "Hello $remote_addr $upper_pathinfo $query_string"
}

We will define a function for initializing the TCL interpreter and parsing the script. This function will be called on startup soon after privileges drop.

Finally we define the request handler invoking the TCL proc and passign args to it

#include <tcl.h>
#include "uwsgi.h"

// global interpreter
static Tcl_Interp *tcl_interp;

// the init function
void ourtcl_init() {
 // create the TCL interpreter
 tcl_interp = Tcl_CreateInterp() ;
 if (!tcl_interp) {
 uwsgi_log("unable to initialize TCL interpreter\n");
 exit(1);
 }

 // initialize the interpreter
 if (Tcl_Init(tcl_interp) != TCL_OK) {
 uwsgi_log("Tcl_Init error: %s\n", Tcl_GetStringResult(tcl_interp));
 exit(1);
 }

 // parse foo.tcl
 if (Tcl_EvalFile(tcl_interp, "foo.tcl") != TCL_OK) {
 uwsgi_log("Tcl_EvalFile error: %s\n", Tcl_GetStringResult(tcl_interp));
 exit(1);
 }

 uwsgi_log("TCL engine initialized");
}

// the request handler
int ourtcl_handler(struct wsgi_request *wsgi_req) {

 // get request vars
 if (uwsgi_parse_vars(wsgi_req)) return -1;

 Tcl_Obj *objv[4];
 // the proc name
 objv[0] = Tcl_NewStringObj("request_handler", -1);
 // REMOTE_ADDR
 objv[1] = Tcl_NewStringObj(wsgi_req->remote_addr, wsgi_req->remote_addr_len);
 // PATH_INFO
 objv[2] = Tcl_NewStringObj(wsgi_req->path_info, wsgi_req->path_info_len);
 // QUERY_STRING
 objv[3] = Tcl_NewStringObj(wsgi_req->query_string, wsgi_req->query_string_len);

 // call the proc
 if (Tcl_EvalObjv(tcl_interp, 4, objv, TCL_EVAL_GLOBAL) != TCL_OK) {
 // ERROR, report it to the browser
 if (uwsgi_response_prepare_headers(wsgi_req, "500 Internal Server Error", 25)) return -1;
 if (uwsgi_response_add_content_type(wsgi_req, "text/plain", 10)) return -1;
 char *body = (char *) Tcl_GetStringResult(tcl_interp);
 if (uwsgi_response_write_body_do(wsgi_req, body, strlen(body))) return -1;
 return UWSGI_OK;
 }

 // all fine
 if (uwsgi_response_prepare_headers(wsgi_req, "200 OK", 6)) return -1;
 if (uwsgi_response_add_content_type(wsgi_req, "text/plain", 10)) return -1;

 // write the result
 char *body = (char *) Tcl_GetStringResult(tcl_interp);
 if (uwsgi_response_write_body_do(wsgi_req, body, strlen(body))) return -1;
 return UWSGI_OK;
}

You can build it with:

gcc -fPIC -shared -o ourtcl.so `./uwsgi/uwsgi --cflags` -I/usr/include/tcl ourtcl.c -ltcl

The only differences from the previous example are the -I and -l for adding the TCL headers and library.

So, let’s run it with:

uwsgi --dlopen ./ourtcl.so --hook-as-user call:ourtcl_init --http-socket :9090 --symcall ourtcl_handler --http-socket-modifier1 18

Here the only new player is --hook-as-user call:ourtcl_init invoking the specified function after privileges drop.

注解

This code is not thread safe! If you want to improve this tcl library to support multithreading, best approach will be having a TCL interpreter
for each pthread instead of a global one.

Considerations

Since uWSGI 1.9.21, thanks to the --build-plugin option, developing uWSGI plugins has become really easy.

The symcall plugin is for tiny libraries/pieces of code, for bigger needs consider developing a full plugin.

The tcl example we have seen before is maybe the right example of “wrong” usage ;)

The XSLT plugin

Since uWSGI 1.9.1 a new plugin named “xslt” is available, implementing XML Stylesheet Transformation both as request handler and routing instruction.

To successfully apply a transformation you need a ‘doc’ (an XML document) and a stylesheet (the XSLT file).

Additionally you can apply global params and set a specific content type (by default the generated output is set as text/html).

The request handler

Modifier1 23 has been assigned to the XSLT request handler.

The document path is created appending the PATH_INFO to the DOCUMENT_ROOT.

The stylesheet path is created following these steps:

	If a specific CGI variable is set (via --xslt-var) it will be used as the stylesheet path.

	If a file named like the document plus a specific extension (by default .xsl and .xslt are searched) exists it will be used as the stylesheet path.

	Finally a series of static XSLT files (specified with --xslt-stylesheet) is tried.

Examples:

uwsgi --http-socket :9090 --http-socket-modifier1 23 --xslt-ext .bar

If /foo.xml is requested (and the file exists) DOCUMENT_ROOT``+``foo.xml.bar will be searched as the xslt file.

uwsgi --http-socket :9090 --http-socket-modifier1 23 --xslt-stylesheet /var/www/myfile1.xslt --xslt-stylesheet /var/www/myfile2.xslt

If /foo.xml is requested (and the file exists) /var/www/myfile1.xslt will be tried. If it does not exist, /var/www/myfile2.xslt will be tried instead.

uwsgi --http-socket :9090 --http-socket-modifier1 23 --xslt-var UWSGI_XSLT

If /foo.xml is requested (and the file exists), the content of the UWSGI_XSLT variable (you can set it from your webserver) is used as the stylesheet path.

If a QUERY_STRING is available, its items will be passed as global parameters to the stylesheet.

As an example if you request /foo.xml?foo=bar&test=uwsgi, “foo” (as “bar” and “test” (as “uwsgi”) will be passed as global variables:

<xsl:value-of select="$foo"/>
<xsl:value-of select="$test"/>

The routing instruction

The plugin registers itself as internal routing instruction named “xslt”. It is probably a lot more versatile then the request plugin.

Its syntax is pretty simple:

[uwsgi]
plugin = xslt
route = ^/foo xslt:doc=${DOCUMENT_ROOT}/${PATH_INFO}.xml,stylesheet=/var/www/myfunction.xslt,content_type=text/html,params=foo=bar&test=unbit

This will apply the /var/www/myfunction.xslt transformation to foo.xml and will return it as text/html.

The only required parameters for the routing instruction are doc and stylesheet.

SSI (Server Side Includes) plugin

Server Side Includes are an “old-fashioned” way to write dynamic web pages.

It is generally recognized as a templating system instead of a full featured language.

The main purpose of the uWSGI SSI plugin is to have a fast templating system that has access to the uWSGI API.

At the time of writing, March 2013, the plugin is beta quality and implements less than 30% of the SSI standard, the focus being in exposing uWSGI API as SSI commands.

Using it as a request handler

The plugin has an official modifier1, number 19.

[uwsgi]
plugin = ssi
http = :9090
http-modifier1 = 19
http-var = DOCUMENT_ROOT=/var/www

The plugin builds the filename as DOCUMENT_ROOT``+``PATH_INFO. This file is then parsed as a server side include document.

Both DOCUMENT_ROOT and PATH_INFO are required, otherwise a 500 error will be returned.

An example configuration for Nginx would be:

location ~ \.shtml$ {
 root /var/www;
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_modifier1 19;
}

with something like this for uWSGI...

[uwsgi]
plugin = ssi
socket = 127.0.0.1:3031

Using SSI as a routing action

A more versatile approach is using the SSI parser as a routing action.

[uwsgi]
plugin = ssi
http-socket = :9090
route = ^/(.*) ssi:/var/www/$1.shtml

警告

As with all of the routing actions, no check on file paths is made to allow a higher level of customization. If you pass untrusted paths to the SSI action, you should sanitize them (you can use routing again, checking for the presence of .. or other dangerous symbols).

And with the above admonition in mind, when used as a routing action, DOCUMENT_ROOT or PATH_INFO are not required, as the parameter passed contains the full filesystem path.

Supported SSI commands

This is the list of supported commands (and their arguments). If a command is not part of the SSI standard (that is, it’s uWSGI specific) it will be reported.

echo

Arguments: var

Print the content of the specified request variable.

printenv

Print a list of all request variables.

include

Arguments: file

Include the specified file (relative to the current directory).

cache

注解

This is uWSGI specific/non-standard.

Arguments: key name

Print the value of the specified cache key in the named cache.

Status

	The plugin is fully thread safe and very fast.

	Very few commands are available, more will be added soon.

uWSGI V8 support

Building

You will need the libv8 headers to build the plugin. The official modifier1 value for V8 is ‘24’.

RPC

function part1(request_uri, remote_addr) {
 return '<h1>i am part1 for ' + request_uri + ' ' + remote_addr + "</h1>" ;
}

function part2(request_uri, remote_addr) {
 return '<h2>i am part2 for ' + request_uri + ' ' + remote_addr + "</h2>" ;
}

function part3(request_uri, remote_addr) {
 return '<h3>i am part3 for ' + request_uri + ' ' + remote_addr + "</h3>" ;
}

uwsgi.register_rpc('part1', part1);
uwsgi.register_rpc('part2', part2);
uwsgi.register_rpc('part3', part3);

ciao = function(saluta) {
 uwsgi.log("I have no idea what's going on.");
 return "Ciao Ciao";
}

uwsgi.register_rpc('hello', ciao);

Signal handlers

function tempo(signum) {
 uwsgi.log("e' passato 1 secondo");
}

uwsgi.register_signal(17, '', tempo);

Multitheading and multiprocess

Mules

The uWSGI API

JSGI 3.0

exports.app = function (request) {
 uwsgi.log("Hello! I am the app.\n");
 uwsgi.log(request.scheme + ' ' + request.method + ' ' + request.scriptName + ' ' + request.pathInfo + ' ' + request.queryString + ' ' + request.host);
 uwsgi.log(request.serverSoftware);
 return {
 status: 200,
 headers: {"Content-Type": "text/plain", "Server": ["uWSGI", "v8/plugin"]},
 body: ["Hello World!", "I am V8"]
 };
}

uwsgi --plugin v8 --v8-jsgi myapp.js --http-socket :8080 --http-socket-modifier1 24

CommonJS

	Require: OK

	Binary/B: NO

	System/1.0: in progress

	IO/A: NO

	Filesystem/A: NO

The GridFS plugin

Beginning in uWSGI 1.9.5 a “GridFS” plugin is available. It exports both a
request handler and an internal routing function. Its official modifier is
‘25’. The routing instruction is “gridfs” The plugin is written in C++.

Requirements and install

To build the plugin you need the libmongoclient headers (and a functioning
C++ compiler). On a Debian-like system you can do the following.

apt-get install mongodb-dev g++

A build profile for gridfs is available:

UWSGI_PROFILE=gridfs make

Or you can build it as plugin:

python uwsgiconfig.py --plugin plugins/gridfs

For a fast installation of a monolithic build you can use the network
installer:

curl http://uwsgi.it/install | bash -s gridfs /tmp/uwsgi

This will install a gridfs enabled uwsgi binary.

Standalone quickstart

This is a standalone config that blindly maps the incoming PATH_INFO to
items in the GridFS db named “test”:

[uwsgi]
; you can remove the plugin directive if you are using a uWSGI gridfs monolithic build
plugin = gridfs
; bind to http port 9090
http-socket = :9090
; force the modifier to be the 25th
http-socket-modifier1 = 25
; map gridfs requests to the "test" db
gridfs-mount = db=test

Assuming you have the myfile.txt file stored in your GridFS as “/myfile.txt”,
run the following:

curl -D /dev/stdout http://localhost:9090/myfile.txt

and you should be able to get it.

The initial slash problem

Generally PATH_INFO is prefixed with a ‘/’. This could cause problems in
GridFS path resolution if you are not storing the items with absolute path
names. To counteract this, you can make the gridfs plugin to skip the
initial slash:

[uwsgi]
; you can remove the plugin directive if you are using a uWSGI gridfs monolithic build
plugin = gridfs
; bind to http port 9090
http-socket = :9090
; force the modifier to be the 25th
http-socket-modifier1 = 25
; map gridfs requests to the "test" db
gridfs-mount = db=test,skip_slash=1

Now instead of searching for /myfile.txt it will search for “myfile.txt”.

Multiple mountpoints (and servers)

You can mount different GridFS databases under different SCRIPT_NAME (or
UWSGI_APPID). If your web server is able to correctly manage the
SCRIPT_NAME variable you do not need any additional setup (other than
–gridfs-mount). Otherwise don’t forget to add the –manage-script-name option

[uwsgi]
; you can remove the plugin directive if you are using a uWSGI gridfs monolithic build
plugin = gridfs
; bind to http port 9090
http-socket = :9090
; force the modifier to be the 25th
http-socket-modifier1 = 25
; map gridfs requests to the "test" db
gridfs-mount = db=test,skip_slash=1
; map /foo to db "wolverine" on server 192.168.173.17:4040
gridfs-mount = mountpoint=/foo,server=192.168.173.17:4040,db=wolverine
; map /bar to db "storm" on server 192.168.173.30:4040
gridfs-mount = mountpoint=/bar,server=192.168.173.30:4040,db=storm
; force management of the SCRIPT_NAME variable
manage-script-name = true

curl -D /dev/stdout http://localhost:9090/myfile.txt
curl -D /dev/stdout http://localhost:9090/foo/myfile.txt
curl -D /dev/stdout http://localhost:9090/bar/myfile.txt

This way each request will map to a different GridFS server.

Replica sets

If you are using a replica set, you can use it in your uWSGI config with this
syntax: <replica>server1,server2,serverN...

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
gridfs-mount = server=rs0/ubuntu64.local\,raring64.local\,mrspurr-2.local,db=test

Pay attention to the backslashes used to escape the server list.

Prefixes

As well as removing the initial slash, you may need to prefix each item name:

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
gridfs-mount = server=rs0/ubuntu64.local\,raring64.local\,mrspurr-2.local,db=test,prefix=/foobar___

A request for /test.txt will be mapped to /foobar___/test.txt

while

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
gridfs-mount = server=rs0/ubuntu64.local\,raring64.local\,mrspurr-2.local,db=test,prefix=/foobar___,skip_slash=1

will map to /foobar___test.txt

MIME types and filenames

By default the MIME type of the file is derived from the filename stored in
GridFS. This filename might not map to the effectively requested URI or you may
not want to set a content_type for your response. Or you may want to allow
some other system to set it. If you want to disable MIME type generation just
add no_mime=1 to the mount options.

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
gridfs-mount = server=ubuntu64.local,db=test,skip_slash=1,no_mime=1

If you want your response to set the filename using the original value (the one
stored in GridFS) add orig_filename=1

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
gridfs-mount = server=ubuntu64.local,db=test,skip_slash=1,no_mime=1,orig_filename=1

Timeouts

You can set the timeout of the low-level MongoDB operations by adding
timeout=N to the options:

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
; set a 3 seconds timeout
gridfs-mount = server=ubuntu64.local,db=test,skip_slash=1,timeout=3

MD5 and ETag headers

GridFS stores an MD5 hash of each file. You can add this info to your response
headers both as ETag (MD5 in hex format) or Content-MD5 (in Base64). Use
etag=1 for adding ETag header and md5=1 for adding Content-MD5. There’s
nothing stopping you from adding both headers to the response.

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
; set a 3 seconds timeout
gridfs-mount = server=ubuntu64.local,db=test,skip_slash=1,timeout=3,etag=1,md5=1

Multithreading

The plugin is fully thread-safe, so consider using multiple threads for
improving concurrency:

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 25
; set a 3 seconds timeout
gridfs-mount = server=ubuntu64.local,db=test,skip_slash=1,timeout=3,etag=1,md5=1
master = true
processes = 2
threads = 8

This will spawn 2 processes monitored by the master with 8 threads each for a
total of 16 threads.

Combining with Nginx

This is not different from the other plugins:

location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_modifier1 25;
}

Just be sure to set the uwsgi_modifier1 value to ensure all requests get
routed to GridFS.

[uwsgi]
socket = 127.0.0.1:3031
gridfs-mount = server=ubuntu64.local,db=test,skip_slash=1,timeout=3,etag=1,md5=1
master = true
processes = 2
threads = 8

The ‘gridfs’ internal routing action

The plugin exports a ‘gridfs’ action simply returning an item:

[uwsgi]
socket = 127.0.0.1:3031
route = ^/foo/(.+).jpg gridfs:server=192.168.173.17,db=test,itemname=$1.jpg

The options are the same as the request plugin’s, with “itemname” being the
only addition. It specifies the name of the object in the GridFS db.

Notes

	If you do not specify a server address, 127.0.0.1:27017 is assumed.

	The use of the plugin in async modes is not officially supported, but may work.

	If you do not get why a request is not serving your GridFS item, consider
adding the --gridfs-debug option. It will print the requested item in uWSGI
logs.

The GlusterFS plugin

Available from uWSGI 1.9.15

official modifier1: 27

The ‘glusterfs’ plugin allows you to serve files stored in glusterfs filesystems directly using the glusterfs api
available starting from GlusterFS 3.4

This approach (compared to serving via fuse or nfs) has various advantages in terms of performances and ease of deployment.

Step1: glusterfs installation

we build glusterfs from official sources, installing it in /opt/glusterfs on 3 nodes (192.168.173.1, 192.168.173.2, 192.168.173.3).

./configure --prefix=/opt/glusterfs
make
make install

now start the configuration/control daemon with:

/opt/glusterfs/sbin/glusterd

from now on we can start configuring our cluster

Step2: the first cluster

run the control client to access the glusterfs shell:

/opt/glusterfs/sbin/gluster

the first step is “discovering” the other nodes:

do not run on node1 !!!
peer probe 192.168.173.1
do not run on node2 !!!
peer probe 192.168.173.2
do not run on node3 !!!
peer probe 192.168.173.3

remember, you do not need to run “peer probe” for the same address of the machine on which you are running
the glusterfs console. You have to repeat the procedure on each node of the cluser.

Now we can create a replica volume (/exports/brick001 dir has to exist in every node):

volume create unbit001 replica 3 192.168.173.1:/exports/brick001 192.168.173.2:/exports/brick001 192.168.173.3:/exports/brick001

and start it:

volume start unbit001

Now you should be able to mount your glusterfs filesystem and start writing files in it (you can use nfs or fuse)

Step3: uWSGI

a build profile, named ‘glusterfs’ is already available, so you can simply do:

PKG_CONFIG_PATH=/opt/glusterfs/lib/pkgconfig/ UWSGI_PROFILE=glusterfs make

The profile currently disable ‘matheval’ support as the glusterfs libraries use bison/yacc with the same function prefixes (causing nameclash).

You can now start your HTTP serving fastly serving glusterfs files (remember no nfs or fuse are involved):

[uwsgi]
; bind on port 9090
http-socket = :9090
; set the default modifier1 to the glusterfs one
http-socket-modifier1 = 27
; mount our glusterfs filesystem
glusterfs-mount = mountpoint=/,volume=unbit001,server=192.168.173.1:0
; spawn 30 threads
threads = 30

High availability

The main GlusterFS selling point is high availability. With the prevopus setup we introduced a SPOF with the control daemon.

The ‘server’ option allows you to specify multiple control daemons (they are tried until one responds)

[uwsgi]
; bind on port 9090
http-socket = :9090
; set the default modifier1 to the glusterfs one
http-socket-modifier1 = 27
; mount our glusterfs filesystem
glusterfs-mount = mountpoint=/,volume=unbit001,server=192.168.173.1:0;192.168.173.2:0;192.168.173.3:0
; spawn 30 threads
threads = 30

The ‘0’ port is a glusterfs convention, it means ‘the default port’ (generally 24007). You can specify whatever port you need/want

Multiple mountpoints

If your webserver (like nginx or the uWSGI http router) is capable of setting protocol vars (like SCRIPT_NAME or UWSGI_APPID) you can mount multiple
glusterfs filesystems in the same instance:

[uwsgi]
; bind on port 9090
http-socket = :9090
; set the default modifier1 to the glusterfs one
http-socket-modifier1 = 27
; mount our glusterfs filesystem
glusterfs-mount = mountpoint=/,volume=unbit001,server=192.168.173.1:0;192.168.173.2:0;192.168.173.3:0
glusterfs-mount = mountpoint=/foo,volume=unbit002,server=192.168.173.1:0;192.168.173.2:0;192.168.173.3:0
glusterfs-mount = mountpoint=/bar,volume=unbit003,server=192.168.173.1:0;192.168.173.2:0;192.168.173.3:0
; spawn 30 threads
threads = 30

Multiprocess VS multithread

Currently a mix of the both will offers you best performance and availability.

Async support is on work

Internal routing

The uWSGI internal routing allows you to rewrite requests to change the requested files. Currently the glusterfs plugin only uses the PATH_INFO, so you can change it
via the ‘setpathinfo’ directive

Caching is supported too. Check the tutorial (linked in the homepage) for some cool idea

Using capabilities (on Linux)

If your cluster requires clients to bind on privileged ports (<1024) and you do not want to change that thing (and obviously you do not want to run uWSGI as root)
you may want to give your uWSGI instance the NET_BIND_SERVICE capability. Just ensure you have a capabilities-enabled uWSGI and add

... --cap net_bind_service ...

to all of the instances you want to connect to glusterfs

Notes:

The plugin automatically enables the mime type engine.

There is no directory index support

The RADOS plugin

Available from uWSGI 1.9.16, stable from uWSGI 2.0.6

official modifier1: 28

Authors: Javier Guerra, Marcin Deranek, Roberto De Ioris

The ‘rados’ plugin allows you to serve objects stored in a Ceph cluster directly using the librados API.

Note that it’s not the CephFS filesystem, nor the ‘radosgw’ S3/Swift-compatible layer; RADOS is the bare object-storage layer.

Step1: Ceph cluster and content

If you want to try a minimal Ceph instalation, you can follow this guide: http://ceph.com/docs/master/start/. note that
you only need the OSD and MON daemons, the MDS are needed only for CephFS filesystems.

Once you get it running, you should have a configuration file (by default on /etc/ceph/ceph.con), and should be able to use the rados utility.

rados lspools

by default, you should have at least the ‘data’, ‘metadata’ and ‘rbd’ pools. Now add some content to the ‘data’ pool.
For example, if you have a ‘list.html’ file and images ‘first.jpeg’, ‘second.jpeg’ on a subdirectory ‘imgs/’:

rados -p data put list.html list.html
rados -p data put imgs/first.jpeg imgs/first.jpeg
rados -p data put imgs/second.jpeg imgs/second.jpeg
rados -p data ls -

note that RADOS doesn’t have a concept of directories, but the object names can contain slashes.

Step2: uWSGI

A build profile, named ‘rados’ is already available, so you can simply do:

make PROFILE=rados

or

python uwsgiconfig.py --build rados

or use the installer

this will create a binary called /tmp/radosuwsgi that you will use instead of 'uwsgi'
curl http://uwsgi.it/install | bash -s rados /tmp/radosuwsgi

Obviously you can build rados support as plugin

uwsgi --build-plugin plugins/rados/

or the old style:

python uwsgiconfig.py --plugin plugins/rados/

You can now start an HTTP server to serve RADOS objects:

[uwsgi]
; bind on port 9090
http-socket = :9090
; set the default modifier1 to the rados one
http-socket-modifier1 = 28
; mount our rados pool
rados-mount = mountpoint=/rad/,pool=data,config=/etc/ceph/ceph.conf
; spawn 30 threads
threads = 30

the ‘rados-mount’ parameter takes various subparameters:

	mountpoint: required, the URL prefix on which the RADOS objects will appear.

	pool: required, the RADOS pool to serve.

	config: optional, the path to the ceph config file.

	timeout: optional, set the timeout for operations, in seconds

	allow_put: allow calling the PUT HTTP method to store new objects

	allow_delete: allow calling the DELETE HTTP method to remove objects

	allow_mkcol: allow calling MKCOL HTTP method to create new pools

	allow_propfind: (requires uWSGI 2.1) allow calling the WebDAV PROPFIND method

In this example, your content will be served at http://localhost:9090/rad/list.html, http://localhost:9090/rad/imgs/first.jpeg
and http://localhost:9090/rad/imgs/second.jpeg.

High availability

The RADOS storage system is fully distributed, just starting several uWSGI workers on several machines with the same
‘ceph.conf’, all will see the same pools. If they all serve on the same mountpoint, you get a failure-resistant
RADOS-HTTP gateway.

Multiple mountpoints

You can issue several ‘rados-mount’ entries, each one will define a new mountpoint. This way you can expose different
RADOS pools at different URLs.

HTTP methods

The following methods are supported:

	GET -> retrieve a resource

	HEAD -> like GET but without body

	OPTIONS -> (requires uWSGI 2.1) returns the list of allowed HTTP methods and WebDAV support

	PUT -> requires allow_put in mountpoint options, store a resource in ceph: curl -T /etc/services http://localhost:8080/services

	MKCOL -> requires allow_mkcol in mountpoint options, creates a new pool: curl -X MKCOL http://localhost:8080/anewpool (the pool ‘anewpool’ will be created)

	DELETE -> requires allow_delete in mountpoint options, removes an object

	PROPFIND -> requires allow_propfind in mountpoint options (uWSGI 2.1+), implements WebDAV PROPFIND method

Features

	multiprocessing is supported

	async support is fully functional, the ugreen suspend engine is the only supported one:

[uwsgi]
; bind on port 9090
http-socket = :9090
; set the default modifier1 to the rados one
http-socket-modifier1 = 28
; mount our rados pool
rados-mount = mountpoint=/rad/,pool=data,config=/etc/ceph/ceph.conf
; spawn 1000 async cores
async = 1000
; required !!!
ugreen = true

Caching example

Caching is highly recommended to improve performance and reduce the load on the Ceph cluster. This is a good example:

[uwsgi]
; create a bitmap cache with max 1000 items storable in 10000 4k blocks
cache2 = name=radoscache,items=1000,blocks=10000,blocksize=4096,bitmap=1

; check every object ending with .html in the 'radoscache' cache
route = \.html$ cache:key=${PATH_INFO},name=radoscache,content_type=text/html
; if not found, store it at the end of the request for 3600 seconds (this will automatically enable Expires header)
route = \.html$ cachestore:key=${PATH_INFO},name=radoscache,expires=3600

; general options

; master is always a good idea
master = true
; bind on http port 9090 (better to use a uwsgi socket behind a proxy like nginx)
http-socket = :9090
; set the default modifier1 to the rados one
http-socket-modifier1 = 28
; mount our rados 'htmlpages' pool
rados-mount = mountpoint=/,pool=htmlpages

; spawn multiple processes and threads
processes = 4
threads = 8

To test the caching behaviour, a tool like uwsgicachetop (https://pypi.python.org/pypi/uwsgicachetop) will be very useful.

More information about caching here: CachingCookbook

Security note

Enabling MKCOL, PUT and DELETE may be high security risks.

Combine them with the internal routing framework for adding authentication/authorization policies:

[uwsgi]
master = true
; bind on http port 9090 (better to use a uwsgi socket behind a proxy like nginx)
http-socket = :9090
; set the default modifier1 to the rados one
http-socket-modifier1 = 28
; mount our rados 'htmlpages' pool
rados-mount = mountpoint=/,pool=htmlpages,allow_put=1,allow_mkcol=1

; spawn multiple processes and threads
processes = 4
threads = 8

; permit PUT only to authenticated 'foo' user
route-if = equal:${REQUEST_METHOD};PUT basicauth:my secret area,foo:bar

; allow MKCOL only from 127.0.0.1
route-if = equal:${REQUEST_METHOD};MKCOL goto:check_localhost
; end of the chain
route-run = last:

route-label = check_localhost
; if REMOTE_ADDR = 127.0.0.1 -> continue to rados plugin
route-remote-addr = ^127\.0\.0\.1$ continue:
; otherwise break with 403
route-run = break:403 Forbidden

Notes

	The plugin automatically enables the MIME type engine.

	There is no directory index support. It makes no sense in rados/ceph context.

	You should drop privileges in your uWSGI instances, so be sure you give the right permissions to the ceph keyring.

The Pty plugin

	Available since uWSGI 1.9.15, supported on Linux, OpenBSD, FreeBSD and OSX

This plugin allows you to attach pseudo terminals to your applications.

Currently the pseudoterminal server can be attached (and exposed over network) only on the first worker
(this limit will be removed in the future).

The plugin exposes a client mode too (avoiding you to mess with netcat, telnet or screen settings)

Building it

The plugin is not included in the default build profiles, so you have to build it manually:

python uwsgiconfig.py --plugin plugins/pty [profile]

(remember to specify the build profile if you are not using the default one)

Example 1: Rack application shared debugging

UWSGI_PROFILE=ruby2 UWSGI_EMBED_PLUGINS=pty make

./uwsgi --rbshell="require 'pry';binding.pry" --socket /tmp/foo.socket --master --pty-socket :5000

./uwsgi --pty-connect :5000

Example 2: IPython control thread

import IPython
from uwsgidecorators import *

only worker 1 has the pty attached
@postfork(1)
@thread
def tshell():
 while True:
 IPython.embed()

SPNEGO authentication

Configuring uWSGI with LDAP

uWSGI can be configured using LDAP. LDAP is a flexible way to centralize
configuration of large clusters of uWSGI servers.

注解

LDAP support must be enabled while building uWSGI. The
libldap library is required.

Importing the uWSGIConfig schema

Running uWSGI with the –ldap-schema or –ldap-schema-ldif parameter will
make it output a standard LDAP schema (or an LDIF file) that you can import
into your server.

An example LDIF dump

This is an LDIF dump of an OpenLDAP server with a uWSGIConfig entry, running
a Trac instance.

dn: dc=projects,dc=unbit,dc=it
objectclass: uWSGIConfig
objectclass: domain
dc: projects
uWSGIsocket: /var/run/uwsgi/projects.unbit.it.sock
uWSGIhome: /accounts/unbit/tracvenv
uWSGImodule: trac.web.main:dispatch_request
uWSGImaster: TRUE
uWSGIprocesses: 4
uWSGIenv: TRAC_ENV=/accounts/unbit/trac/uwsgi

Usage

You only need to pass a valid LDAP url to the –ldap option. Only the first
entry returned will be used as configuration.

uwsgi –ldap ldap://ldap.unbit.it/dc=projects,dc=unbit,dc=it

If you want a filter with sub scope (this will return the first record under
the tree dc=projects,dc=unbit,dc=it with ou=Unbit):

uwsgi –ldap ldap://ldap.unbit.it/dc=projects,dc=unbit,dc=it?sub?ou=Unbit

Integrating uWSGI with Erlang

警告

Erlang support is broken as of 1.9.20. A new solution is being worked on.

The uWSGI server can act as an Erlang C-Node and exchange messages and RPC with Erlang nodes.

Building

First of all you need the ei libraries and headers. They are included in
the official erlang tarball. If you are on Debian/Ubuntu, install the
erlang-dev package. Erlang support can be embedded or built as a plugin.
For embedding, add the erlang and pyerl plugins to your buildconf.

embedded_plugins = python, ping, nagios, rpc, fastrouter, http, ugreen, erlang, pyerl

or build both as plugins

python uwsgiconfig --plugin plugins/erlang
python uwsgiconfig --plugin plugins/pyerl

The Erlang plugin will allow uWSGI to became a Erlang C-Node. The pyerl
plugin will add Erlang functions to the Python plugin.

Activating Erlang support

You only need to set two options to enable Erlang support in your
Erlang-enabled uWSGI build. The erlang option sets the Erlang node name of
your uWSGI server. It may be specified in simple or extended format:

	nodename@ip

	nodename@address

	nodename

The erlang-cookie option sets the cookie for inter-node communications. If
you do not specify it, the value is taken from the ~/.erlang.cookie
file.

To run uWSGI with Erlang enabled:

uwsgi --socket :3031 --erlang testnode@192.168.173.15 --erlang-cookie UUWSGIUWSGIU -p 2

A simple RPC hello world example

	Define a new erlang module that exports only a simple function.

-module(uwsgitest).
-export([hello/0]).

hello() ->
 'hello world !'.

	Launch the erl shell specifying the nodename and (eventually) the cookie:

erl -name testnode@192.168.173.1

	Compile the uwsgitest Erlang module

c(uwsgitest).
{ok,uwsgitest}

	... and try to run the hello function:

uwsgitest:hello().
'hello world !'

Great - now that our Erlang module is working, we are ready for RPC! Return to
your uWSGI server machine and define a new WSGI module – let’s call it
erhello.py.

import uwsgi

def application(env, start_response):
 testnode = uwsgi.erlang_connect("testnode@192.168.173.1")
 start_response('200 OK', [('Content-Type', 'text/plain')])
 yield uwsgi.erlang_rpc(testnode, "uwsgitest", "hello", [])
 uwsgi.erlang_close(testnode)

or the fast-style

import uwsgi

def application(env, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 yield uwsgi.erlang_rpc("testnode@192.168.173.1", "uwsgitest", "hello", [])

Now relaunch the uWSGI server with this new module:

uwsgi --socket :3031 --erlang testnode@192.168.173.15 --erlang-cookie UUWSGIUWSGIU -p 2 -w erhello

Point your browser to your uWSGI enabled webserver and you should see the output of your erlang RPC call.

Python-Erlang mappings

The uWSGI server tries to translate Erlang types to Python objects according to the table below.

	Python
	Erlang
	note

	str
	binary
	

	unicode
	atom
	limited by internal atom size

	int/long
	int
	

	list
	list
	

	tuple
	tuple
	

	3-tuple
	pid
	

Sending messages to Erlang nodes

One of the most powerful features of Erlang is the inter-node message passing
system. uWSGI can communicate with Erlang nodes as well. Lets define a new
Erlang module that simply will echo back whatever we send to it.

-module(uwsgiecho).
-export([start/0, loop/0, echo/1]).

echo(Message) ->
 {i_am_echo , Message}.

loop() ->
 receive
 Message1 ->
 io:format("received a message~n"),
 { useless, 'testnode@192.168.173.15' } ! echo(Message1)
 end,
 loop().

start() ->
 register(echoer, spawn(uwsgiecho, loop, [])).

Remember to register your process with the Erlang register function. Using
pids to identify processes is problematic. Now you can send messages with
uwsgi.erlang_send_message().

uwsgi.erlang_send_message(node, "echoer", "Hello echo server !!!")

The second argument is the registered process name. If you do not specify the
name, pass a 3-tuple of Python elements to be interpreted as a Pid. If your
Erlang server returns messages to your requests you can receive them with
uwsgi.erlang_recv_message(). Remember that even if Erlang needs a
process name/pid to send messages, they will be blissfully ignored by uWSGI.

Receiving erlang messages

Sometimes you want to directly send messages from an Erlang node to the uWSGI
server. To receive Erlang messages you have to register “Erlang processes” in
your Python code.

import uwsgi

def erman(arg):
 print "received an erlang message:", arg

uwsgi.erlang_register_process("myprocess", erman)

Now from Erlang you can send messages to the “myprocess” process you registered:

{ myprocess, 'testnode@192.168.173.15' } ! "Hello".

RPC

You can call uWSGI uWSGI RPC Stack functions directly from Erlang.

rpc:call('testnode@192.168.173.15', useless, myfunction, []).

this will call the “myfunction” uWSGI RPC function on a uWSGI server configured
as an Erlang node.

Connection persistence

On high-loaded sites opening and closing connections for every Erlang
interaction is overkill. Open a connection on your app initialization with
uwsgi.erlang_connect() and hold on to the file descriptor.

What about Mnesia?

We suggest you to use Mnesia [http://en.wikipedia.org/wiki/Mnesia] when you need a high-availability site. Build an
Erlang module to expose all the database interaction you need and use
uwsgi.erlang_rpc() to interact with it.

Can I run EWGI [http://code.google.com/p/ewgi/wiki/EWGISpecification] applications on top of uWSGI?

For now, no. The best way to do this would be to develop a plugin and assign a
special modifier for EWGI apps.

But before that happens, you can wrap the incoming request into EWGI form in
Python code and use uwsgi.erlang_rpc() to call your Erlang app.

Management Flags

警告

This feature may be currently broken or deprecated.

You can modify the behavior of some aspects of the uWSGI stack remotely, without taking the server offline using the Management Flag system.

注解

A more comprehensive re-setup system may be in the works.

All the flags take an unsigned 32-bit value (so the block size is always 4) that contains the value to set for the flag.
If you do not specify this value, only sending the uWSGI header, the server will count it as a read request.

	Flag
	Action
	Description

	0
	logging
	enable/disable logging

	1
	max_requests
	set maximum number of requests per worker

	2
	socket_timeout
	modify the internal socket timeout

	3
	memory_debug
	enable/disable memory debug/report

	4
	master_interval
	set the master process check interval

	5
	harakiri
	set/unset the harakiri timeout

	6
	cgi_mode
	enable/disable cgi mode

	7
	threads
	enable/disable threads (currently unimplemented)

	8
	reaper
	enable/disable process reaper

	9
	log-zero
	enable/disable logging of request with zero response size

	10
	log-slow
	set/unset logging of slow requests

	11
	log-4xx
	enable/disable logging of request with 4xx response status

	12
	log-5xx
	enable/disable logging of request with 5xx response status

	13
	log-big
	set/unset logging of request with big response size

	14
	log-sendfile
	set/unset logging of sendfile requests

	15
	backlog-status
	report the current size of the backlog queue (linux on tcp only)

	16
	backlog-errors
	report the number of errors in the backlog queue (linux on tcp only)

myadmin tool

A simple (and ugly) script, myadmin, is included to remotely change management flags:

disable logging on the uWSGI server listening on 192.168.173.17 port 3031
./uwsgi --no-server -w myadmin --pyargv "192.168.173.17:3031 0 0"
re-enable logging
./uwsgi --no-server -w myadmin --pyargv "192.168.173.17:3031 0 1"
read a value:
./uwsgi --no-server -w myadmin --pyargv "192.168.173.17:3031 15"

uWSGI Go support (1.4 only)

警告

Starting from 1.9.20, the Go plugin has been superseded by the The GCCGO plugin plugin.

Starting from uWSGI 1.4-dev you can host Go web applications in your uWSGI
stack. You can download Go from http://golang.org/ . Currently Linux
i386/x86_64, FreeBSD i386/x86_64 and OSX are supported. For OSX support, you
need Go 1.0.3+ or you will need to apply the patch available at
http://code.google.com/p/go/source/detail?r=62b7ebe62958 Goroutines are
currently supported only on Linux i386/x86_64.

Building uWSGI with Go support

Go support can be built as an embedded component or plugin. The main
difference with the setup of other languages is this time we will build a uwsgi
library and not a uwsgi binary. This library will be used by a Go package named
uwsgi.go you can link with your apps. Do not be afraid as in the uWSGI
distribution there is already a build profile to make a completely (monolithic)
distribution with Go support embedded. At the end of the build procedure you
will have a libuwsgi.so shared library and a uwsgi.a Go package.

To build uWSGI+go just run (from uWSGI sources directory)

UWSGI_PROFILE=go make

or if Python is not in your system path, or you need to use a specific python
version:

/usr/local/bin/python uwsgiconfig.py --build go

(or wherever your custom Python is)

At the end of the build procedure you will have a libuwsgi.so file (copy or
link it to a library directory like /usr/local/lib or /usr/lib and eventually
run ldconfig if needed) and a uwsgi.a file in a subdirectory (based on your
arch/os) in plugins/go/pkg.

重要

The last message from the build procedure reports the GOPATH you should
use when building uWSGI Go apps (copy/remember/annotate that value
somewhere).

If you already know how the Go import system works, feel free to copy
uwsgi.a in your system-wide GOPATH.

Writing the first Go application

By default the uWSGI Go plugin supports the http.DefaultServeMux handler,
so if your app is already based on it, running it in uWSGI should be extremely
simple.

package main

import (
 "uwsgi"
 "net/http"
 "fmt"
)

func oneHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "<h1>One</h1>")
}

func twoHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "<h2>Two</h2>")
}

func main() {
 http.HandleFunc("/one/", oneHandler)
 http.HandleFunc("/two/", twoHandler)
 uwsgi.Run()
}

As you can see, the only differences from a standard net/http-based
application are the need to import "uwsgi" need and calling uwsgi.Run()
function, which will run the whole uWSGI server. If you want to use your
personal request handler instead of http.DefaultServeMux, use
uwsgi.Handler(http.Handler) or
uwsgi.RequestHandler(func(http.ResponseWriter, *http.Request)) to set it.

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "<h2>Two</h2>")
}

func main() {
 uwsgi.RequestHandler(myHandler)
 uwsgi.Run()
}

Building your first app

Assuming you saved your app as helloworld.go, just run the following.

GOPATH=/home/foobar/uwsgi/plugins/go go build helloworld.go

change GOPATH to the value you got from the build procedure, or to the dir you
have installed/copied uwsgi.a If all goes well you will end with a ‘helloworld’
executable. That executable is a full uWSGI server (yes, really).

./helloworld --http :8080 --http-modifier1 11

Just point your browser to the port 8080 and check /one/ and /two/ You can
start adding processes and a master:

./helloworld --http :8080 --http-modifier1 11 --master --processes 8

Note: modifier1 11 is officially assigned to Go.

Going in production

In a production environment you will probably put a webserver/proxy in front of
your app. Thus your nginx config will look like this:

location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_modifier1 11;
}

while your uWSGI config will be something like this...

[uwsgi]
socket = 127.0.0.1:3031
master = true
processes = 4

Finally simply run your app:

./helloworld config.ini

Goroutines (currently Linux/FreeBSD-only)

Goroutines are very probably the most interesting feature of the Go platform.
A uWSGI loop engine for goroutines is automatically embedded in the uWSGI
library when you build it with the go plugin. To spawn goroutines in each
uWSGI process just add the goroutines = N option, where N is the number of
goroutines to spawn.

[uwsgi]
socket = 127.0.0.1:3031
master = true
processes = 4
goroutines = 100

With this config you will spawn 100 goroutines for each uWSGI process, yielding
a grand total of 400 goroutines (!) As far as uWSGI is concerned, goroutines
map to pthreads, but you will be able to spawn coroutine-based tasks from your
application as well.

uWSGI api

It is fairly simple to access the uWSGI API from your Go app. To do so invoke
the functions exported by the uwsgi package:

package main

import (
 "fmt"
 "uwsgi"
)

func hello2(signum int) {
 fmt.Println("I am an rb_timer running on mule", uwsgi.MuleId())
}

func hello(signum int) {
 fmt.Println("Ciao, 3 seconds elapsed")
}

func postinit() {
 uwsgi.RegisterSignal(17, "", hello)
 uwsgi.AddTimer(17, 3)

 uwsgi.RegisterSignal(30, "mule1", hello2)
 uwsgi.AddRbTimer(30, 5)
}

func foofork() {
 fmt.Println("fork() has been called")
}

func main() {
 uwsgi.PostInit(postinit)
 uwsgi.PostFork(foofork)
 uwsgi.Run()
}

The PostInit() function set the ‘hook’ to be called after the Go initialization
is complete. The PostFork() function set the ‘hook’ to be called after each
fork() In postinit hook we register two uwsgi signals, with the second one
being run in a mule (the mule1) To run the code just build your new app as
above and execute it

[uwsgi]
socket = 127.0.0.1:3031
master = true
processes = 2
goroutines = 20
mules = 2
memory-report = true

This time we have added memory-report, try it to see how memory-cheap Go apps
can be.

Running from the Emperor

If you are running in Emperor mode, you can run uWSGI-Go apps by using the
privileged-binary-patch option. Your vassal configuration should be
something like this.

[uwsgi]
socket = 127.0.0.1:3031
master = true
processes = 2
goroutines = 20
mules = 2
memory-report = true
uid = foobar
gid = foobar
privileged-binary-patch = /tmp/bin/helloworld

(Obviously change /tmp/bin/helloworld to wherever your app lives...)

Notes

	A series of interesting go examples can be found in the t/go directory of
the uWSGI source distribution.

	Changing process names is currently not possible without modifying the go core

	You cannot use uWSGI native threads with Go (just use –goroutines)

	Only a little part of the uWSGI API has been exposed so far. If you want to
hack on it or need more, just edit the uwsgi.go file in the
plugins/go/src/uwsgi directory

	Goroutines require the async mode (if you are customizing your uWSGI library
remember to always include it)

	It looks like it is possible to load the Python, Lua and PSGI plugins without
problems even in goroutines mode (more tests needed)

uWSGI 2.0.9

[20141230]

Bugfixes

	fixed mod_proxy_uwsgi for non-blocking mode (many thanks to Joe cuchac)

	fixed master-fifo + cheaper

	fixed leak on error in bind_to_unix (Riccardo Magliocchetti)

	atexit hooks works in cheaped workers too

	atexit hooks works in gevent mode too during shutdown

	fixed carbon command line option value after reload

	do not honour Emperor throttling on the first run

	fixed Mono plugin

	fixed peer name in corerouters

	fixed stop signal for daemons

	varios ssl/tls fixes in https/spdy router

	fixed python3 –py-auto-reload-ignore

	fixed modifiers in corerouters

	support for yajl from homebrew (OSX)

	psgi: Ensure that we call any DESTROY hooks on psgix.harakiri.commit (Ævar Arnfjörð Bjarmason)

	systemdlogger: fix compilation with -Werror=format-security (Riccardo Magliocchetti)

	fixed unmasked websockets

	perl fixed latent refcounting bug (Mattia Barbon)

New Features

Improved PyPy support for Linux

The PyPy team have started building libpypy-c.so in their official releases. Now using pypy with uWSGI should be way easier:

http://uwsgi-docs.readthedocs.org/en/latest/PyPy.html

Fastrouter post-buffering

The fastrouter got post-buffering:

http://uwsgi-docs.readthedocs.org/en/latest/Fastrouter.html#post-buffering-mode-uwsgi-2-0-9

Perl uwsgi::opt

The psgi/perl plugin exposes the uwsgi::opt hash, reporting the whole instance key-value configuration

–pull-header

This is like –collect-header but the collected header is not returned to the client

active-workers signal target

This is like the ‘workers’ target, but forward the signal only to non-cheaper workers

httpdumb routing action

The http internal router exposes a new mode called ‘httpdumb’ that does not change headers before forwarding the request

Availability

uWSGI 2.0.9 has been released on 20141230.

You can download it from:

http://projects.unbit.it/downloads/uwsgi-2.0.9.tar.gz

uWSGI 2.0.8

Note: this is the first version with disabled-by-default SSL3, if you need it, you can re-enable with --ssl-enable3 option

Bugfixes

	fixed PHP SCRIPT_NAME usage when --php-app is in place

	allow “appendn” hook without second argument

	fix heap corruption in the Carbon plugin (credits: Nigel Heron)

	fix getifaddrs() memory management

	fixed tcsetattr() usage

	fixed kevent usage of return value (credits: Adriano Di Luzio)

	ensure PSGI response headers are in the right format

	fixed reloading of attached daemons

	fixed SSL/TLS shutdown

	fixed mountpoint logic for paths not ending with / (credits: Adriano Di Luzio)

	fixed Python3 support in spooler decorators (credits: Adriano Di Luzio)

New Features

RTSP and chunked input backports from 2.1 for the HTTP router

The --http-manage-rtsp and ``–http-chunked-input` have been backported from 2.1 allowing the HTTP router
to detect RTSP and chunked requests automatically. This is useful for the upcoming https://github.com/unbit/uwsgi-realtime plugin.

–hook-post-fork

This custom hook allows you to call actions after each fork().

fallback to trollius for asyncio plugin

If you build the asyncio plugin for python2, a fallback to the trollius [http://trollius.readthedocs.org/] module will be tried.

This feature has gotten basically zero test coverage, so every report (bug or success alike) is welcome.

added sweep_on_full, clear_on_full and no_expire to --cache2

Three new options for --cache2 have been added for improving the caching expire strategies:

	sweep_on_full will call a sweep (delete all of the expired items) as soon as the cache became full

	clear_on_full will completely clear the cache as soon as it is full

	no_expire forces the cache to not generate a cache sweeper thread, delegating items removal to the two previous options

backported wait-for-fs/mountpoints from 2.1

	--wait-for-fs <path> suspend the uWSGI startup until a file/directory is available

	--wait-for-file <path> suspend the uWSGI startup until a file is available

	--wait-for-dir <path> suspend the uWSGI startup until a directory is available

	--wait-for-mountpoint <path> suspend the uWSGI startup until a mountpoint is available

improved the offload api (backport from 2.1)

uWSGI 2.0.8 is compatible with the upcoming https://github.com/unbit/uwsgi-realtime plugin that allows the use of realtime features
(like websockets or audio/video streaming) using the uWSGI offload engine + Redis publish/subscribe.

Allows building plugins from remote sources as embedded

The UWSGI_EMBED_PLUGINS environment variable has been extended to support remote plugins. As an example you can build a monolithic
uwsgi binary with the Avahi and realtime plugins as:

UWSGI_EMBED_PLUGINS="avahi=https://github.com/20tab/uwsgi-avahi,realtime=https://github.com/unbit/uwsgi-realtime" make

Automatically manage HTTP_X_FORWARDED_PROTO

Albeit a new standard is avavailble in the HTTP world for forwarded sessions (http://tools.ietf.org/html/rfc7239) this release
adds support for the X-Forwarded-Proto header, automatically setting the request scheme accordingly.

Availability

uWSGI 2.0.8 has been released on 20141026. Download it from:

http://projects.unbit.it/downloads/uwsgi-2.0.8.tar.gz

uWSGI 2.0.7

Changelog [20140905]

Bugfixes

	fixed counters in Statsd plugin (Joshua C. Forest)

	fixed caching in PHP plugin (Andrew Bevitt)

	fixed management of system users starting with a number

	fixed request body readline using memmove instead of memcpy (Andrew Wason)

	ignore “user” namespace in setns (still a source of problems)

	fixed Python3 RPC bytes/string mess (result: we support both)

	do not destroy the Emperor on failed mount hooks

	fixed symbol lookup error in the Mono plugin on OS X (Ventero)

	fixed FastCGI and SCGI protocols error when out of buffer happens

	fixed Solaris/SmartOS I/O management

	fixed two memory leaks in the RPC subsystem (Riccardo Magliocchetti)

	fixed the Rados plugin’s PUT method (Martin Mlynář)

	fixed multiple Python mountpoints with multiple threads in cow mode

	stats UNIX socket is now deleted by vacuum

	fixed off-by-one corruption in cache LRU mode

	force single-CPU build in Cygwin (Guido Notari)

New Features and improvements

Allow calling the spooler from every CPython context

At Europython 2014, Ultrabug (an uWSGI contributor and packager) asked for the possibility to spool tasks directly from a greenlet.

Done.

store_delete cache2 option

Author: goir

The store_delete flag of the –cache2 option allows you to force the cache engine to automatically remove invalid
backing store files instead of steadfastly refusing to launch.

file logger rotation

Author: Riccardo Magliocchetti

The file logger has been extended to allow the use of rotation (the same system used by the non-pluggable –logto).

https://github.com/unbit/uwsgi/commit/0324e5965c360dccfb873ffe351dec88ddab59c5

Vassal plugin hooks

The plugin hook API has been extended with two new hooks: vassal and vassal_before_exec.

They allow customizing a vassal soon after its process has been created.

The first third-party plugin using it is ‘apparmor’: https://github.com/unbit/uwsgi-apparmor

This allows you to apply an Apparmor profile to a vassal.

Broodlord improvements

The Broodlord subsystem has been improved with a new option: –vassal-sos that automatically ask for reinforcement when all of the workers of an instance are busy.

In addition to this a sysadmin can now manually ask for reinforcement sending the ‘B’ command to the master FIFO of an instance.

Availability

uWSGI 2.0.7 has been released on 20140905, and you can download it from

http://projects.unbit.it/downloads/uwsgi-2.0.7.tar.gz

uWSGI 2.0.6

Changelog [20140701]

Bugfixes

	fixed a memory leak in the subscription system

	fixed shortcut for ssl-socket

	fixed Apache2 mod_proxy_uwsgi. It is now considered stable with all Apache MPM engines.

	fixed SCRIPT_NAME and PATH_TRANSLATED generation in the PHP plugin (thanks Matthijs Kooijman)

	remove the old FIFO socket from the event queue when recreating it (thanks Marko Tiikkaja)

New features

The new Rados plugins

Credits: Marcin Deranek

The Rados plugin has been improved and stabilized, and now it is considered stable and usable in production.

Async modes and multithreading correctly work.

Support for uploading objects (via PUT) and creating new pools (MKCOL) has been added.

Expect WebDAV support in uWSGI 2.1.

Docs have been updated: http://uwsgi-docs.readthedocs.org/en/latest/Rados.html

–if-hostname

This is configuration logic for including options only when the system’s hostname matches a given value.

[uwsgi]
if-hostname = node1.local
 socket = /tmp/socket1.socket
endif =

if-hostname = node2.local
 socket = /var/run/foo.socket
endif =

Apache2 mod_proxy_uwsgi stabilization

After literally years of bug reports and corrupted data and other general badness, mod_proxy_uwsgi is finally stable.

On modern Apache2 releases it supports UNIX sockets too.

Updated docs: http://uwsgi-docs.readthedocs.org/en/latest/Apache.html#mod-proxy-uwsgi

uwsgi[rsize] routing var

The new uwsgi[rsize] routing variable (meaningful only in the ‘final’ chain) exposes the response size of the request.

the callint scheme

This scheme allows you to generate blobs from functions exposed by your uWSGI instance:

[uwsgi]
uid = @(callint://get_my_uid)
gid = @(callint://get_my_gid)

–fastrouter-fallback-on-no-key

The corerouter’s fallback procedure requires that a valid key (domain name) has been requested.

This option forces the various routers to trigger the fallback procedure even if a key has not been found.

PHP 5.5 opcode caching via –php-sapi-name

For mysterious reasons the PHP 5.5+’s opcode caching is not enabled in the “embed” SAPI. This option allows you to fake the SAPI name – apache is a good option – to force the opcode caching engine to turn on.

Improved chain-reloading

Thanks to Marko Tiikkaja, the chain reloading procedure correctly works in cheaper modes and is more verbose.

added ‘chdir’ keyval to –attach-daemon2

You can now set where attached daemons need to chdir().

Availability

uWSGI 2.0.6 has been released on 20140701

You can download it from

http://projects.unbit.it/downloads/uwsgi-2.0.6.tar.gz

uWSGI 2.0.5

Changelog [20140601]

Bugfixes

	fixed support for repeated headers in the Lua plugin (Credits: tizoc)

	fixed support for embedding configuration in OpenBSD and NetBSD

	various fixes in the cURL-based plugins (Credits: Yu Zhao)

	fixed milliseconds-based waits

	fixed sharedarea’s poller

	fixed the JSON encoder in the stats server

	fixed FastCGI parser and implemented EOF management (Credits: Jeff Trawick)

	improved fast on-demand mode

	avg_rt computation is excluded for static files

	fixed variable support in uwsgi internal router

	fixed websockets + keepalive ordering

	disable SIGPIPE management in coroutine-based loop engines

	fixed 64-bit sharedarea management in 32-bit systems

	honor chmod/chown-socket in fd0 mode

	hack to avoid Safari on iOS making a mess with keepalive

	fixed log setup when both –logto and –log2 are used (Credits: Łukasz Mierzwa)

	fixed mule_get_msg EAGAIN

	signal_pidfile returns the right error code

	fixed asyncio on OSX

New features

graceful reload of mule processes (Credits: Paul Egan)

SIGHUP is now sent to mules instead of directly killing them.
You are free to trap/catch the signal in your code.
If a mule does not die in the allowed “mercy time” (–mule-reload-mercy, default 60 seconds), SIGKILL will be sent.

return routing action (Credits: Yu Zhao)

This new action will allow users to write simplified “break” clauses.

For example, “return:403” is equivalent to “break:403 Forbidden”, with response body “Forbidden”.

The response body is quite useful for telling end users what’s going wrong.

–emperor-no-blacklist

This new option completely disables the Emperor’s blacklisting subsystem.

Icecast2 protocol helpers

One of the upcoming unbit.com projects is a uWSGI based audio/video streaming server.

The plugin (should be released during Europython 2014) already supports the Icecast2 protocol.

A bunch of patches have been added to the HTTP router to support the Icecast2 protocol.

For example the --http-manage-source option allows the HTTP router to honor SOURCE method requests, automatically placing them in raw mode.

–metrics-no-cores, –stats-no-cores, –stats-no-metrics

When you have hundreds (or thousands) of async cores, exposing metrics for them may get really slow.

Three new options have been added allowing you to disable the generation of core-related metrics and consequently their usage in the stats server.

sharedarea improvements

The sharedarea API continues to improve. Latest patches include support for memory-mapping files (or devices) (mmap) directly from the command line.

An interesting way to test this is mapping the BCM2835 memory of the Raspberry PI. This little example allows you to read the RPi system timer.

uwsgi --sharedarea file=/dev/mem,offset=0x20003000,size=4096 ...

Now you can read a 64-bit value from the first (zero-based) sharedarea:

read 64bit from 0x20003004
timer = uwsgi.sharedarea_read64(0, 0x04)

(Obviously, when reading and writing the Raspberry Pi memory, be careful. An error could crash the whole system!)

UWSGI_GO_CHEAP_CODE

This exit code (15) can be raised by a worker to tell the master to not respawn it.

PROXY1 support for the http router (Credits: bgglenn)

The option --http-enable-proxy-protocol allows the HTTP router to understand PROXY1 protocol requests, such as those made by Haproxy or Amazon Elastic Load Balancer (ELB).

reset_after_push for metrics (Credits: Babacar Tall)

This metric attribute ensures that the metric value is reset to 0 (or its hardcoded initial_value) after the metric is pushed to external systems (such as Carbon or StatsD).

setremoteaddr

This new routing action allows you to completely override the REMOTE_ADDR detected by protocol handlers:

[uwsgi]
; treat all requests as local
route-run = setremoteaddr:127.0.0.1

the resolve option

There are uWSGI options (or plugins) that do not automatically resolve DNS names to IP addresses. This option allows you to map
a placeholder to the DNS resolution result of a string:

[uwsgi]
; place the dns resolution of 'example.com' in the 'myserver' placeholder
resolve = myserver=example.com
; %(myserver) would now be 93.184.216.119
subscribe2 = server=%(myserver),key=foobar

Availability

uWSGI 2.0.5 has been released on [20140601] and can be downloaded from:

http://projects.unbit.it/downloads/uwsgi-2.0.5.tar.gz

uWSGI 2.0.4

Changelog [20140422]

Bugfixes

	fixed “mime” routing var (Steve Stagg)

	allow duplicate headers in http parsers

	faster on_demand Emperor management

	fixed UWSGI_ADDITIONAL_SOURCES build option

	merge duplicated headers when SPDY is enabled (Łukasz Mierzwa)

	fixed segfault for unnamed loggers

	–need-app works in lazy-apps mode

	fixed fatal hooks management

New features

The experimental asyncio loop engine (CPython >= 3.4)

asyncio (also known as ‘tulip’) is the new infrastructure for writing non-blocking/async/callback-based code with Python 3.

This (experimental) plugin allows you to use asyncio as the uWSGI loop engine.

Docs: http://uwsgi-docs.readthedocs.org/en/latest/asyncio.html

httprouter advanced timeout management

The HTTP router learned 2 new specific timeouts:

	–http-headers-timeout <n>: defines the timeout while waiting for http headers

	–http-connect-timeout <n>: defines the timeout when connecting to backend instances

These should help sysadmins to improve security and availability.

Credits: Łukasz Mierzwa

allow disabling cache warnings in –cache2

Author: Łukasz Mierzwa

The ‘ignore_full’ keyval option has been added to cache2. This will disable warnings when a cache is full.

purge LRU cache feature by Yu Zhao (getcwd)

This new mode allows you to configure a cache to automatically expire the least recently used (LRU) items to make space when it’s running out.

Just add purge_lru=1 into your cache2 directive.

support embedded config on FreeBSD

You can now embed configuration files into the binary also on FreeBSD systems:

http://uwsgi-docs.readthedocs.org/en/latest/Embed.html#step-2-embedding-the-config-file

RPC hook

Two new hooks have been added:

	‘rpc’ -> call the specified RPC function (fails on error)

	‘rpcretry’ -> call the specified RPC function (retries on error)

setmodifier1 and setmodifier2 routing actions

Having to load the ‘uwsgi’ routing plugin to simply set modifiers was really annoying.

These two new routing options allow you to dynamically set request modifiers.

no_headers option for static router

keyval based static routing actions can now avoid rewriting response headers (useful for X-Sendfile), just add no_headers=1 to your keyval options.

Availability

uWSGI 2.0.4 has been released on 20140422, you can download it from:

http://projects.unbit.it/downloads/uwsgi-2.0.4.tar.gz

uWSGI 2.0.3

Changelog 20140317

Bugfixes

	fixed spooler ‘at’ key usage

	fixed a memory and fd leak with on-demand Emperor sokets

	on __APPLE__ use LOG_NOTICE for syslog plugin

	fixed mongrel2 support

	hack for avoiding libmongoclient to crash on broken cursor

	log alarm is now a uwsgi_log_verbose() wrapper

	fixed tuntap router memory corruption

	Set ECDHE curve independently from DHE parameters (Hynek Schlawack)

	do not wait for a whole Emperor cycle before checking for each waitpid

	fix a regression with caller() not indicating the starting *.psgi program (Ævar Arnfjörð Bjarmason)

New features

Emperor SIGWINCH and SIGURG

The Emperor now responds to two new signals:

SIGWINCH: force an emperor rescan of vassals

SIGURG: cleanup the Emperor states (for now it only clears its blacklist)

Building plugins on-the-fly from git repositories

You can now build plugins stored on git servers:

uwsgi --build-plugin https://github.com/unbit/uwsgi-bonjour

or

UWSGI_EMBED_PLUGINS="bonjour=https://github.com/unbit/uwsgi-bonjour" pip install uwsgi

uwsgi.add_var(key, value)

You can now set request variables direcly from your app, for better integration with the internal routing subsystem

my $app = sub {
 uwsgi::add_var("newvar","newvalue");
 return [200, ['Content-Type' => 'text/html'], ["Hello"]];
}

uwsgi --http-socket :9090 --psgi hello.pl --response-route-run "log:\${newvar}"

add_var has been implemented in the CPython and Perl plugins

‘disableheaders’ routing action

This new action disables the sending of response headers, independently by the current request state

Smarter Emperor on bad conditions

Now the Emperor completely destroys internal vassal-related structures when it is impossible to correctly kill a broken vassal
(both for inconsistent Emperor state or for internal system problems)

Availability

You can download uWSGI 2.0.3 from: http://projects.unbit.it/downloads/uwsgi-2.0.3.tar.gz

uWSGI 2.0.2

Changelog 20140226

Bugfixes

	fixed python3 support on older compilers/libc

	allow starting in spooler-only mode

	fixed cache bitmap support and added test suite (credits: Danila Shtan)

	fixed ftime log var

	added async remote signal management

	fixed end-for and end-if

	fixed loop in internal-routing response chain

	fixed pypy execute_source usage

	logpipe: Don’t setsid() twice (credits: INADA Naoki)

New features and improvements

CGI plugin

The plugin has been improved to support streaming.

In addition to this the long-awaited async support is finally ready. Now you can have CGI concurrency
without spawning a gazillion of expensive threads/processes

Check: Running CGI scripts on uWSGI

PSGI loading improvements

The PSGI loader now tries to use Plack::Util::load_psgi() function instead of simple eval. This addresses various inconsistences
in the environment (like the double parsing/compilation/execution of psgi scripts).

If the Plack module is not available, a simple do-based code is used (very similar to load_psgi)

Many thanks to Ævar Arnfjörð Bjarmason of booking.com for having discovered the problem

Availability

uWSGI 2.0.2 can be downloaded from: http://projects.unbit.it/downloads/uwsgi-2.0.2.tar.gz

uWSGI 2.0.1

Changelog [20140209]

Bugfixes and improvements

	due to a wrong prototype declaration, building uWSGI without SSL resulted in a compilation bug. The issue has been fixed.

	a race condition preventing usage of a massive number of threads in the PyPy plugin has been fixed

	check for heartbeat status only if heartbeat subsystem has been enabled

	improved heartbeat code to support various corner cases

	improved psgi.input to support offset in read()

	fixed (and simplified) perl stacktrace usage

	fixed sni secured subscription

	CGI plugin does not require anymore that Status header is the first one (Andjelko Horvat)

	fixed CPython mule_msg_get timeout parsing

	allows embedding of config files via absolute paths

	fixed symcall rpc

	fixed a memory leak in CPython spooler api (xiaost)

	The –no-orphans hardening has been brought back (currently Linux-only)

	improved dotsplit router mode to reduce DOS risk

	sub-Emperor are now loyal by default

	fixed non-shared ruby 1.8.7 support

	fixed harakiri CPython tracebacker

	request vars are now correctly exposed by the stats server

	support log-master for logfile-chown

	improved legion reload

	fixed tuntap netmask

	fixed busyness plugin without metrics subsystem

New features

uWSGI 2.0 is a LTS branch, so do not expect too much new features. 2.0.1 is the first maintainance release, so you still get a bunch of them
(mainly features not complete in 2.0)

Perl native Spooler support

Perl finally got full support for the Spooler subsystem. In 2.0 we added server support, in 2.0.1 we completed client support too.

use Data::Dumper;

uwsgi::spooler(sub {
 my $env = shift;
 print Dumper($env);
 return uwsgi::SPOOL_OK;
});

uwsgi::spool({'foo' => 'bar', 'arg2' => 'test2'})

–alarm-backlog

Raise the specified alarm when the listen queue is full

[uwsgi]
alarm = myalarm cmd:mail -s 'ALARM ON QUEUE' admin@example.com
alarm-backlog = myalarm

–close-on-exec2

Credits: Kaarle Ritvanen

this flag applies CLOSE_ON_EXEC socket flag on all of the server socket. Use it if you do not want you request-generated processes to inherit the server file descriptor.

Note: –close-on-exec applies the flag on all of the sockets (client and server)

simple notifications subsystem

An annoying problem with subscriptions is that the client does not know if it has been correctly subscribed to the server.

The notification subsystem allows you to add to the subscription packet a datagram address (udp or unix) on which the server will send back
messages (like successful subscription)

[uwsgi]
; enable the notification socket
notify-socket = /tmp/notify.socket
; pass it in subscriptions
subscription-notify-socket = /tmp/notify.socket
...

the notification subsystem is really generic. Expect more subsystem to use it in the future.

pid namespace for daemons (Linux only)

This is a Linux-only, epxerimental feature allowing you to spawn a daemon in a new pid namespace. This feature requires the master running as root.

Check: Managing external daemons/services

Resubscriptions

The fastrouter and the http/https/spdy router now support “resubscription”.

You can specify a dgram address (udp or unix) on which all of the subscriptions request will be forwarded to (obviously changing the node address to the router one)

The system could be useful to build ‘federated’ setup:

[uwsgi]
fastrouter = 192.168.0.1:3031
fastrouter-subscription-server = 127.0.0.1:5000
fastrouter-resubscribe = 192.168.0.2:5000

with this setup the fastrouter on 192.168.0.2 will have all of the records of 192.168.0.1 with the destination set to 192.168.0.1:3031.

filesystem monitor api

The real-time filesystem notification api has been standardized and it is now usable by plugins. The prototype to register a monitor is:

struct uwsgi_fsmon *uwsgi_register_fsmon(char *path, void (*func) (struct uwsgi_fsmon *), void *data) {

it will register a monitor on “path” triggering the function “func” passing “data” as argument.

Remember, this is different from the “touch” api, that is poll-based and can only monitor files. (while fsmon can monitor directories too)

support for yajl 1.0

2.0 added support yajl JSON parser (version 2). 2.0.1 added support for 1.0 too

for-readline

a config-logic iterator that yield file lines:

[uwsgi]
for-readline = /etc/myenvs
 env = %(_)
end-for =

%i and %j magic vars

%i -> returns the inode of the currently parsed file

%j -> returns hex representation of 32bit djb33x hashing of the currently parsed absolute filename

–inject-before and –inject-after

This two new options should make the config templating system complete for everyone.

They basically prepend and append ‘blobs’ to a config file.

Yeah, it sound a bit nonsense.

Check the following example:

header.xml:

<uwsgi>
 <socket>:3031</socket>

footer.xml:

<master/>
 </uwsgi>

and body.xml:

<processes>8</processes>

you can build a single config tree with:

uwsgi --show-config --inject-before header.xml --inject-after footer.xml --xml body.xml

this approach, albeit raw, allows you to use magic-vars in more advanced ways (as you have control on the context of the file using them)

Note: ordering is important, –inject-before and –inject-after must be specified before the relevant config option.

–http-server-name-as-http-host

Some Ruby/Rack middleware make a questionable check on SERVER_NAME/HTTP_HOST matching.

This flag allow the http router to map SERVER_NAME to HTTP_HOST automatically instead of instructing your uWSGI instances to do it.

better Emperor’s Ragnarok (shutdown procedure)

The ‘Ragnarok’ is the Emperor phase executed when you ask him to shutdown.

Before 2.0.1, this procedure simply send KILL to vassals to brutally destroy them.

The new Ragnarok is way more benevolent, asking vassals to gracefully shutdown.

The Emperor tolerance for vassals not shutting down can be tuned with –reload-mercy (default 30 seconds)

PyPy paste support

Two new options for PyPy plugin have been added for paste support:

–pypy-paste <config>

–pypy-ini-paste <ini>

they both maps 1:1 to the CPython variants, but contrary to it they automatically fix logging

Availability

You can download uWSGI 2.0.1 from: http://projects.unbit.it/downloads/uwsgi-2.0.1.tar.gz

uWSGI 2.0

Changelog [20131230]

Important changes

Dynamic options have been definitely removed as well as the broken_plugins directory

Bugfixes and improvements

	improved log rotation

	do not rely on unix signals to print request status during harakiri

	added magic vars for uid and gid

	various Lua fixes

	a tons of coverity-governed bugfixes made by Riccardo Magliocchetti

New features

–attach-daemon2

this is a keyval based option for configuring external daemons.

Updated docs are: Managing external daemons/services

Linux setns() support

One of the biggest improvements in uWSGI 1.9-2.0 has been the total support for Linux namespaces.

This last patch adds support for the setns() syscall.

This syscall allows a process to “attach” to a running namespace.

uWSGI instances can exposes their namespaces file descriptors (basically they are the files in /proc/self/ns) via a unix socket.

External instances connects to that unix socket and automatically enters the mapped namespace.

to spawn an instance in “namespace server mode”, you use the --setns-socket <addr> option

uwsgi --setns-socket /var/run/ns.socket --unshare net,ipc,uts ...

to attach you simply use --setns <addr>

uwsgi --setns /var/run/ns.socket ...

Updated docs: Jailing your apps using Linux Namespaces

“private” hooks

When uWSGI runs your hooks, it verbosely print the whole hook action line. This could be a security problem
in some scenario (for example when you run initial phases as root user but allows unprivileged access to logs).

Prefixing your action with a ‘!’ will suppress full logging:

[uwsgi]
hook-asap = !exec:my_secret_command

Support for yajl library (JSON parser)

Til now uWSGI only supported jansson as the json parser required for managing .js config files.

You can now use the yajl library (available in centos) as alternative JSON parser (will be automatically detected)

Perl spooler support

The perl/PSGI plugin can now be used as a spooler server:

uwsgi::spooler(sub {
 my $args = shift;
 print Dumper($args);
 return -2;
});

The client part is still missing as we need to fix some internal api problem.

Expect it in 2.0.1 ;)

Gateways can drop privileges

Gateways (like http router, sslrouter, rawrouter, forkptyrouter ...) can now drop privileges independently by the master.

Currently only the http/https/spdy router exposes the new option (--http-uid/--http-gid)

Subscriptions-governed SNI contexts

The subscription subsystem now supports 3 additional keys (you can set them with the –subscribe2 option):

sni_key

sni_cert

sni_ca

all of the takes a path to the relevant ssl files.

Check: SNI - Server Name Identification (virtual hosting for SSL nodes)

Availability

uWSGI 2.0 has been released on 20131230 and can be downloaded from:

http://projects.unbit.it/downloads/uwsgi-2.0.tar.gz

uWSGI 1.9.21

Latest 1.9 before 2.0 (scheduled at December 30th 2013)

From now on, all of the releases will be -rc’s (no new features will be added)

A document describing notes for upgrades from the (extremely obsolete) 1.2 and 1.4 versions is on work.

This release includes a new simplified plugins builder subsystem directly embedded in the uWSGI binary.

A page reporting third plugins is available: uWSGI third party plugins (feel free to add yours)

And now....

Changelog [20131211]

Bugfixes

	croak if the psgi streamer fails

	allows building coroae on raspberrypi

	do not wait for write availability until strictly required

	avoid segfault when async mode api is called without async mode

	fixed plain (without suspend engine) async mode

	do not spit errors on non x86 timerfd_create

	support timerfd_create/timerfd_settime on __arm__

Optimizations

writev() for the first chunk

Inernally when the first response body is sent, uWSGI check if response headers have been sent too, and eventually send them with an additional write() call.

This new optimizations allows uWSGI to send both headers and the first body chunk with single writev() syscall.

If the writev() returns with an incomplete write on the second vector, the system will fallback to simple write().

use a single buffer for websockets outgoing packets

Before this patch every single websocket packet required to allocate a memory chunk.

This patch forces the reuse of a single dynamic buffer. For games this should result in a pretty good improvement in responsiveness.

New features

removed zeromq api

The zeromq api (a single function indeed) has been removed. Each plugin rquiring zeromq cam simply call zmq_init() insteadd of uwsgi_zeromq_init().

The mongrel2 support has been moved to a ‘mongrel2’ plugin.

To pair uWSGI with mongrel2 the same options as before can be used, just remember to load (and build) the mongrel2 plugin

The new sharedarea

The shared area subsystem has been rewritten (it is incompatible with the old api as it requires a new argument as it now supports multiple memory areas).

Check updated docs: SharedArea – share memory pages between uWSGI components

report request data in writers and readers

every error when reading and writing to/from the client will report current request’s data.

This should simplify debugging a lot.

Modular logchunks management

The uWSGI api has been extended to allow plugins to define their log-request vars.

Check: Formatting uWSGI requests logs

tmsecs and tmicros, werr, rerr, ioerr, var.XXX

6 new request logging variables are available:

tmsecs: report the current unix time in milliseconds

tmicros: report the current unix time in microseconds

werr: report the number of write errors for the current request

rerr: report the number of read errors for the current request

ioerr: the sum of werr and rerr

var.XXX: report the context of the request var XXX (like var.PATH_INFO)

mountpoints and mules support for symcall

The symcall plugin has been improved to support mules and mountpoints.

To run a C function in a mule just specify it as --mule=foobar() when the mule finds an argument ending
with () it will consider it a function symbol.

read2 and wait_milliseconds async hooks

This two non-blocking hooks adds new capabilities to the non-blocking system.

The first one allows to wait on two file descriptors with the same call (currently implemented only in plain async mode)

The second one is used to have a millisecond resolution sleep. (this is currently used only by the sharedarea waiting system)

websockets binary messages

You can now send websocket binary message. Just use uwsgi.websocket_send_binary() instead of uwsgi.websocket_send()

the ‘S’ master fifo command

Sending ‘S’ to the master fifo, enable/disable the sending of subscription packets

as-mule hook

this new custom hooks allows you to execute custom code in every mule:

[uwsgi]
hook-as-mule = exec:myscript.sh
...

accepting hook and improved chain reloading

The chain reloading subsystem has been improved to take in account when a worker is really ready to accept() requests.

This specific state is announced to the Emperor too.

Check this article for more infos: http://uwsgi-docs.readthedocs.org/en/latest/articles/TheArtOfGracefulReloading.html

–after-request-call

this option allows you to call specific C functions (in chains) after each request. While you should use the framework/interface features for this kind of job, sometimes it is not possibile to execute
code after the logging phase. In such a case feel free to abuse this option.

error pages

Three new options allow the definition of custom error pages (html only):

--error-page-403 <file> add an error page (html) for managed 403 response

--error-page-404 <file> add an error page (html) for managed 404 response

--error-page-500 <file> add an error page (html) for managed 500 response

Simplified plugins builder

Building uWSGI plugins is now super easy:

uwsgi --build-plugin <directory>

this option will create a sane environment based on the current binary (no need to fight with build profiles and #ifdef) and will build the plugin.

No external files (included uwsgi.h) are needed as the uWSGI binary embeds them.

TODO for 2.0

	implement websockets and sharedarea support in Lua

	complete sharedarea api for CPython, Perl, Ruby and PyPy

	implement read2 and wait_milliseconds hook in all of the available loop engines

Availability

uWSGI 1.9.21 has been released on December 11th 2013 and can be downloaded at:

http://projects.unbit.it/downloads/uwsgi-1.9.21.tar.gz

uWSGI 1.9.20

Changelog [20131117]

First round of deprecations and removals for 2.0

	The Go plugin is now considered “broken” and has been moved away from the plugins directory. The new blessed way for running Go apps in uWSGI is using The GCCGO plugin plugin.

	The --auto-snapshot option has been removed, advanced management of instances now happens via The Master FIFO.

	The matheval support has been removed, while a generic “matheval” plugin (for internal routing) is available (but not compiled in by default). See below for the new way for making “math” in config files.

	The “erlang” and “pyerl” plugins are broken and has been moved out of the plugins directory. Erlang support will be completely rewritten after 2.0 release.

Next scheduled deprecations and removals

The ZeroMQ API (a single function indeed) will be removed. Each plugin using ZeroMQ will create its own zmq context (no need to share it). This means libzmq will no more be linked in the uWSGI core binary.

Mongrel2 protocol support will be moved to a “mongrel2” plugin instead of being embedded in the core.

Bugfixes

	Fixed master hang when gracefully reloading in lazy mode.

	Fixed default_app usage.

	Another round of coverity fixes by Riccardo Magliocchetti.

	Fixed EAGAIN management when reading the body.

New features

64bit return values for the RPC subsystem

Before this release every RPC response was limited to a size of 64k (16bit).

Now the RPC protocol automatically detects if more space is needed and can scale up to 64bit.

Another advantage of this approach is that only the required amount of memory per-response is allocated instead of blindly
creating a 64k chunk every time.

The new GCCGO plugin

Check official docs: The GCCGO plugin

The plugin is in early stage of development but it’s already quite solid.

Simple math in configuration files

As seen before, we have removed matheval support in favor of a simplified interface:

http://uwsgi-docs.readthedocs.org/en/latest/Configuration.html#placeholders-math-from-uwsgi-1-9-20-dev

For example, now you can automatically set the number of threads to:

[uwsgi]
; %k is a magic var translated to the number of cpu cores
threads = %(%k * 3)
...

(%k * 3 is number_of_cpu_cores * 3).

New magic vars

	%t

	Unix time (in seconds, gathered at instance startup).

	%T

	Unix time (in microseconds, gathered at instance startup).

	%k

	Number of detected CPU cores.

Perl/PSGI improvements

	The Chunked input API.

	psgix.io is a Socket::IO object mapped to the connection file descriptor (you need to enable it with --psgi-enable-psgix-io).

	uwsgi::rpc and uwsgi::connection_fd from the API.

	--plshell will invoke an interactive shell (based on Devel::REPL).

New native protocols: --https-socket and --ssl-socket

When built with SSL support, uWSGI exposes two new native socket protocols: HTTPS and uwsgi over SSL.

Both options take the following value: <addr>,<cert>,<key>[,ciphers,ca].

[uwsgi]
https-socket = :8443,foobar.crt,foobar.key
...

Currently none of the mainstream webservers support uwsgi over SSL, a patch for nginx will be sent for approval in the next few hours.

PROXY (version1) protocol support

Recently Amazon ELB added support for HAProxy PROXY (version 1) protocol support. This simple protocol allows the frontend to pass
the real IP of the client to the backend.

Adding --enable-proxy-protocol will force the --http-socket to check for a PROXY protocol request for setting the REMOTE_ADDR and REMOTE_PORT fields.

New metrics collectors

	avg

	Compute the math average of children: --metric name=foobar,collector=avg,children=metric1;metric2.

	accumulator

	Always add the value of the specified children to the final value.

	multiplier

	Multiply the sum of the specified children for the value specified in arg1n.

Check The Metrics subsystem.

Availability

uWSGI 1.9.20 has been released on 20131117 and can be downloaded from
http://projects.unbit.it/downloads/uwsgi-1.9.20.tar.gz.

uWSGI 1.9.19

Changelog [20131109]

This release starts the ‘hardening’ cycle for uWSGI 2.0 (scheduled for the end of december 2013).

The metrics subsystem was the last piece missing and this version (after 1 year of analysis) finally includes it.

During the following 2 months we will start deprecating features or plugins that got no-interest, are known to be broken or are simply superseed
by more modern/advanced ones.

Currently the following plugin and features are scheduled for removal:

	The Go plugin, superseeded by the gccgo one. (eventually the Go plugin will be brought back if something changes in the fork() support)

	Auto-snapshotting, was never documented, it has tons of corner case bugs and it is huber-complex. The features added by the MasterFifo allows for better implementations of snapshotting.

Waiting for decision:

	the erlang plugin is extremely old, was badly engineered and should be completely rewritten. If you are a user of it, please contact the staff. Very probably we will not be able to maintain it without sponsorship.

	the matheval support could be removed soon (unless we find some specific use that could require it), substituted by some form of simple math directly implemented in the option parser

	the admin plugin should be substituted with something more advanced. An api for defining dynamic options is on-work

Bugfixes

	completely skip cgroups initialization when non-root

	tons of post-static_analysis fixes by Riccardo Magliocchetti

	fixed the greenlet plugin reference counting

	avoid kevent storm for stats pusher thread

	fixed rbtimers math

	both ‘cache’ and ‘file’ routers got a ‘no_content_length’ key option to avoid settign the Content-Length header

	the PyPy plugin automatically enables threads/GIL

	manage dot_segments in HTTP parser

	improved srand() usage

New features

The Metrics subsystem

This was the last piece missing before uWSGI 2.0. The Metrics subsystem allows you to store “numbers” related to monitoring, graphing and quality checks and exports them in various ways.

Official docs: The Metrics subsystem

The Tornado loop engine

While working on nodejs integration we realized that contrary to what we used to believe, Tornado (an asynchronous, callback based module for python) is usable in uWSGI.

Note: The plugin is not built-in by default

Official docs: The Tornado loop engine

The ‘puwsgi’ protocol

A “persistent” (keep-alive) version of the ‘uwsgi’ parser has been added named ‘puwsgi’ (persistent uwsgi).

This protocol works only for request without a body and requires support from the frontend. Its use is currently for custom clients/apps, there is no webserver handler supporting it.

The --puwsgi-socket <addr> will bind a puwsgi socket to the specified address

–vassal-set

You can tell the Emperor to pass specific options to every vassal using the –set facility:

[uwsgi]
emperor = /etc/uwsgi/vassals
vassal-set = processes=8
vassal-set = enable-metrics=1

this will add --set processes=8 and --set enable-metrics=1 to each vassal

The ‘template’ transformation

This is a transformation allowing you to apply all of the internal routing patterns to your responses.

Take the following file (foo.html)

<html>
 <head>
 <title>Running on ${SERVER_NAME}</title>
 </head>
 <body>
 Your ip address is: ${REMOTE_ADDR}

 Served requests: ${metric[worker.0.requests]}

 Pid: ${uwsgi[pid]}

 A random UUID: ${uwsgi[uuid]}
 </body>
</html>

we will apply the ‘template’ transformation to it:

[uwsgi]
http-socket = :9090
; enable the metrics subsystem
enable-metrics = true
; inject the route transformation
route-run = template:
; return a file (transformation will be applied to it)
route-run = file:filename=foo.html,no_content_length=1

everything available in the internal routing subsystem can be used into the template transformation.

Performance are stellar, so instead of old Server Side Includes, you may want to try it.

Not enough ? combine it with caching:

[uwsgi]
http-socket = :9090
; enable the metrics subsystem
enable-metrics = true
; load foo.html in the cache
cache2 = name=mycache,items=10
load-file-in-cache = foo.html
; inject the route transformation
route-run = template:
; return the cache item (transformation will be applied to it)
route-run = cache:key=foo.html,no_content_length=1

Again ?

what about chunked encoding ?

[uwsgi]
http-socket = :9090
; enable the metrics subsystem
enable-metrics = true
; load foo.html in the cache
cache2 = name=mycache,items=10
load-file-in-cache = foo.html
; inject the route transformation
route-run = template:
; inject chunked encoding
route-run = chunked:
; return the cache item (transformation will be applied to it)
route-run = cache:key=foo.html,no_content_length=1

or gzip ?

[uwsgi]
http-socket = :9090
; enable the metrics subsystem
enable-metrics = true
; load foo.html in the cache
cache2 = name=mycache,items=10
load-file-in-cache = foo.html
; inject the route transformation
route-run = template:
; inject gzip
route-run = gzip:
; return the cache item (transformation will be applied to it)
route-run = cache:key=foo.html,no_content_length=1

Availability

uWSGI 1.9.19 has been released on 20131109, you can download it from:

http://projects.unbit.it/downloads/uwsgi-1.9.19.tar.gz

uWSGI 1.9.18

Changelog [20131011]

License change

This version of uWSGI is the first of the 1.9 tree using GPL2 + linking exception instead of plain GPL2.

This new license should avoid any problems when using uWSGI as a shared library (or when linking it with non-GPL2 compatible libraries)

Remember: if you need to make closed-source modifications to uWSGI you can buy a commercial license.

Bugfixes

	fixed uwsgi native protocol support on big endian machines

	fixed jvm build system for arm (Jorge Gallegos)

	fixed a memleak spotted by cppcheck in zlib management

	chdir() at every emperor glob iteration

	correctly honour –force-cwd

	fixed ia64/Linux compilation (Jonas Smedegaard/Riccardo Magliocchetti)

	fixed ruby rvm paths parsing order

	added waitpid() after daemon’s SIGTERM (Łukasz Mierzwa)

	fixed pid numbering after –idle (Łukasz Mierzwa)

	fixed/improved cheaper memory limits (Łukasz Mierzwa)

	correctly close inherited sockets in gateways

	fix checks for MAP_FAILED in mmap() (instead of NULL)

	fixed FastCGI non-blocking body read() (patch by Arkaitz Jimenez)

	fixed attach.py script

	avoid crashing on non-conformant PSGI response headers

	run the python autoreloader even in non-apps mode when non-lazy

New Features

Minimal build profiles

Albeit the memory usage of the uWSGI core is generally between 1.8 and 2.5 megs, there are use cases in which you want an even minimal
core and set of embedded plugins.

Examples are users not making use of uWSGI specific features, or cases in which the libraries used by uWSGI nameclash with others (like openssl or zeromq).

A bunch of ‘minimal’ build profiles have been added:

	pyonly (build a minimal CPython WSGI server)

	pypyonly (build a minimal PyPy WSGI server)

	plonly (build a minimal PSGI server)

	rbonly (build a minimal Rack server)

the only supported configuration format is .ini and internal routing and legion subsystem are not builtin.

For example if you want to install a minimal uWSGI binary via pip:

UWSGI_PROFILE=pyonly pip install uwsgi

IMPORTANT: minimal build profiles do not improve performance, for the way uWSGI is designed, unused features do not waste CPU. Minimal build profiles impact on final binary size only

Auto-fix modifier1

Setting the modifier1 for non-python plugin is pretty annoying (read: you always forget about it).

Now if the modifier1 of the request is zero, but the python plugin is not loaded (or there are no python apps loaded) the first configured app
will be set instead (unless you disable with feature with –no-default-app).

This means you can now run:

uwsgi --http-socket :9090 --psgi myapp.pl

instead of

uwsgi --http-socket :9090 --http-socket-modifier1 5 --psgi myapp.pl

obviously try to always set the modifier1, this is only a handy hack

Perl auto reloader

The –perl-auto-reload option allows the psgi plugin to check for changed modules after every request. It takes the frequency (in seconds) of the scan.

The scan happens after a request has been served. It is suboptimal, but it is the safest choice too.

The “raw” mode (preview technology, only for CPython)

While working on a new server-side project in Unbit we had the need to expose our web application using a very specific protocol (none of the ones supported by uWSGI).

Our first way was adding the new protocol as a plugin, but soon we realize that is was too-specific. So we decided to introduce the RAW mode.

Raw mode allows you to directly parse the request in your application callable. Instead of getting a list of CGI vars/headers in your callable
you only get the file descriptor soon after accept().

You can then read()/write() to that file descriptor in full freedom.

import os
def application(fd):
 os.write(fd, "Hello World")

uwsgi --raw-socket :7070 --python-raw yourapp.py

Raw mode disables request logging. We currently support it only for CPython, if we get reports (or interest) about it for the other languages we will add
support for sure.

IMPORTANT: raw mode is not a standard, so do not expect any middleware or common usage patterns will apply. Use it as a low-level socket wrapper.

Optional NON-standard support for CPython buffer protocol for WSGI responses

Authors: yihuang with help of INADA Naoki (methane)

The WSGI (PEP333/3333) is pretty clear about the type of valid objects for responses: str for python2, bytes for python3

uWSGI (heavily using mod_wsgi as a reference) always enforce such behaviour, so “exotic” patterns like returning bytearray
where not supported. Such uses are somewhat involuntary supported on pure-python application servers, just because they simply call write() over them or because they cast them to string
before returning (very inefficient)

The patch proposed by yihuang suggests the use of the low-level buffer protocol exposed by the CPython C api. Strings (in python2) and bytes (in python3) support the buffer protocol, so its use is transparent
and backward compatibility is granted too. (for the CPython C api experts: yes we support both old and new buffer protocol)

This is a NON-standard behaviour you have to voluntary enable with –wsgi-accept-buffer.

Use with care as it could mask errors and/or wrong behaviours.

Note: if you tried 1.9.18-dev you may note this option was enabled by default. It was an error. Thanks to Graham Dumpleton (mod_wsgi author) for pointing it out.

Emperor and config improvements

Credits: Matthijs Kooijman

The config system has been improved to be even more consistent in respect to strict mode (remainder: with –strict you basically check your config files for unknown options
avoiding headaches caused by typos).

New magic vars have been added exposing the name of the original config file (this simplify templating when in Emperor mode), check them at https://github.com/unbit/uwsgi-docs/blob/master/Configuration.rst#magic-variables

The Emperor got support for Linux capabilities using the –emperor-cap option. The option takes the list of capability you want to maintain
for your vassals when they start as root:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-cap = setuid,net_bind_service

with this setup your vassal will be only able to drop privileges and bind to ports < 1024

Its best friend is the CLONE_NEWUSER flag of linux namespaces that is now fully supported on uWSGI:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-clone = user
emperor-cap = setuid,net_bind_service

this will create a new root user for the vassal with fewer privileges (CLONE_NEWUSER is pretty hard to understand, but the best thing
to catch it is seeing it as a new root user with dedicated capabilities)

Build system improvements

The build system has been improved to link custom sources on the fly. This works great for low-level hooks:

// embed_me.c
#include <stdio.h>

void hello_i_am_foobar() {
 printf("I Am foobar");
}

Now we can link this file to the main uWSGI binary in one shot:

UWSGI_ADDITIONAL_SOURCES=embed_me.c make

and you will automatically get access for your hooks:

uwsgi --http-socket :9090 --call-asap hello_i_am_foobar

Finally, Riccardo Magliocchetti rewrote the build script to use optparse instead of raw/old-fashioned sys.argv parsing

Pluginized the ‘schemes’ management

schemes are the prefix part of uWSGI uri’s. When you do

uwsgi --ini http://foobar.local:9090/test.ini

the http:// is the scheme, signalling uWSGI it has to download the config file via http.

Til now those ‘schemes’ were hardcoded. Now they are exposed as plugins, so you can add more of them (or override the default one).

The new system has been applied to the PSGI plugin too (sorry we are sure only perl developers will understand that kind of poetry :P) so you can do things like:

uwsgi --http-socket :1717 --psgi http://yourapps.local/dancer.pl

or

./uwsgi --binary-append-data yourapp.pl > blob001
cat blob001 >> ./uwsgi
./uwsgi --http-socket :1717 --psgi data://0

mountpoints checks

It could be hard to understand why an application server should check for mountpoints.

In the same way understanding how writing filesystem in userspace was silly few years ago.

So, check the article about managing Fuse filesystem with uWSGI: http://uwsgi-docs.readthedocs.org/en/latest/tutorials/ReliableFuse.html

Preliminary libffi plugin

As embedding c libraries for exposing hooks is becoming more common, we have started working on libffi integration, allowing
safe (and sane) argument passing to hooks. More to came soon.

Official support for kFreeBSD

Debian/kFreeBSD is officially supported.

You can even use FreeBSD jails too !!!

FreeBSD Jails

Availability

uWSGI 1.9.18 has been released on October 11th 2013 and can be downloaded from:

http://projects.unbit.it/downloads/uwsgi-1.9.18.tar.gz

uWSGI 1.9.17

Changelog [20130917]

Bugfixes

	the ‘pty’ client is now blocking (safer approach)

	removed strtok() usage (substituted by a new uwsgi api function on top of strtok_r())

	fixed –pty-exec (Credits: C Anthony Risinger)

	listen_queue/somaxconn linux check is now done even for UNIX sockets

New features

The Master FIFO

This is a new management way in addition to UNIX signals. As we have no more free signals to use (and generally dealing with signals and pidfiles is not very funny), all of the new management features of uWSGI will be based on the master fifo.

Docs are already available: The Master FIFO

The asap hook

Credits: Matthijs Kooijman

a new hook, named ‘asap’ has been added. It will be run soon after the options are parsed.

Check: Hooks

The TCC (libtcc) plugin

TCC is an embeddable c compilers. It includes a shared library (libtcc) you can use to compile strings of c code on the fly.

The libtcc uWSGI plugins allows compiling strings of c to process symbols. CUrrently the “tcc” hook engine has been implemented:

[uwsgi]
hook-asap = tcc:mkdir("/var/run/sockets");printf("directory created\n");
hook-as-user = tcc:printf("i am process with pid %d\n", getpid());
hook-post-app = tcc:if (getenv("DESTROY_THE_WORLD")) exit(1);
http-socket = /var/run/sockets/foobar.sock

The forkptyrouter gateway

While work on Linux containers/namespaces continues to improve we have added this special router/gateway allowing dynamic allocation of pseodoterminals
in uWSGI instances. To access the sockets created by the forkptyrouter you can use the –pty-connect option exposed by the ‘pty’ plugin.

Documention is being worked on.

added a new magic var for ANSI escaping

The %[magic var has been added, it allows you to define ANSI sequences in your logs.

If you like coloured logs:

log-encoder = format %[[33m${msgnl}%[[0m

Routable log encoders

You can now attach log encoders to specific log routes:

[uwsgi]
logger = stderr file:/dev/tty
log-route = stderr ubuntu
log-route = stderr clock
print = %[[34mHELLO%[[0m
; add an encoder to the 'stderr' logger
log-encoder = format:stderr %[[33m${msgnl}%[[0m
http-socket = :9090

–vassals-include

Credits: Matthijs Kooijman

This is like –vassal-inherit but the parsing will be “immediate” (so you can use placeholders)

The Emperor heartbeat system is now mercyless...

The old approach for the heartbeat Emperor subsystem was asking for “gentle” reload to bad vassals.

Now vassals not sending heartbeat (after being registered with the heartbeat subsystem) are killed with -9

The result of this patch will be more robust bad vassals management

logpipe

Author: INADA Naoki

You can now send loglines to the stdin of an external command:

req-logger = pipe:/usr/local/bin/mylogger

added “fd” logger to “logfile” plugin

you can directly send logs to a file descriptors:

req-logger = fd:17

Availability

uWSGI 1.9.17 has been released on Semptember 22th 2013

You can download it from:

http://projects.unbit.it/downloads/uwsgi-1.9.17.tar.gz

uWSGI 1.9.16

Changelog [20130914]

Important change in the gevent plugin shutdown/reload procedure !!!

The shutdown/reload phase when in gevent mode has been changed to better integrate
with multithreaded (and multigreenlet) environments (most notably the newrelic agent).

Instead of “joining” the gevent hub, a new “dummy” greenlet is spawned and “joined”.

During shutdown only the greenlets spawned by uWSGI are taken in account, and after all of them are destroyed
the process will exit. This is different from the old approach where the process wait for ALL the currently available greenlets
(and monkeypatched threads).

If you prefer the old behaviout just specify the option –gevent-wait-for-hub

Bugfixes/Improvements

	fixed CPython reference counting bug in rpc and signal handlers

	improved smart-attach-daemon for slow processes

	follow Rack specifications for QUERY_STRING,SCRIPT_NAME,SERVER_NAME and SERVER_PORT

	report missing internal routing support (it is only a warning when libpcre is missing)

	better ipcsem support during shutdown and zerg mode (added –persistent-ipcsem as special case)

	fixed fastcgi bug exposed by apache mod_fastcgi

	do not call pre-jail hook on reload

	force linking with -lrt on solaris

	report thunder lock status

	allow custom priority in rsyslog plugin

New features

FreeBSD jails native support

uWSGI got nativr FreeBSD jails support. Official documentation is here FreeBSD Jails

The Rados plugin

Author: Javier Guerra

Based on the The GlusterFS plugin plugin, a new one allowing access to Rados object storage is available:

The RADOS plugin

The TunTap router

This new gateway is the result of tons of headaches while trying to build better (read: solid) infrastructures with Linux namespaces.

While dealing with uts, ipc, pid and filesystem namespaces is pretty handy, managing networking is a real pain.

We introduced lot of workaroud in uWSGI 1.9.15 (expecially for simplify the veth management) but finally we realized
that those systems do not scale in terms of management.

The TunTap router tries to solve the issue moving the networking part of jailed vassals in user space.

Basically each vassal create one or more tuntap devices. This devices are connected (via a unix socket) to the “tuntap router”
allowing access from the vassal to the external network.

That means a single network interface in the main namespace and one for each vassal.

The performance are already quite good (we are only losing about 10% in respect of kernel-level routing) but can be optimized.

In addition to this the tuntap router has a simple userspace firewall you can use to manage complex routing rules.

Documentation is still in progress, but you can configure a tuntap router following the big comment on top of this file:

https://github.com/unbit/uwsgi/blob/master/plugins/tuntap/tuntap.c

while you can connect to it with --tuntap-device <dev> <socket> where <dev> is the tuntap device to create in the vassal/client and <socket> is the unix address
of the tuntap router

An Example Emperor

[uwsgi]
tuntap-router = emperor0 /tmp/tuntap.socket
exec-as-root = ifconfig emperor0 192.168.0.1 netmask 255.255.255.0 up
exec-as-root = iptables -t nat -F
exec-as-root = iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
exec-as-root = echo 1 >/proc/sys/net/ipv4/ip_forward
emperor-use-clone = ipc,uts,fs,pid,net
emperor = /etc/vassals

and one of its vassals:

[uwsgi]
tuntap-device = uwsgi0 /tmp/tuntap.socket
exec-as-root = ifconfig lo up
exec-as-root = ifconfig uwsgi0 192.168.0.2 netmask 255.255.255.0 up
exec-as-root = route add default gw 192.168.0.1
exec-as-root = hostname foobar
socket = /var/www/foobar.socket
psgi-file = foobar.pl

Linux O_TMPFILE

Latest Linux kernel support a new operational mode for opening files: O_TMPFILE

this flag open a temporary file (read: unlinked) without any kind of race conditions.

This mode is automatically used if available (no options needed)

Linux pivot-root

When dealing with Linux namespaces, changing the root filesystem is one of the main task.

chroot() is generally too simple, while pivot-root allows you more advanced setup

The syntax is --pivot-root <new_root> <old_root>

Cheaper memlimit

Author: Łukasz Mierzwa

This new check allows control of dynamic process spawning based on the RSS usage:

http://uwsgi-docs.readthedocs.org/en/latest/Cheaper.html#setting-memory-limits

Log encoders

There are dozens of log engines and storage system nowadays. The original uWSGI approach was developing a plugin for every engine.

While working with logstash and fluentd we realized that most of the logging pluging are reimplementations of teh same concept over and over again.

We followed an even more modular approach introducing log encoders:

Log encoders

They are basically patterns you can apply to each logline

New “advanced” Hooks

A new series of hooks for developers needing little modifications to the uWSGI cores are available.

Documention about the whole hooks subsystem is now available (it is a work in progress):

Hooks

New mount/umount hooks

When dealing with namespaces and jails, mounting and unmounting filesystems is one of the most common tasks.

As the mount and umount commands could not be available during the setup phase, these 2 hooks have been added directly calling the
syscalls.

Check Hooks

Availability

uWSGI 1.9.16 has been released on September 14th 2013. You can download it from:

http://projects.unbit.it/downloads/uwsgi-1.9.16.tar.gz

uWSGI 1.9.15

Changelog [20130829]

Bugfixes

	fixed jvm options hashmap (#364)

	fixed python3 wsgi.file_wrapper

	fixed python3 –catch-exceptions

	fixed type in pypy wsgi.input.read

	better symbol detection for pypy

	improved ruby libraries management on heroku

	fixed http-keepalive memleak

	fixed spooler body management under CPython

	fixed unshare() usage of ‘fs’

	fixed UWSGI_PROFILE usage when building plugins with –plugin

	improved SmartOS support and added OmniOS support

New features

The PTY plugin

This new plugin allows you to generate pseudoterminals and attach them to your workers.

Pseudoterminals are then reachable via network (UNIX or TCP sockets).

You can use them for shared debugging or to have input channels on your webapps.

The plugin is in early stage of development (very few features) and it is not built in by default, but you can already make funny things like:

[uwsgi]
plugin = pty,rack
; generate a new pseudoterminal on port 5000 and map it to the first worker
pty-socket = 127.0.0.1:5000

; classic options
master = true
processes = 2
rack = myapp.ru
socket = /tmp/uwsgi.socket

; run a ruby interactive console (will use the pseudoterminal)
; we use pry as it kick asses
rbshell = require 'pry';binding.pry

now you can access the pseudoterminal with

uwsgi --plugin pty --pty-connect 127.0.0.1:5000

you can run the client in various windows, it will be shared by all of the peers (all will access the same pseudoterminal).

We are sure new funny uses for it will popup pretty soon

preliminary documentation is available at The Pty plugin

strict mode

One of the most common error when writing uWSGI config files, are typos in option names.

As you can add any option in uWSGI config files, the system will accept anythyng you will write even if it is not a real uWSGI option.

While this approach is very powerful and allow lot of funny hacks, it can causes lot of headaches too.

If you want to check all of your options in one step, you can now add the –strict option. Unknown options will trigger a fatal error.

fallback configs

Being very cheap (in term of resources) and supporting lot of operating systems and architectures, uWSGI is heavily used in embedded systems.

One of the common feature in such devices is the “reset to factory defaults”.

uWSGI now natively support this kind of operation, thanks to the –fallback-config option.

If a uWSGI instance dies with exit(1) and a fallback-config is specified, the binary will be re-exec()’d with the new config as the only argument.

Let’s see an example of a configuration with unbindable address (unprivileged user trying to bind to privileged port)

[uwsgi]
uid = 1000
gid = 1000
socket = :80

and a fallback one (bind to unprivileged port 8080)

[uwsgi]
uid = 1000
gid = 1000
socket = :8080

run it (as root, as we want to drop privileges):

sudo uwsgi --ini wrong.ini --fallback-config right.ini

you will get in your logs:

...
bind(): Permission denied [core/socket.c line 755]
Thu Aug 29 07:26:26 2013 - !!! /Users/roberta/uwsgi/uwsgi (pid: 12833) exited with status 1 !!!
Thu Aug 29 07:26:26 2013 - !!! Fallback config to right.ini !!!
[uWSGI] getting INI configuration from right.ini
*** Starting uWSGI 1.9.15-dev-4046f76 (64bit) on [Thu Aug 29 07:26:26 2013] ***
...

–perl-exec and –perl-exec-post-fork

You can now run custom perl code before and after the fork() calls.

Both options simply take the perl script as the argument

uwsgi.cache_keys([cache])

This api function has been added to the python and pypy plugins. It allows you to iterate the keys of a local uWSGI cache.

It returns a list.

added %(ftime) to logformat

this is like ‘ltime’ but honouring the –log-date format

protect destruction of UNIX sockets when another instance binds them

on startup uWSGI now get the inode of the just created unix socket.

On vacuum if the inode is changed the unlink of the socket is skipped.

This should help avoiding sysadmin destructive race conditions or misconfigurations

–worker-exec2

this is like –worker-exec but happens after post_fork hooks

allow post_fork hook on general plugins

general plugins (the ones without the .request hook) can now expose the .post_fork hook

–call hooks

In the same spirit of exec-* hooks, call hooks works in the same way but directly calling functions
in the current process address space (they have to be exposed as valid symbols)

take this c source (call it hello.c):

#include <stdio.h>

void i_am_hello_world_for_uwsgi() {
 printf("Hello World!!!\n");
}

and compile it as a shared library:

gcc -o libhello.so -shared -fPIC hello.c

now choose when (and where) to call it in uWSGI:

./uwsgi --help | grep -- --call-
 --call-pre-jail call the specified function before jailing
 --call-post-jail call the specified function after jailing
 --call-in-jail call the specified function in jail after initialization
 --call-as-root call the specified function before privileges drop
 --call-as-user call the specified function after privileges drop
 --call-as-user-atexit call the specified function before app exit and reload
 --call-pre-app call the specified function before app loading
 --call-post-app call the specified function after app loading
 --call-as-vassal call the specified function() before exec()ing the vassal
 --call-as-vassal1 call the specified function(char *) before exec()ing the vassal
 --call-as-vassal3 call the specified function(char *, uid_t, gid_t) before exec()ing the vassal
 --call-as-emperor call the specified function() in the emperor after the vassal has been started
 --call-as-emperor1 call the specified function(char *) in the emperor after the vassal has been started
 --call-as-emperor2 call the specified function(char *, pid_t) in the emperor after the vassal has been started
 --call-as-emperor4 call the specified function(char *, pid_t, uid_t, gid_t) in the emperor after the vassal has been started

options ending with a number are variants expecting arguments (the suffix is the number of arguments they take)

we want to call our function just before our application is loaded:

[uwsgi]
; load the shared library
dlopen = ./libhello.so
; set the hook
call-pre-app = i_am_hello_world_for_uwsgi
...

your custom function will be called just before app loading.

Take in account those functions are called in the process address space, so you can make
all sort of (black) magic with them.

Note: dlopen is a wrapper for the dlopen() function, so all the same rules apply (read: USE ABSOLUTE PATHS !!!)

init_func support for plugins, and –need-plugin variant

when loading a plugin you can call a symbol defined in it soon after dlopen():

uwsgi --plugin "foobar|myfunc" ...

uWSGI will call the ‘myfunc’ symbol exposed by the ‘foobar’ plugin

–need-plugin is like –plugin but will exit(1) the process if plugin loading fails

added commodity loader for the pecan framework

Author: Ryan Petrello

A new python loader (–pecan) has been added for the pecan WSGI framework

http://pecanpy.org/

https://uwsgi-docs.readthedocs.org/en/latest/Python.html#pecan-support

UWSGI_REMOVE_INCLUDES

during the build phase you can remove include headers with the UWSGI_REMOVE_INCLUDES environment variable.

This is useful for cross-compilation where some automatically detected includes could be wrong

router_expires

We already have various options in the uWSGI core to set Expires header.

This router has been added to allow customizing them:

[uwsgi]
route = /^foobar1(.*)/ expires:filename=foo$1poo,value=30
route = /^foobar2(.*)/ expires:unix=${time[unix]},value=30

the router takes a filename mtime or a unix time, adds ‘value’ to it, and return it as an http date.

announce Legion’s death on reload/shutdown

Every legion member will now announce its death as soon as a reload (or a shutdown) of the instance is triggered

The GlusterFS plugin (beta)

This new plugin make use ot the new glusterfs c api, avoiding the overhead of fuse when serving files stored on glusterfs servers.

The plugin supports the multiprocess and multithreads modes, while async modes are currently in beta.

Documentation is available: The GlusterFS plugin

–force-gateway

all of the gateways (fastrouter, httprouter, rawrouter, sslrouter ...) has to be run under the master process.

By specifying –force-gateway, you will bypass this limit

preliminary python3 profiler (beta)

The –profiler pycall/pyline profilers have been added to python3. They are beta quality (they leaks memory), but should be usable.

file monitor support for OpenBSD,NetBSD,DragonFlyBSD

Both –fs-reload and the @fmon decorator now work on this operating systems.

–cwd

you can force the startup “current working directory” (used by –vacuum and the reloading subsystem) with this option.

It is useful in chroot setups where the binary executable change its place.

–add-gid

This options allows you to add additional group ids to the current process. You can specify it multiple times.

Emperor and Linux namespaces improvements

Thanks to the cooperation with the pythonanywhere.com guys the Emperor has been improved for better Linux namespaces integration.

The –emperor-use-clone option allows you to use clone() instead of fork() for your vassal’s spawn. In this way you can create the vassals
directly in a new namespace. The function takes the same parameters of the –unshare one

uwsgi --emperor /etc/vassals --emperor-use-clone pid,uts

will create each vassal in a new pid and uts namespace

while

uwsgi --emperor /etc/vassals --emperor-use-clone pid,uts,net,ipc,fs

will basically use all of the currently available namespaces.

Two new exec (and call) hooks are available:

–exec-as-emperor will run commands in the emperor soon after a vassal has been spawn (setting 4 env vars, UWSGI_VASSAL_CONFIG, UWSGI_VASSAL_PID, UWSGI_VASSAL_UID and UWSGI_VASSAL_GID)

–exec-as-vassal will run commands in the vassal just before calling exec() (so directly in the new namespaces)

–wait-for-interface

As dealing with the Linux network namespace introduces lot of race conditions (expecially when working with virtual ethernets), this new option
allows you to pause an instance until a network interface is available.

This is useful when waiting for the emperor to move a veth to the vassal namespace, avoiding the vassal to run commands on the interface before is available

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-clone = pid,net,fs,ipc,uts
; each vassal should have its veth pair, so the following commands should be improved
exec-as-emperor = ip link del veth0
exec-as-emperor = ip link add veth0 type veth peer name veth1
; do not use the $(UWSGI_VASSAL_PID) form, otherwise the config parser will expand it on startup !!!
exec-as-emperor = ip link set veth1 netns $UWSGI_VASSAL_PID

[uwsgi]
; suspend until the emperor attach veth1
wait-for-interface = veth1
; the following hook will be run only after veth1 is available
exec-as-root = hostname vassal001
exec-as-root = ifconfig lo up
exec-as-root = ifconfig veth1 192.168.0.2
uid = vassal001
gid = vassal001
socket = :3031
...

Availability

uWSGI 1.9.15 has been released on August 29th 2013. You can download it from:

http://projects.unbit.it/downloads/uwsgi-1.9.15.tar.gz

uWSGI 1.9.14

Changelog [20130721]

Bugfixes

	fixed python modifier1 management (was hardcoded to 0)

	fixed url decoding in http and http-socket (it now supports lowercase hex, spotted by Miles Shang)

	more user-friendly error message for undeletable unix sockets

	fixed –http-auto-chunked in http 1.1 keepalive mode (André Cruz)

	fixed python wheel support (Fraser Nevett)

	fixed –safe-fd (was not correctly honoured by the Emperor)

	fixed ruby 2.x reloading

	improved support for OSX Tiger (yes, OSX 10.4)

	better computation of listen queue load

	fixed v8 build on OSX

	fixed pypy rpc

	improved chunked api performance

	fixed latin1 encoding with python3

	fixed –spooler-ordered (Roberto Leandrini)

	fixed php status line reported in request logs

New features

Ruby 1.9.x/2.x native threads support

Ruby 1.9 (mri) introduced native threads support (very similar to the CPython ones, governed by a global lock named GVL).

For various reasons (check the comments on top of the source plugin) the ruby threads support in uWSGI has been implemented as a “loop engine plugin”.

You need to build the “rbthreads” plugin (it is automatic when using the ‘ruby2’ build profile) and enable it with ‘–rbthreads’

The gem script has been extended, automatically selecting the ‘ruby2’ build profile when a ruby >= 1.9 is detected (this should make the life easier for Heroku users)

Rails4 is the first Ruby on Rails version supporting and blessing threads (in 3.x you need to explicitly enable support). You can use
multiple threads in Rails4 only when in “production” mode, otherwise your app will deadlock after the first request.

An example config:

[uwsgi]
plugins = rack,rbthreads
master = true
; spawn 2 processes
processes = 2
; spawn 8 threads
threads = 8
; enable ruby threads
rbthreads = true
; load the Rack app
rack = config.ru
; bind to an http port
http-socket = :9090
http-socket-modifier1 = 7

it will generate a total of 16 threads

Filesystem monitoring interface (fsmon)

Currently uWSGI is able to monitor filesystem changes using the “simple” –touch-* facility or the signal framework (using various
operating system api like inotify or kqueue).

A new interface for plugin writers named “fsmon” has been added, allowing easy implementation of realtime filesystem monitors.

Three new options have been added:

–fs-reload <path>

–fs-brutal-reload <path>

–fs-signal <path> <signal>

Contrary to the –touch-* options they are realtime (the master is woke up as soon as the item changes) and. uses kernel facilities
(currently only inotify() and kqueue() are supported). Thanks to this choice you can now monitor a whole directory for changes (without the need of external
processes/wrapper like inotifywatch)

uClibc support

Author: Natanael Copa

uWSGI can now be built on uclibc-based systems (generally, embedded systems)

Alpine Linux is the operating system on which the support has been tested

Lua 5.2 support

Author: Natanael Copa

the lua plugins now supports Lua 5.2

setscheme, setdocroot

This two new routing actions allow you to dynamically override DOCUMENT_ROOT and UWSGI_SCHEME

sendfile, fastfile

This two actions (added to the router_static plugin) allows you to return static files to the client bypassing the DOCUMENT_ROOT check.

The first one forces the use of the sendfile() syscall (where available), while the second automatically tries to choose the best serving strategy (like offloading)

–reload-on-fd and –brutal-reload-on-fd

Two new options allowing you to reload an instance when a file descriptor is ready.

Currently the best usage scenario is for the oom_control cgroup interface (via eventfd).

Supposing you have a process wrapper allocating an eventfd() reporting OOM events (and exposed as the ‘OOM’ environment var) you can force a uWSGI reload
when out of memory with:

[uwsgi]
...
reload-on-fd = $(OOM):8 OUT OF MEMORY !!!

it means:

monitor the $(OOM) file descriptor and read 8 bytes from it when ready (it is an eventfd() requirement), then print “OUT OF MEMORY !!!” in the logs and gracefully reload the instance.

Obviously this is only a way to use it. The UNIX world is file-descriptor based so you have plenty of funny ways to use it.

Spooler improvements

Author: Roberto Leandrini

Effectively all of the work has been done in uwsgidecorators.py

You can now pass to all of the available spooler-related decorators the “pass_arguments=True” option, to automatically
serialize the spooler function parameters. This is an abstraction avoiding you the need to serialize/deserialize arguments.

In addition to this the decorators have been extended to implement __call__ in this way you can directly call spoller decorated functions
as normal functions.

–emperor-nofollow

Enabling this option will allows the Emperor to watch for symbolic links mtime update instead of the mtime of the real file.

Alberto Scotto is working on an updated version supporting both (should be ready for the next release)

daemontools envdir support

Albeit daemontools look old-fashioned, things like envdirs (http://cr.yp.to/daemontools/envdir.html) are heavily used in various context.

uWSGI got two new options (–envdir <path> and –early-envdir <path>) allowing you to support this special (archaic ?) configuration way.

xmldir improvements

Author: Guido Berhoerster

The xmldir plugins has been improved supporting iconv-based utf8 encoding. Various minor fixes have been committed.

The examples directory contains two new files showing an xmldir+xslt usage

Breaking News !!!

Servlet 2.5 support development has just started. The plugin is present in the tree but it is unusable (it is a hardcoded
jsp engine). We expect a beta version after the summer. Obviously we shameless consider The JWSGI interface a better approach than servlet for non-Enterprise people ;)

Availability

Download uWSGI 1.9.14 from

http://projects.unbit.it/downloads/uwsgi-1.9.14.tar.gz

uWSGI 1.9.13

Changelog [20130622]

Bugfixes

	Fixed a corner case bug when response offloading is enabled, but no request plugin is loaded

	Fixed harakiri routing when multiple rules are in place (return NEXT instead of CONTINUE)

	Fixed curl crashing master on slow dns responses (Łukasz Mierzwa)

	Removed PTRACE check in uwsgi.h (it is no more needed since uWSGI 1.0)

	Fixed –print-sym

	Added a newline in –cflags

	Improved python3 detection and compilation

	Fixed Coro::AnyEvent loop engine (John Berthels)

	Rack api functions are now static

	Better fastcgi handling of big uploads

	Improved GCC usage on Darwin for Python non-apple builds

	Fixed XCLIENT usage in rawrouter

	Use the clang preprocessor instead of hardcoded ‘cpp’ when CC=clang is used

	Set 16bit options to 65535 when higher values are requested

	Fixed virtualhosting (it is now compatible with 1.4 configurations)

New features

PyPy performance and features improvents

The PyPy plugin has been improved a lot. The amount of C code has been reduced by 70%, so, now, the vast majority of the plugin is
written in python. The c helpers have been removed allowing the python part to directly call native uWSGI functions via cffi.

Support for PyPy continulets (and their greenlet abstraction) has been added (while waiting for a solid gevent port for pypy) and a chat example is already available
(using the uwsgi async api):

https://github.com/unbit/uwsgi/tree/master/t/pypy

https://github.com/unbit/uwsgi/blob/master/contrib/pypy/uwsgi_pypy_greenlets.py

The pypy uwsgi api has been improved and now you can use the uwsgidecorators module (even if the spooler subsystem is still missing)

Chunked input api

In the last days there have been a bunch of discussions on how to correctly manage chunked input. As basically none
of the available standards support it in a “definitive” way, we have defined a low-level api (so we can easily adapt it
in the feature).

The api exposes two functions:

uwsgi.chunked_read()

and

uwsgi.chunked_read_nb()

A non blocking chat example:

import uwsgi
def application(e, sr):
 while True:
 uwsgi.wait_fd_read(uwsgi.connection_fd())
 uwsgi.suspend()
 msg = uwsgi.chunked_read_nb()
 if msg: print "core %d" % e['uwsgi.core'], msg

Toward better third-party plugins management: the –dot-h option

As the –cflags option shows the CFLAGS used to build the server, the –dot-h option shows the content of uwsgi.h

This means the content of uwsgi.h is now embedded in the binary (compressed where available).

It could look a bizarre choice but the objective is to allow easy compilation of plugins out of the uwsgi sources
(somethign that will be available in 2.0 for sure)

setmethod, seturi and setpathinfo routing action

we continue extending the routing api.

Three new actions have been added to dinamically modify the request

UWSGI_INCLUDES

You can now ovverride the include search path (while building uWSGI) with this environment variable.

Improved set_user_harakiri api function

Now the uwsgi.set_user_harakiri automatically recognize mules and spoolers. It has been added to the ruby/rack, pypy and perl/psgi plugins

–add-cache-item [cache]KEY=VALUE

this is a commodity option (mainly useful for testing) allowing you to store an item in a uWSGI cache during startup

the router_xmldir plugin

This is a proof of concept plugin aimed at stressing the transformation api.

It basically generates an xml representation of a directory. This could be useful to
implement apache-style directoryindex:

Check this example using xslt:

https://github.com/unbit/uwsgi/issues/271#issuecomment-19820204

Implement __call__ for @spool* decorators

Thanks to ‘anaconda’, you can now directly call functions mapped to the spooler, so instead of

myfunc.spool(args)

you can directly do:

myfunc(args)

the old way is obviously supported

the uwsgi[lq] routing var

this routing var exports the current size of the listen_queue:

[uwsgi]
...
route-if = higher:${uwsgi[lq]};70 break:503 Server Overload
...

–use-abort

On some system the SEGV signal handler cannot be correctly restored after the uWSGI backtrace.

If you want to generate a core file, you may want to trigger a SIGABRT soon after the backtrace.

Availability

uWSGI 1.9.13 will be available 22th June 2013 at this url:

http://projects.unbit.it/downloads/uwsgi-1.9.13.tar.gz

uWSGI 1.9.12

Changelog [20130605]

Bugfixes

	offloading cache writes will return the correct status code and not 202

	you can now control the path of temporary files setting the TMPDIR environment variable (this fixes an old issue for users without control over /tmp)

	fixed a compilation error on amqp imperial monitor

	cron commands are correctly escaped when reported in the stats server

	fixed fastcgi parser corner-case bug with big uploads

	fixed support for newest cygwin

New Features

Offloading responses

Take the following WSGI app:

def application(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 return ['u' * 100000000]

it will generate about 100megs of data. 98% of the time the worker spent on the request was on the data transfer. As the whole response
is followed by the end of the request we can offload the data write to a thread and free the worker suddenly (so it will be able to handle a new request).

100megs are a huge value, but even 1MB can cause a dozen of poll()/write() syscalls that blocks your worker for a bunch of milliseconds

Thanks to the ‘memory offload’ facility added in 1.9.11 implementing it has been very easy.

The offloading happens via the uWSGI Transformations

[uwsgi]
socket = :3031
wsgi-file = myapp.py
; offload all of the application writes
route-run = offload:

By default the response is buffered to memory until it reaches 1MB size. After that it will be buffered to disk and the offload engine
will use sendfile().

You can set the limit (in bytes) after disk buffering passing an argument to the offload:

[uwsgi]
socket = :3031
wsgi-file = myapp.py
; offload all of the application writes (buffer to disk after 1k)
route-run = offload:1024

“offload” MUST BE the last transformation in the chain

[uwsgi]
socket = :3031
wsgi-file = myapp.py
; gzip the response
route-run = gzip:
; offload all of the application writes (buffer to disk after 1k)
route-run = offload:1024

JWSGI and JVM improvements

The JVM plugin has been extended to support more objects helper (like ArrayList), while JWSGI can now be used as
a low-level layer to add support for more JVM-based languages.

JRuby integration is the first attempt of such a usage. We have just releases a JWSGI to Rack adapter allowing you tun run
Ruby/Rack apps on top of JRUBY:

https://github.com/unbit/jwsgi-rack

A similar approach for Jython is on work

–touch-signal

A new touch option has been added allowing the rise of a uwsgi signal when a file is touched:

[uwsgi]
...
; raise signal 17 on /tmp/foobar modifications
touch-signal = /tmp/foobar 17
...

The “pipe” offload engine

A new offload engine allowing transfer from a socket to the client has been added.

it will be automatically used in the new router_memacached and router_redis plugins

memcached router improvements

You can now store responses in memcached (as you can already do with uWSGI caching)

[uwsgi]
...
route = ^/cacheme memcachedstore:addr=127.0.0.1:11211,key=${REQUEST_URI}
route = ^/cacheme2 memcachedstore:addr=192.168.0.1:11211,key=${REQUEST_URI}foobar
...

obviously you can get them too

[uwsgi]
...
route-run = memcached:addr=127.0.0.1:11211,key=${REQUEST_URI}
...

The memcached router is now builtin in the default profiles

The new redis router

Based on the memcached router, a redis router has been added. It works in the same way:

[uwsgi]
...
route = ^/cacheme redisstore:addr=127.0.0.1:6379,key=${REQUEST_URI}
route = ^/cacheme2 redisstore:addr=192.168.0.1:6379,key=${REQUEST_URI}foobar
...

... and get the values

[uwsgi]
...
route-run = redis:addr=127.0.0.1:6379,key=${REQUEST_URI}
...

The redis router is builtin by default

The “hash” router

this special routing action allows you to hash a string and return a value from a list (indexed with the hashed key).

Take the following list:

127.0.0.1:11211

192.168.0.1:11222

192.168.0.2:22122

192.168.0.4:11321

and a string:

/foobar

we hash the string /foobar using djb33x algorithm and we apply the modulo 4 (the size of the items list) to the result.

We get “1”, so we will get the second items in the list (we are obviously zero-indexed).

Do you recognize the pattern ?

Yes, it is the standard way to distribute items on multiple servers (memcached clients for example uses it from ages).

The hash router exposes this system allowing you to distribute items in you redis/memcached servers or to make other funny things.

This an example usage for redis:

[uwsgi]
...
; hash the list of servers and return the value in the MYNODE var
route = ^/cacheme_as/(.*) hash:items=127.0.0.1:11211;192.168.0.1:11222;192.168.0.2:22122;192.168.0.4:11321,key=$1,var=MYNODE
; log the result
route = ^/cacheme_as/(.*) log:${MYNODE} is the choosen memcached server !!!
; use MYNODE as the server address
route = ^/cacheme_as/(.*) memcached:addr=${MYNODE},key=$1
...

you can even choose the hashing algo from those supported in uWSGI

[uwsgi]
...
; hash the list of servers with murmur2 and return the value in the MYNODE var
route = ^/cacheme_as/(.*) hash:algo=murmur2,items=127.0.0.1:11211;192.168.0.1:11222;192.168.0.2:22122;192.168.0.4:11321,key=$1,var=MYNODE
; log the result
route = ^/cacheme_as/(.*) log:${MYNODE} is the choosen memcached server !!!
; use MYNODE as the server address
route = ^/cacheme_as/(.*) memcached:addr=${MYNODE},key=$1
...

the router_hash plugin is compiled-in by default

Availability

uWSGI 1.9.12 will be available starting from 20130605 at the following url

http://projects.unbit.it/downloads/uwsgi-1.9.12.tar.gz

uWSGI 1.9.11

Changelog [20130526]

Bugfixes

	Fixed Python 3 stdout/stderr buffering

	Fixed mule messages (@mulefunc is now reliable)

	Fixed SCRIPT_NAME handling in dynamic mode

	Fixed X-Sendfile with gzip static mode

	Fixed cache item maximum size with custom block size

	Fixed cache path handling

New features

The new high-performance PyPy plugin

Credits: Maciej Fijalkowski

We are pleased to announce the availability of the new PyPy plugin.

PyPy team has been great in helping us. We hope the uWSGI integration (that exposed new challenges to the PyPy project)
will help PyPy becaming better and better.

Official docs: The PyPy plugin

Cron improvements

Credits: Łukasz Mierzwa

Unique crons

You can now avoid overlapping crons. The uWSGI master will track death of a single task, and until its death the same cron
will not be triggered:

[uwsgi]
unique-cron = -1 -1 -1 -1 -1 my_script.sh

cron2 syntax

A key/value variant of the –cron option is now available:

[uwsgi]
cron2 = minute=39,hour=23,month=-1,week=-1,day=-1,unique=1,legion=foobar,harakiri=30

harakiri cron

When using the cron2 option you are allowed to set a harakiri timeout for a cron task. Just add harakiri=n to the options.

Support for GNU Hurd

Debian GNU/Hurd has been recently released. uWSGI 1.9.11 can be built over it, however very few tests have been made.

The memory offload engine

Idea: Stefano Brentegani

When serving content from the cache, a worker could get blocked during transfer from memory to the socket.

A new offload engine named “memory” allows to offload memory transfers. The cache router automatically supports it.
Support for more areas will be added soon.

To enable it just add --offload-threads <n>

New Websockets chat example

An example websocket chat using Redis has been added to the repository:

https://github.com/unbit/uwsgi/blob/master/tests/websockets_chat.py

Error routes

You can now define a routing table to be executed as soon as you set the HTTP status code in your plugin.

This allows you to completely modify the response. This is useful for custom error codes.

All of the routing standard options are available (included labels) plus an optimized error-route-status
matching a specific HTTP status code:

[uwsgi]
error-route-status = 502 redirect:http://unbit.it

Support for corner case usage in wsgi.file_wrapper

Generally the wsgi.file_wrapper callable expects a file-like object. PEP 333/3333 reports a special pattern when the object
is not a file (call read() until the object is consumed). uWSGI now supports this pattern (even if in a hacky way).

HTTP/HTTPS router keepalive improvements

Credits: André Cruz

When using --http-keepalive you can now hold the connection open even if the request has a body.

The harakiri routing action

You can now set a harakiri timer for each request using internal routing:

[uwsgi]
; set harakiri to 30 seconds for request starting with /slow
route = ^/slow harakiri:30

RPC wrappers

The RPC plugin has been extended to allows interoperation with other standards.

Currently a simple HTTP wrapper and an XML-RPC one are exposed.

The HTTP simple wrapper works by parsing PATH_INFO.

A /foo/bar/test call will result in

uwsgi.rpc(‘foo’, ‘bar’, ‘test’)

To enable this HTTP mode just set the modifier2 to ‘2’:

[uwsgi]
http-socket = :9090
http-socket-modifier1 = 173
http-socket-modifier2 = 2
; load the rpc code
import = myrpcfuncs.py

or (to have more control)

[uwsgi]
http-socket = :9090
route-run = uwsgi:,173,2
; load the rpc code
import = myrpcfuncs.py

The XML-RPC wrapper works in the same way, but it uses the modifier2 value ‘3’. It requires a libxml2-enabled build of uWSGI.

[uwsgi]
http-socket = :9090
route-run = uwsgi:,173,3
; load the rpc code
import = myrpcfuncs.py

Then just call it:

proxy = xmlrpclib.ServerProxy("http://localhost:9090')
proxy.hello('foo','bar','test')

You can combine multiple wrappers using routing.

[uwsgi]
http-socket = :9090
; /xml force xmlrpc wrapper
route = ^/xml uwsgi:,173,3
; fallback to HTTP simple
route-if-not = startswith:${PATH_INFO};/xml uwsgi:,173,2
; load the rpc code
import = myrpcfuncs.py

Availability

uWSGI 1.9.11 will be available since 20130526 at:

http://projects.unbit.it/downloads/uwsgi-1.9.11.tar.gz

uWSGI 1.9.10

Changelog [20130511]

Bugfixes

	fixed alarm threads during reloads

	fixed uninitialized memory in –touch-* options

	fixed a regression in –attach-daemon

New Features

Welcome to gccgo

Go support in gcc 4.8 is amazing, thanks to the split-stack feature you can now have goroutines without allocating a whole pthread.

As Go 1.1 will be no no more compatible with uWSGI, gccgo will became the official way for running go apps.

The gccgo plugin is in early stage of development but it is already able to run in preforking mode.

We are heavy working on a true “goroutines” Loop engine. Stay tuned.

Final routes

You can now run routing rules after a request. Obviously not all of the exposed actions make sense after the request but you should be able
to write even more complex setup.

Check this request limiter based on HTTP response status (a value you can get only after a request):

https://github.com/unbit/uwsgi/blob/master/t/routing/errorlimiter.ini

Availability

uWSGI 1.9.10 will be available since 20130511 at the following url:

http://projects.unbit.it/downloads/uwsgi-1.9.10.tar.gz

uWSGI 1.9.9

Changelog [20130508]

Special Warning !!!

The router_basicauth plugin has changed its default behaviour to return “break” if authorization fails.

The “basicauth-next” action, uses the old behaviour (returning “next”)

This new approach should reduce security problems caused by wrong configurations

Bugfixes

	do not increment “tx” statistics counter for “unaccountable” plugins

	fixed –backtrace-depth

	fixed cache-sync parsing

	fixed mule farms initialization

	fixed multithreading bug when regexp conditional route is used

	fixed default-app usage in the psgi plugin

	fixed python dynamic mode + threads

	fixed error reporting in corerouter when retry is in place

	correctly report harakiri condition for gateways

New Features

The WebDav plugin

WebDav is one of the much requested features for the project. We now have a beta-quality plugin, already supporting
additional standards like the carddav:

https://github.com/unbit/uwsgi/blob/master/t/webdav/carddav.ini

The official modifier is 35, and to mount a simple directory as a webdav shares (for use with windows, gnome...) you only need to
specify the –webdav-mount option:

[uwsgi]
plugin = webdav
http-socket = :9090
http-socket-modifier1 = 35
webdav-mount = /home/foobar

remember to protect shares:

[uwsgi]
plugin = webdav,router_basicauth
http-socket = :9090
http-socket-modifier1 = 35
route-run = basicauth:CardDav uWSGI server,unbit:unbit
webdav-mount = /home/foobar

WebDav attributes are stored as filesystem xattr, so be sure to use a filesystem supporting them (ext4, xfs, hfs+...)

LOCK/UNLOCK support is still incomplete

Official docs will be available soon.

Support for Go 1.1 (more or less, sad news for go users...)

Albeit you can successfully embed go 1.1 apps in uWSGI, go 1.1 will be completely fork() unsafe.

That means you are not able to use multiprocessing, the master, mules and so on.

Basically half of the uWSGI features will be no more usable in go apps.

Things could change in the future, but currently our objective is better integration with the gccgo project.

Go 1.0.x will continue to be supported (unless gccgo shows itself as a better alternative)

More to come soon.

Improved async modes

Stackless, Greenlet and Fiber support have been updated to support new async features

The radius plugin

You can now authenticate over radius servers using the router_radius plugin:

[uwsgi]
plugin = webdav,router_radius
http-socket = :9090
http-socket-modifier1 = 35
route-run = radius:realm=CardDav uWSGI server,server=127.0.0.1:1812
webdav-mount = /home/foobar

The SPNEGO plugin

Another authentication backend, using SPNEGO (kerberos)

[uwsgi]
plugin = webdav,router_spnego
http-socket = :9090
http-socket-modifier1 = 35
route-run = spnego:HTTP@localhost
webdav-mount = /home/foobar

The plugin is beta quality as it leaks memory (it looks like a bug in MIT-kerberos) and Heimdal implementation does not work.

More reports are wellcomed

The ldap authenticator

(Author: Łukasz Mierzwa)

Currently it lacks SASL support. Will be improved soon.

[uwsgi]
...
plugins = router_ldapauth
route = ^/a ldapauth:LDAP realm,url=ldap://ldap.domain,com;basedn=ou=users,dc=domain.com;binddn=uid=proxy,dc=domain,dc=com;bindpw=password

New internal routing features

We removed the GOON action, as it was messy and basically useless with the new authentication approach

The “setscriptname” action has been added to override the internally computed SCRIPT_NAME (not only the var)

The “donotlog” action forces uWSGI to not log the current request

The “regexp” routing conditions has been improved to allows grouping. Now you can easily manipulate strings and adding them as new request VARS:

[uwsgi]
...
route-if = regexp:${REQUEST_URI};^/(.)oo addvar:PIPPO=$1
route-run = log:PIPPO IS ${PIPPO}

this will take the first char of foo and place in the PIPPO request var

Gevent atexit hook

uwsgi.atexit hook is now honoured by the gevent plugin (Author: André Cruz)

Streaming transformations

Transformations can be applied on the fly (no buffering involved).

Check updated docs: uWSGI Transformations

The xattr plugin

The xattr plugin allows you to reference files extended attributes in the internal routing subsystem:

[uwsgi]
...
route-run = addvar:MYATTR=user.uwsgi.foo.bar
route-run = log:The attribute is ${xattr[/tmp/foo:MYATTR]}

or (variant with 2 vars)

[uwsgi]
...
route-run = addvar:MYFILE=/tmp/foo
route-run = addvar:MYATTR=user.uwsgi.foo.bar
route-run = log:The attribute is ${xattr2[MYFILE:MYATTR]}

The airbrake plugin

(Author: Łukasz Mierzwa)

Currently at early stage of development allows sending uWSGI exceptions and alarms to airbrake servers.

Official docs will be available soon.

Legion Daemons

(Author: Łukasz Mierzwa)

No, it is not a blackmetal band, it is a new feature of The uWSGI Legion subsystem allowing you to run external processes
only when an instance is a lord:

[uwsgi]

master = true
http = :8081
stats = :2101
wsgi-file = tests/staticfile.py

logdate = true

legion = legion1 225.1.1.1:19678 100 bf-cbc:abc
legion-node = legion1 225.1.1.1:19678

legion-attach-daemon = legion1 memcached -p 10001

legion-smart-attach-daemon = legion1 /tmp/memcached.pid memcached -p 10002 -d -P /tmp/memcached.pid

–touch-exec

A new “touch” option (like –touch-reload) is available, triggering the execution of a command:

[uwsgi]
...
touch-exec = /tmp/foobar run_my_script.sh
touch-exec = /var/test/foo.txt run_my_second_script.sh arg1 arg2

Math for cache

You can now use the caching subsystem to store 64bit signed numbers and apply atomic operations on them.

The uwsgi api has been extended with 5 new functions (currently exposed only by the python plugin):

*uwsgi.cache_num(key[,cache]) -> get the 64bit number from the specified item

*uwsgi.cache_inc(key[,amount=1,expires,cache]) -> increment the specified key by the specified amount

*uwsgi.cache_dec(key[,amount=1,expires,cache]) -> deccrement the specified key by the specified amount

*uwsgi.cache_mul(key[,amount=2,expires,cache]) -> multiply the specified key by the specified amount

*uwsgi.cache_div(key[,amount=2,expires,cache]) -> divide the specified key by the specified amount

The new api has been exposed to the routing subsystem, allowing you to implement advanced patterns, like the request limiter:

https://github.com/unbit/uwsgi/blob/master/t/routing/limiter.ini

the example shows hot to limit the request of a single ip to 10 every 30 seconds

The long-term objective of this new feature is being the base for the upcoming metric subsystem

Availability

uWSGI 1.9.9 will be availabel since 20130508 at the following url

http://projects.unbit.it/downloads/uwsgi-1.9.9.tar.gz

uWSGI 1.9.8

Changelog [20130423]

Note: this is an “emergency” release fixing 2 regressions causing a crash during reloads and when using async+uGreen

Bugfixes

	fixed a crash when reloading the master

	fixed a crash in async mode + uGreen

	the ‘mime’ routing var requires a request var (not a raw string)

Availability

You can download uWSGi 1.9.8 from http://projects.unbit.it/downloads/uwsgi-1.9.8.tar.gz

uWSGI 1.9.7

Bugfixes

	fixed teajs engine build

	fixed offloading status code (set to 202 when a request is offloaded)

	execute cron tasks within 60 second resolution, instead of 61 seconds

	fixed websocket proxy

	check for python3 unicode encoding (instead of crashing...)

	fixed ipcsem removal on reload

	fixed kqueue timer on OpenBSD, NetBSD and DragonFlyBSD

	fixed/reimplemented perl uwsgi::register_rpc

	fixed fd leak on sendfile() error

	fixed Content-Length when gzip file variant is used

	allows non-request plugins to register rpc functions

	more robust error checking for cgroups

	honour SCRIPT_NAME the in the PSGI plugin when multiple perl apps are mounted

New features

Legion cron

A common needs when multiple instances of an application are running, is to force only one
of them to run cron tasks. The new –legion-cron uses The uWSGI Legion subsystem to accomplish that:

[uwsgi]
; use the new legion-mcast shortcut (with a valor 90)
legion-mcast = mylegion 225.1.1.1:9191 90 bf-cbc:mysecret
; run the script only if the instance is the lord of the legion "mylegion"
legion-cron = mylegion -1 -1 -1 -1 -1 my_script.sh

Curl cron

The curl_cron plugin has been added allowing the cron subsystem to call urls (via libcurl) instead of unix commands:

[uwsgi]
; call http://uwsgi.it every minute
curl-cron = -1 -1 -1 -1 -1 http://uwsgi.it/

The output of the request is reported in the log

The UWSGI_EMBED_PLUGINS build variable

ou can now embed plugins on the fly during the build phase. Check this example:

UWSGI_EMBED_PLUGINS=gridfs,rack UWSGI_PROFILE=psgi make

this will build a monolithic binary with the default profile for psgi + the gridfs and the rack plugins (both embedded in the binary)

Gzip caching

The cachestore routing function can now directly store items in gzip format.

Check the CachingCookbook: http://uwsgi-docs.readthedocs.org/en/latest/tutorials/CachingCookbook.html

–skip-atexit

A bug in the mongodb client library could cause a crash of the uWSGI server during shutdown/reload. This option
avoid calling atexit() hooks. If you are building a The GridFS plugin infrastructure you may want to use this option while the MongoDB guys solve the issue.

proxyhttp and proxyuwsgi

The http and uwsgi routing instructions are now more smart. You can cache their output and get the right status code in the logs.

This requires you to NOT use offloading. If offloading is in place and do not want to use it for this two router use the proxy-prefixed variant
that will skip offloading.

You can now make cool things like:

[uwsgi]
socket = 127.0.0.1:3031
; create a cache of 100 items
cache = 100
; check if a cached value is available
route-run = cache:key=${REQUEST_URI}
; proxy all request to http://unbit.it
route-run = http:81.174.68.52:80,unbit.it
; and cache them for 5 minutes
route-run = cachestore:key=${REQUEST_URI},expires=300

The transformation api

A generic api for manipulating the response has been added (cachestore uses it)

check uWSGI Transformations

–alarm-fd

We are improving The uWSGI alarm subsystem (from 1.3) to be less-dependent on loglines. You can now trigger alarms when an fd is ready for read.

This is really useful for integration with the Linux eventfd() facility.

For example you can monitor (and throw an alarm) when your cgroup is running the OOM-Killer:

[uwsgi]
; define an 'outofmemory' alarm that simply print the alarm in the logs
alarm = outofmemory log:
; raise the alarm (with the specified message) when fd is ready (this is an eventfd se we read 8 bytes from the fd)
alarm-fd = outofmemory $(CGROUP_OOM_FD):8 OUT OF MEMORY !!!

in this example CGROUP_OOM_FD is an environment variable mapping to the number of an eventfd() filedescriptor inherited from some kind
of startup script. Maybe (in the near future) we could be able to directly define this kind of monitor directly in uWSGI.

More information on the eventfd() + cgroup integration are here: https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

an example perl startup script:

use Linux::FD;
use POSIX;

my $foo = Linux::FD::Event->new(0);
open OOM,'/sys/fs/cgroup/uwsgi/memory.oom_control';
we dup() the file as Linux::FD::Event set the CLOSE_ON_EXEC bit (why ???)
$ENV{'CGROUP_OOM_FD'} = dup(fileno($foo)).'';

open CONTROL,'>/sys/fs/cgroup/uwsgi/cgroup.event_control';
print CONTROL fileno($foo).' '.fileno(OOM)."\n";
close CONTROL;

exec 'uwsgi','mem.ini';

The spooler server plugin and the cheaper busyness algorithm compiled in by default

In extremely high-loaded scenario the busyness cheaper algorithm (by Łukasz Mierzwa) has been a real
silver bullet in the past months allowing adaptive process spawning to be based on real usage time taking in account
performance and response time. For this reason the plugin is now builtin by default.

In addition to this the remote spooler plugin (allowing external process to enqueue jobs) has been added too in the default build profile.

Availability

uWSGI 1.9.7 will be available since 20130422 at this url:

http://projects.unbit.it/downloads/uwsgi-1.9.7.tar.gz

uWSGI 1.9.6

Changelog 20130409

Bugfixes

	workaround for building the python plugin with gcc 4.8

Sorry, this is not a real bugfix, but making a release without bugfixes seems wrong...

New Features

Sqlite and LDAP pluginization

Storing configurations in sqlite databases or LDAP tree is a pretty “uncommon” way to configure uWSGI
instances. For such a reason they have been moved to dedicated plugins.

If you store config in a sqlite database, just add –plugin sqlite3. For LDAP, just add –plugin ldap:

uwsgi --plugin sqlite --sqlite config.db

Configuring dynamic apps with internal routing

‘Til now, you need to configure your webserver to load apps dinamically.

Three new instructions have been added to load aplication on demand.

Check the example:

[uwsgi]

http-socket = :9090

route = ^/foo chdir:/tmp
route = ^/foo log:SCRIPT_NAME=${SCRIPT_NAME}
route = ^/foo log:URI=${REQUEST_URI}
route = ^/foo sethome:/var/uwsgi/venv001
route = ^/foo setfile:/var/uwsgi/app001.py
route = ^/foo break:

route = ^/bar chdir:/var
route = ^/bar addvar:SCRIPT_NAME=/bar
route = ^/bar sethome:/var/uwsgi/venv002
route = ^/bar setfile:/var/uwsgi/app002.py
route = ^/bar break:

as you can see, rewriting SCRIPT_NAME is now very easy. The sethome instruction is currently available only for python application
(it means ‘virtualenv’)

Carbon avg computation (Author: Łukasz Mierzwa)

You can now configure how the carbon plugin send the response average when no requests have been managed.

You have three ways:

–carbon-idle-avg none - don’t push any avg_rt value if no requests were made

 uWSGI 1.9.5

uWSGI 1.9.5

Changelog 20130404

Bugfixes

	fixed a memory leak with cachestore routing instruction (Riccardo Magliocchetti)

	fixed a memory leak in carbon plugin (Riccardo Magliocchetti)

	fixed a memory leak in the cgi plugin (Riccardo Magliocchetti)

	fixed old-style python dynamic apps

	force the emperor to honour –max-fd for vassals

	improved PSGI seek with post-buffering

	fixed kvlist escaping

New features

The GridFS plugin

A plugin exporting GridFS features is available, check official docs: The GridFS plugin

V8 improvements

The V8 plugin continues to improve. Preliminary JSGI 3.0 support is available as well as multithreading.

The ‘require’ commonjs standard has been implemented.

Writing commonjs specs will be a very long work, so maybe a partnership with projects like teajs (the old v8cgi) would be a better
path to follow.

In the mean time, we are working on docs: uWSGI V8 support

The ‘cgi’ routing instruction

You can now call CGI script directly from the uWSGI internal routing

[uwsgi]
plugin = cgi
route = ^/cgi-bin/(.+) cgi:/usr/lib/cgi-bin/$1

Availability

uWSGI 1.9.5 will be available since 20130404 at this url

http://projects.unbit.it/downloads/uwsgi-1.9.5.tar.gz

 uWSGI 1.9.4

uWSGI 1.9.4

Changelog 20130330

Bugfixes

fixed cache statistics exported by the stats subsystem (Łukasz Mierzwa)

fixed CoroEV bug in after_request (Tom Molesworth and John Berthels)

update cache items after a restore from persistent storage (Łukasz Mierzwa)

fixed signal handling in non-worker processes

fixed thundering herd in multiple mules setup

ported the cplusplus skeletal plugin to the new api

fixed uWSGI reloading when build as a shared library

New features

SmartOS official support

From now on, SmartOS is included in the officially supported operating systems

V8 initial support

The Lua previous suggestion for writing uWSGI routing rules and configurations, woke up lot of javascript users stating that javascript
itself could be a valid alternative. A V8 plugin is now available, supporting RPC, signal handlers and configurations. You need libv8 headers to build it:

python uwsgiconfig.py --plugin plugins/v8

var config = {};
config['socket'] = [':3031', ':3032', ':3033'];
config['master'] = true;
config['processes'] = 3+1;
config['module'] = 'werkzeug.testapp:test_app';

config;

uwsgi --plugin v8 --config foo.js

The previous example will allows you to write dynamic configs in javascript, while you can export javascript functions via the RPC subsystem:

function part1(request_uri, remote_addr) {
 return '<h1>i am part1 for ' + request_uri + ' ' + remote_addr + "</h1>" ;
}

function part2(request_uri, remote_addr) {
 return '<h2>i am part2 for ' + request_uri + ' ' + remote_addr + "</h2>" ;
}

function part3(request_uri, remote_addr) {
 return '<h3>i am part3 for ' + request_uri + ' ' + remote_addr + "</h3>" ;
}

uwsgi_register_rpc('part1', part1);
uwsgi_register_rpc('part2', part2);
uwsgi_register_rpc('part3', part3);

[uwsgi]
plugin = v8
v8-load = func.js
cache2 = name=foobar,items=10

http-socket = :9090

route-run = addheader:Content-Type: text/html
route-run = cache:key=pippo,name=foobar
route-run = cachestore:key=pippo,name=foobar
route-run = rpcnext:part1 ${REQUEST_URI} ${REMOTE_ADDR}
route-run = rpcnext:part2 ${REQUEST_URI} ${REMOTE_ADDR}
route-run = rpcnext:part3 ${REQUEST_URI} ${REMOTE_ADDR}
route-run = break:

The previous example generates an HTTP reponse from 3 javascript functions and store it in the uWSGI cache.

Curious about rpcnext ?

The rpcnext routing action

We can already call rpc functions from the routing subsystem to generate response. With the rpcnext action (aliased as rpcblob too)
you can call multiple rpc functions and assemble the return values in a single response.

Legion improvements

We are hardly working in stabilizing The uWSGI Legion subsystem The objective is have a rock-solid clustering implementation for uWSGI 2.0
that you can use even from your applications.

The code in 1.9.4 has been refactored a bit by Łukasz Mierzwa to allow easier integration with external plugins.

A new “join” hook has been added, it is called as soon as a node becomes active part of a legion (read, it is part of a quorum).

Availability

uWSGI 1.9.4 will be available since 20130330 at this url

http://projects.unbit.it/downloads/uwsgi-1.9.4.tar.gz

 uWSGI 1.9.3

uWSGI 1.9.3

Changelog 20130328

Bugfixes

fixed imports in the JVM build system when virtualenvs are used (Ryan Kaskel)

fixed mod_proxy_uwsgi with apache 2.4

fixed php headers generation when Status is created from the php app itself

New features

Pluggable configuration system (with Lua support)

From this version you will be able to implement configurators (like the already available xml, ini, yaml, json, ldap, sqlite...)
as plugins.

The first available configurator is the Lua one (offered by the lua plugin).

This is an example configuration written in lua:

config = {}

config['immediate-uid'] = 'roberto'
config['immediate-gid'] = 'roberto'
config['http-socket'] = ':9090'
config['env'] = { 'FOO=bar', 'TEST=topogigio' }
config['module'] = 'werkzeug.testapp:test_app'

return config

you can load it with:

uwsgi --plugin lua --config config.lua

The –config option is the way to load pluggable configurators. You can even override the already available embedded configurators
with your own version.

The Emperor has already been extended to support pluggable configurators:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-extra-extension = .lua
emperor-extra-extension = .foo

adding emperor-extra-extension will allows the emperor to search for the specified extension passing the config file to the vassal with the –config option.

Immediate setuid and setgid

In a recent uWSGI maling-list thread, the need to not rely on file system permissions for the tyrant mode emerged.

Albeit it is the most secure approach, two new options –immediate-uid and –immediate-gid have been added.

Setting them on top of your vassal file will force the instance to setuid()/setgid() as soon as possibile and without the (theoretical) possibility to override them.

The word “theoretical” here is the key, you always need to remember that a security bug in uWSGI could allow a malicious user to change privileges, so if you really
care security (or do not trust uWSGI developers ;) always drop privileges before the vassal/instance is spawned (like in standard tyrant mode)

Honouring symlinks in tyrant mode

The option –emperor-tyrant-nofollow has been added forcing the emperor to now follow symlinks when searching for uid/gid in tyrant mode.

This option allows the sysadmin to simply symlink configurations and just change the uid/gid of the symlink it self (remember to
pass the -h option to chown !!!)

The “rpcret” routing action (or usa Lua to write advanced rules)

The uWSGI internal routing continue to be improved.

You can already call rpc function for the routing system (to generate response bypassing WSGI/PSGI/Rack/... engines):

[uwsgi]
lua-load = myrpcfunctions.lua
route = ^/foo/(.+)/call rpc:hello_world ${REMOTE_ADDR} $1

the hello_worls rpc function is defined (and registered) in the myrpcfunctions.lua taking two arguments.

The function is called when the routing regexp matches, and its output sent to the client.

The “rpcret” works in similar way, but instead generating a response, you generate a routing return code:

function choose(request_uri, remote_addr)
 print('REQUEST_URI is ' ..request_uri.. ' (from Lua)')
 if request_uri == '/topogigio' then
 return "goto topogigio"
 end
 return "break 500 Internal server Error !!!"
end

print('Hello Hello')
uwsgi.register_rpc('choose', choose)

and the uWSGI config:

[uwsgi]
route-run = rpcret:choose ${REQUEST_URI} ${REMOTE_ADDR}
route-run = break

route-label = topogigio
route-run = log:i am topogigio !!!

The ‘choose’ rpc function will be invoked at every request passing REQUEST_URI and REMOTE_ADDR as its argument.

The return string of the function will be used to know what to do next (from the internal ruting point of view).

Currently supported return strings are:

next move to the next rule

continue pass the request to the request handler

goon move to the next rule with a different action

break close the connection with an optional status code

goto <label> goto to the specified label

Obviously rpc functions for rpcret can be written in any language/platform supported by uWSGI, but we strongly suggest to go with Lua for performance reasons
(the inpact compared to pure C code is pretty irrelevant). If you are lucky and can use LuaJit you will experiment even better performance as for this kind of job
a JIT compiler is the best approach.

Availability

uWSGI 1.9.3 has been released on 20130328 and can be downloaded from:

http://projects.unbit.it/downloads/uwsgi-1.9.3.tar.gz

 uWSGI 1.9.2

uWSGI 1.9.2

Changelog 20130326

Bugfixes

Fixed python3 response headers managament (wrong refcnt)

Fixed readline() on request body when postbuffering is in place

Fixed ruby fiber plugin

New features

route-run and the cachestore routing action

You can now store responses automatically in the uWSGI cache:

[uwsgi]
http-socket = :9090
; ensure the sweeper thread will run
master = true
cache2 = name=pippo2,items=10
module = werkzeug.testapp:test_app
route-run = cache:key=${REQUEST_URI},name=pippo2
route-run = cachestore:key=${REQUEST_URI},expires=30,name=pippo2

this example check every request for its availability in the cache ‘pippo2’. If not available the request plugin (werkzeug test app)
will run normally and its output will be stored in the cache (only if it returns a HTTP 200 status)

--route-run is a new option allowing you to directly call routing action without checking for a specific condition (yes, it is an optimization)

routing access to cookie and query string

Check updated docs uWSGI internal routing

empty internal routing condition

Check updated docs uWSGI internal routing

The Geoip plugin

Check official docs The GeoIP plugin

The SSI plugin (beta)

Check official docs SSI (Server Side Includes) plugin

Availability

uWSGI 1.9.2 has been released on 20130326 and can be downloaded from:

http://projects.unbit.it/downloads/uwsgi-1.9.2.tar.gz

 uWSGI 1.9.1

uWSGI 1.9.1

First minor release for the 1.9 tree.

Bugfixes

Fixed –req-logger after a graceful reload

Fixed a crash with the carbon plugin

Fixed signal handling when multiple workers + copy on write is in place

Fixed exception handling in the Rack plugin

The XSLT plugin

The XSLT plugin has been added. It allows to apply XML transformation via request plugin or uWSGI internal routing

Legion scrolls api

Scrolls are text blob attached to each member of a Legion cluster. We are slowly defining an api allowing developers to directly
use the legion subsystem in their apps and configurations. The addition in 1.9.1 is the uwsgi.scrolls(legion) function returning a list/array
of the current scrolls defined by the whole cluster. This is still not something fully usable (and useful) more to come soon...

On demand vassals

Another step in better resource usage for massive hosting. You can now tell the Emperor to start vassals only after the first request
to a specific socket. Combined with –idle/–die-on-idle options, you can have truly on-demand applications.

To define the socket to wait for for each vassal you have 3 options:

–emperor-on-demand-extension <ext>

this will instruct the Emperor to check for a file named <vassal>+<ext>, if the file is available it will be read and its content used as the socket to wait for:

uwsgi --emperor /etc/uwsgi/vassals --emperor-on-demand-extension .socket

supposing a myapp.ini file in /etc/uwsgi/vassals, a /etc/uwsgi/vassals/myapp.ini.socket will be searched for (and its content used as the socket name)

At the first connection, the vassal is spawned and the socket passed as the file descriptor 0. File descriptor 0 is always checked by uWSGI
so you do not need to specify a –socket option in the vassal file. This works automagically for uwsgi sockets, if you use
other protocols (like http or fastcgi) you have to specify it with the –protocol option

–emperor-on-demand-directory <dir>

This is a less-versatile approach supporting only UNIX sockets. Basically the name (without extension and path) of the vassal is appended
to the specified directory + the .socket extension and used as the on-demand socket:

uwsgi --emperor /etc/uwsgi/vassals --emperor-on-demand-directory /var/tmp

using the previous example, the socket /var/tmp/myapp.socket will be automatically bound

–emperor-on-demand-exec <cmd>

This is what (very probably) you will use in very big deployments. Every time a new vassal is added the supplied command is run passing the vassal name
as the first argument. The STDOUT of the command is used as the socket name.

The –exec-post-app hook

In addition to the other –exec-* options (used to run commands at the various server stages), a new one has been added
allowing you to run commands after the load of an application.

The pyring build profile

This is a very specific build profile allowing you to automatically build a uWSGI stack with monolithic python support and modular jvm + ring honouring virtualenvs.

The cache router plugin

This has been improved, and in next releases we should be able to directly store response in the uWSGI cache only using the internal routing subsystem

Docs will be available soon

The crypto logger

If you host your applications on cloud services without persistent storage you may want to send your logs to external
systems. Sadly logs often contain sensible informations you should not transfer in clear. The new crypto logger try to solve
this issue allowing you to encrypt each log packet and send it over udp to a server able to decrypt it.

The following example

uwsgi --plugin logcrypto --logger crypto:addr=192.168.173.22:1717,algo=bf-cbc,secret=ciaociao -M -p 4 -s :3031

will send each log packet to the udp server available at 192.168.173.22:1717 encrypting the text with ‘ciaociao’ secret key using
the blowfish cbc algorithm.

An example server is available here:

https://github.com/unbit/uwsgi/blob/master/contrib/cryptologger.rb

The rpc internal routing instruction

The “rpc” routing instruction has been added, allowing you to call rpc functions directly from the routing subsystem
and forward they output to the client.

Check the following examples:

[uwsgi]
http-socket = :9090
route = ^/foo addheader:Content-Type: text/html
route = ^/foo rpc:hello ${REQUEST_URI} ${HTTP_USER_AGENT}
route = ^/bar/(.+)$ rpc:test $1 ${REMOTE_ADDR} uWSGI %V
route = ^/pippo/(.+)$ rpc:test@127.0.0.1:4141 $1 ${REMOTE_ADDR} uWSGI %V
import = funcs.py

Preliminary support for name resolving in the carbon plugin

You can specify carbon servers using hostnames. The current code is pretty simple. Future updates will support round robin queries.

New routing conditions

New routing conditions have been added (equal,startswith,endswith,regexp) check the updated docs:

http://uwsgi-docs.readthedocs.org/en/latest/InternalRouting.html#the-internal-routing-table

The ‘V’ magic var

You can reference the uWSGI version string using the %V magic var in your configurations

The ‘mongodb’ generic plugin

This is a commodity plugin for packagers not able to access a shared libmongoclient. This basically link it in a new shared object
that can be used by the others mongodb plugin

Build profiles over network

You can now reference build profiles using urls (http, https and ftp are supported):

UWSGI_PROFILE=http://uwsgi.it/psgi.ini make

Get it

uWSGI 1.9.1 will be available since 20130324 at this url:

http://projects.unbit.it/downloads/uwsgi-1.9.1.tar.gz

 uWSGI 1.9

uWSGI 1.9

This is the version that will lead to the LTS 2.0. It includes a lot of internal changes and removal of a lot of basically unused, broken, or too ugly functionality.

Options deprecated in 1.0.x have been definitely removed.

Non-blocking for all

From now on, all of the request plugins, need to be non-blocking. A new set of
C/C++/Obj-C api have been added to help the user/developer writing non-blocking
code in a safe way. Plugins like the RPC one have been rewritten using that
new api, allowing you to use it with engines like Gevent or Coro::Anyevent The
async mode has been rewritten to better cooperate with this new rule. More info
can be found on uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9) The new async mode requires some form of
coroutine/greenthread/suspend engine to correctly work. Again, check
uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9)

Coro::AnyEvent

The Perl/PSGI plugin is one of the most ancient in the uWSGI project, but used to not support the async mode in advanced ways.

Thanks to the new uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9) mode, a Coro::Anyevent (coroae) loop engine has been added.

To build it you need the Coro::Anyevent package (you can use cpanm to get it), then just add –coroae <n> to your options
where <n> is the number of async cores to spawn.

The JVM plugin

We finally have a truly working JVM infrastructure in uWSGI 1.9. Check the new
docs at JVM in the uWSGI server (updated to 1.9) Improved The JWSGI interface support is available as well as the
new Clojure The Clojure/Ring JVM request handler plugin

The Mono ASP.NET plugin

The first Mono plugin attempt (in 2010) was a total failure. Now we have a new shining implementation.

Check docs here The Mono ASP.NET plugin

Language independent HTTP body management

One of the most annoying task in writing uWSGI request plugins, was re-implementing the management of HTTP body reader every time.

The new non-blocking api added 3 simple generic C/C++/Obj-C functions to deal with it in a language independent way:

char *uwsgi_request_body_read(struct wsgi_request *wsgi_req, ssize_t hint, ssize_t *rlen);
char *uwsgi_request_body_readline(struct wsgi_request *wsgi_req, ssize_t hint, ssize_t *rlen);
void uwsgi_request_body_seek(struct wsgi_request *wsgi_req, off_t pos);

they automatically manage post-buffering, non-blocking and upload progress.

All of the request plugins have been updated to the new api

Faster uwsgi/HTTP/FastCGI/SCGI native sockets

All of the –socket protocol parsers have been rewritten to be faster (less
syscall usage) and to use less memory. They are now more complex, but you
should note (on loaded site) a reduced amount of syscalls per-request.

The SCGI protocol support has been added, while a NPH fastcgi mode (where the output is HTTP instead of cgi) has been implemented.

The FastCGI protocol now supports true sendfile() usage

The old behaviour of storing the request body for HTTP and FastCGI on a temp
file, has been removed (unless you use post-buffering). This means you can now
have upload progress with protocols other than uwsgi.

Request logging VS err logging

One of the most annoying problem with older uWSGI releases was the lack of
ability to easily split request logs from error logs. You can now create a
logger and map it only to request logging:

[uwsgi]
req-logger = syslog
...

As an example you may want to send request logging to syslog and redis, and error log to mongodb (on the foo.bar collection):

[uwsgi]
req-logger = syslog
req-logger = redislog:127.0.0.1:6269
logger = mongodblog:127.0.0.1:9090,foo.bar
...

Or just use (boring) files

[uwsgi]
req-logger = file:/tmp/reqlog
logger = file:/tmp/errlog
...

Chain reloading

When in lazy/lazy_apps mode, you can simply destroy a worker to force it to
reload the application code.

A new reloading system named “chain reload”, allows you to reload one worker at
time (opposed to the standard way where all of the workers are destroyed in
bulk)

Chain reloading can only be triggered via “touch”: –touch-chain-reload <file>

Offloading improvements

Offloading appeared in uWSGI 1.4 and is one of the most loved features. In 1.9
we added a new engine: “write”, that allows you to offload the write of files
on disk. A general function api uwsgi.offload() is on work, to allow
applications to access the offload engine. All of the uWSGI parts sending
static files (including the language-specific implementations, like WSGI
wsgi.file_wrapper) have been extended to automatically use offloading if
available. This means you can use your Framework’s way for serving static
files, without losing too much performance and (more important) without
blocking your workers.

Better static files management/serving

uWSGI 1.9 received many improvements in static file serving.

You may want to check: Serving static files with uWSGI (updated to 1.9)

For syadmins one of the most interesting new features is the ability to use the
uWSGI new generation cacheing (see below) to store request -> absolute_path
mappings

The New Generation Cache subsystem (cache2)

The uWSGI caching subsystem has been completely rewritten to be a more general
purpose in-memory key/value store. The old caching subsystem has been re-built
on top of it, and is now more of a general “web caching” system. The new
cache subsystem allows you to control all of the aspects of your memory store,
from the hashing algorithm to the amount of blocks.

You can now have multiple caches per-instance (identified by name)

To create a cache just use the new –cache2 option

[uwsgi]
cache2 = name=mycache,items=100
cache2 = name=faster,items=200,hash=murmur2,keysize=100,blocksize=4096
cache2 = name=fslike,items=1000,keysize=256,bitmap=1,blocks=2000,blocksize=8192
...

In this example we created 3 caches: mycache, faster and fslike.

The first one is a standard old-style, cache able to store 100 items of a
maximum size of 64k with keys limited to 2048 bytes using djb33x hashing
algorithm The second one use the murmur2 hashing algorithm, each key can be at
most 1000 bytes, can store 200 items of max 4k The last one works like a
filesystem, where each item can span over multiple blocks. That means, fslike
cache can save lot of memory for boject of different size (but it will be
slower than non-bitmap based caches)

The options you can specify in cache2 are the following:

name the name of the cache (must be unique) REQUIRED

items/max_items/maxitems set the max number of items the cache can store REQUIRED

blocksize set the size of a single block

blocks set the number of blocks (used only in bitmap mode)

hash set the hashing algorithm, currently supported: djbx33 and murmur2

hashsize/hash_size set the size of the hash table (default to 65536 items)

keysize/key_size set the max size of a key

store set the filename in which to persistent store the cache

store_sync/storesync set the frequency (in seconds) at which msync() is called to flush cache on disk (when in persistent mode)

node/nodes the new cache subsystem can send cache updates via udp packet. With this option you set one or more (separated with ;) udp addresses on which to send updates

sync set it to the address of a cache server. Its whole content will be copied in the new cache (use it for initial sync)

udp/udp_servers/udp_server/udpservers/udpserver bind to the specified udp addresses (separated with ;) listening for cache updates

bitmap enable botmap mode (set it to 1)

If you are asking yourself why such low-level tunings exists, you have to take in account that the new caching subsystem is used in lot of areas, so for different
needs you may want different tuning. Just check Scaling SSL connections (uWSGI 1.9) for an example

The old –cache-server option has been removed. The threaded cache server added in 0.9.8 has been completed superseeded
by the new non blocking infrastructure. If you load the “cache” plugin (enabled by default in monolithic build) a cache server
will be available and managed by the workers.

Update docs are available here The uWSGI caching framework

The Legion subsystem

The Legion subsystem is a new whole addition to the uWSGI project. It has
superseeded the old Clustering subsystem (which has been removed in 1.9). It
implements a quorum system to manage shared resources in clustered
environments. Docs are already available: The uWSGI Legion subsystem

Cygwin (windows) support

uWSGI can be compiled on windows machines using the cygwin POSIX emulation
system. The event subsystem uses simple poll() (mapped to select() on cygwin),
while the lock engine uses windows mutexes. Albeit from our tests it looks
pretty solid, we consider the porting still “experimental”

Advanced Exceptions subsystem

As well as the request body language-independent management, an exception
management system has been added. Currently supported only in the Python and
Ruby plugins, allows language-independent handling of exceptions cases (like
reloading on a specific exception). The –catch-exception option has been
improved to show lot of useful information. Just try it (in development !!!)
Future development will allow automatic sending of exception to system like
Sentry or Airbrake.

SPDY, SSL and SNI

Exciting new features have been added to the SSL system and the HTTP router

SPDY support (currently only version 3) will get lot of users attention, but SNI subsystem is what sysadmins will love

Preliminary docs are available

The SPDY router (uWSGI 1.9)

SNI - Server Name Identification (virtual hosting for SSL nodes)

HTTP router keepalive, auto-chunking, auto-gzip and transparent websockets

Many users have started using the HTTP/HTTPS/SPDY router in production,
so we started adding features to it. Remember this is ONLY a router/proxy, NO
I/O is allowed, so you may not be able to throw away your
old-good webserver.

The new options:

--http-keepalive enable HTTP/1.1 keepalive connections

--http-auto-chunked for backend response without content-length (or chunked encoding already enabled), transform the output in chunked mode to maintain keepalive connections

--http-auto-gzip automatically gzip content if uWSGI-Encoding header is set to gzip, but content size (Content-Length/Transfer-Encoding) and Content-Encoding are not specified

--http-websockets automatically detect websockets connections to put the request handler in raw mode

The SSL router (sslrouter)

A new corerouter has been added, it works in the same way as the rawrouter one,
but will terminate ssl connections. The sslrouter can use sni for implementing
virtualhosting (using the –sslrouter-sni option)

Websockets api

20Tab S.r.l. (a company working on HTML5 browsers game) sponsored the
development of a fast language-independent websockets api for uWSGI. The api is
currently in very good shape (and maybe faster than any other implementation).
Docs still need to be completed but you may want to check the following
examples (a simple echo):

https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.pl (perl)

https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.py (python)

https://github.com/unbit/uwsgi/blob/master/tests/websockets_echo.ru (ruby)

New Internal Routing (turing complete ?)

The internal routing subsystem has been rewritten to be ‘programmable’. You can
see it as an apache mod_rewrite with steroids (and goto ;) Docs still need to
be ported, but the new system allows you to modify/filter CGI vars and HTTP
headers on the fly, as well as managing HTTP authentication and caching.

Updated docs here (still work in progress) uWSGI internal routing

Emperor ZMQ plugin

A new imperial monitor has been added allowing vassals to be governed over zeromq messages:

http://uwsgi-docs.readthedocs.org/en/latest/ImperialMonitors.html#zmq-zeromq

Total introspection via the stats server

The stats server now exports all of the request variables of the currently
running requests for each core, so it works in multithread mode too. This is a
great way to inspect what your instance is doing and how it does it In the
future, uwsgitop could be extended to show the currently running request in
realtime.

Nagios plugin

Ping requests sent using nagios plugin will no longer be counted in apps
request stats. This means that if application had –idle option enabled nagios
pings will no longer prevent app from going to idle state, so starting with 1.9
–idle should be disabled when nagios plugin is used. Otherwise app may be put
in idle state just before nagios ping request, when ping arrives it needs to
wake from idle and this might take longer than ping timeout, causing nagios
alerts.

Removed and deprecated features

	The –app option has been removed. To load applications on specific mountpoints use the –mount option

	The –static-offload-to-thread option has been removed. Use the more versatile –offload-threads

	The grunt mode has been removed. To accomplish the same behaviour just use threads or directly call fork() and uwsgi.disconnect()

	The send_message/recv_message api has been removed (use language-supplied functions)

Working On, Issues and regressions

We missed the timeline for a bunch of expected features:

	SPNEGO support, this is an internal routing instruction to implement SPNEGO authentication support

	Ruby 1.9 fibers support has been rewritten, but need tests

	Erlang support did not got required attention, very probably will be post-poned to 2.0

	Async sleep api is incomplete

	SPDY push is still not implemented

	RADIUS and LDAP internal routing instructions are unimplemented

	The channel subsystem (required for easy websockets communications) is still unimplemented

In addition to this we have issues that will be resolved in upcoming minor releases:

	the –lazy mode lost usefulness, now it is like –lazy-apps but with workers-reload only policy on SIGHUP

	it looks like the JVM does not cooperate well with coroutine engines, maybe we should add a check for it

	Solaris and Solaris-like systems did not get heavy testing

Special thanks

A number of users/developers helped during the 1.9 development cycle. We would like to make special thanks to:

Łukasz Mierzwa (fastrouters scalability tests)

Guido Berhoerster (making the internal routing the new skynet)

Riccardo Magliocchetti (static analysis)

André Cruz (HTTPS and gevent battle tests)

Mingli Yuan (Clojure/Ring support and test suite)

 uWSGI 1.4.10 (LTS)

uWSGI 1.4.10 (LTS)

Bugfixes

	fixed python3 static files handling (via wsgi.file_wrapper)

	backported python3 latin1 fix from 1.9

	fixed –backtrace-depth

	fixed python3 pyargv

	fixed mule_msg pipe handling

Availability

uWSGI 1.4.10 has been released 20130823

You can download it from:

http://projects.unbit.it/downloads/uwsgi-1.4.10.tar.gz

 Python 模块索引

 Python 模块索引

 u

 		 	

 		
 u	

 	
 	
 uwsgi	

 	
 	
 uwsgidecorators	

 索引

索引

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_cron() (在 uwsgi 模块中)

 	add_file_monitor() (在 uwsgi 模块中)

 	add_probe() (在 uwsgi 模块中)

 	add_rb_timer() (在 uwsgi 模块中)

 	add_timer() (在 uwsgi 模块中)

 	
 	applications() (在 uwsgi 模块中)

 	applist() (在 uwsgi 模块中)

 	async_connect() (在 uwsgi 模块中)

 	async_send_message() (在 uwsgi 模块中)

 	async_sleep() (在 uwsgi 模块中)

B

 	
 	buffer_size() (在 uwsgi 模块中)

C

 	
 	cache_clear() (在 uwsgi 模块中)

 	cache_del() (在 uwsgi 模块中)

 	cache_exists() (在 uwsgi 模块中)

 	cache_get() (在 uwsgi 模块中)

 	cache_set() (在 uwsgi 模块中)

 	cache_update() (在 uwsgi 模块中)

 	call() (在 uwsgi 模块中)

 	cl() (在 uwsgi 模块中)

 	
 	close() (在 uwsgi 模块中)

 	cluster() (在 uwsgi 模块中)

 	cluster_best_node() (在 uwsgi 模块中)

 	cluster_node_name() (在 uwsgi 模块中)

 	cluster_nodes() (在 uwsgi 模块中)

 	connect() (在 uwsgi 模块中)

 	connection_fd() (在 uwsgi 模块中)

 	cron() (在 uwsgidecorators 模块中)

D

 	
 	disconnect() (在 uwsgi 模块中)

E

 	
 	embedded_data() (在 uwsgi 模块中)

 	erlang() (在 uwsgidecorators 模块中)

 	erlang_connect() (在 uwsgi 模块中)

 	erlang_recv_message() (在 uwsgi 模块中)

 	
 	erlang_register_process() (在 uwsgi 模块中)

 	erlang_rpc() (在 uwsgi 模块中)

 	erlang_send_message() (在 uwsgi 模块中)

 	extract() (在 uwsgi 模块中)

F

 	
 	farm_get_msg() (在 uwsgi 模块中)

 	farm_msg() (在 uwsgi 模块中)

 	
 	fastfuncs() (在 uwsgi 模块中)

 	fcgi() (在 uwsgi 模块中)

 	filemon() (在 uwsgidecorators 模块中)

G

 	
 	get_logvar() (在 uwsgi 模块中)

 	get_option() (在 uwsgi 模块中)

 	
 	green_schedule() (在 uwsgi 模块中)

 	grunt() (在 uwsgi 模块中)

H

 	
 	harakiri

 	
 	harakiri() (在 uwsgidecorators 模块中)

 	has_hook() (在 uwsgi 模块中)

I

 	
 	i_am_the_spooler() (在 uwsgi 模块中)

 	in_farm() (在 uwsgi 模块中)

 	
 	is_connected() (在 uwsgi 模块中)

 	is_locked() (在 uwsgi 模块中)

L

 	
 	listen_queue() (在 uwsgi 模块中)

 	lock() (在 uwsgi 模块中)

 	(在 uwsgidecorators 模块中)

 	
 	log() (在 uwsgi 模块中)

 	log_this_request() (在 uwsgi 模块中)

 	logsize() (在 uwsgi 模块中)

M

 	
 	magic_table() (在 uwsgi 模块中)

 	master

 	masterpid() (在 uwsgi 模块中)

 	mem() (在 uwsgi 模块中)

 	
 	message_manager_marshal() (在 uwsgi 模块中)

 	mule_get_msg() (在 uwsgi 模块中)

 	mule_id() (在 uwsgi 模块中)

 	mule_msg() (在 uwsgi 模块中)

 	mulefunc() (在 uwsgidecorators 模块中)

N

 	
 	numproc() (在 uwsgi 模块中)

O

 	
 	opt() (在 uwsgi 模块中)

P

 	
 	parsefile() (在 uwsgi 模块中)

 	postfork() (在 uwsgidecorators 模块中)

 	
 	
 Python 提高建议

 	PEP 333

 	PEP 3333

Q

 	
 	queue_get() (在 uwsgi 模块中)

 	queue_last() (在 uwsgi 模块中)

 	queue_pop() (在 uwsgi 模块中)

 	queue_pull() (在 uwsgi 模块中)

 	
 	queue_pull_slot() (在 uwsgi 模块中)

 	queue_push() (在 uwsgi 模块中)

 	queue_set() (在 uwsgi 模块中)

 	queue_slot() (在 uwsgi 模块中)

R

 	
 	rbtimer() (在 uwsgidecorators 模块中)

 	ready() (在 uwsgi 模块中)

 	recv() (在 uwsgi 模块中)

 	recv_block() (在 uwsgi 模块中)

 	recv_frame() (在 uwsgi 模块中)

 	register_rpc() (在 uwsgi 模块中)

 	
 	register_signal() (在 uwsgi 模块中)

 	reload() (在 uwsgi 模块中)

 	request_id() (在 uwsgi 模块中)

 	route() (在 uwsgi 模块中)

 	rpc() (在 uwsgi 模块中)

 	(在 uwsgidecorators 模块中)

 	rpc_list() (在 uwsgi 模块中)

S

 	
 	send() (在 uwsgi 模块中)

 	send_message() (在 uwsgi 模块中)

 	send_multi_message() (在 uwsgi 模块中)

 	send_multicast_message() (在 uwsgi 模块中)

 	send_to_spooler() (在 uwsgi 模块中)

 	sendfile() (在 uwsgi 模块中)

 	set_logvar() (在 uwsgi 模块中)

 	set_option() (在 uwsgi 模块中)

 	set_spooler_frequency() (在 uwsgi 模块中)

 	set_user_harakiri() (在 uwsgi 模块中)

 	set_warning_message() (在 uwsgi 模块中)

 	setprocname() (在 uwsgi 模块中)

 	sharedarea_inclong() (在 uwsgi 模块中)

 	sharedarea_read() (在 uwsgi 模块中)

 	sharedarea_readbyte() (在 uwsgi 模块中)

 	sharedarea_readlong() (在 uwsgi 模块中)

 	sharedarea_write() (在 uwsgi 模块中)

 	sharedarea_writebyte() (在 uwsgi 模块中)

 	sharedarea_writelong() (在 uwsgi 模块中)

 	signal() (在 uwsgi 模块中)

 	(在 uwsgidecorators 模块中)

 	
 	signal_received() (在 uwsgi 模块中)

 	signal_registered() (在 uwsgi 模块中)

 	signal_wait() (在 uwsgi 模块中)

 	snmp_decr_counter32() (在 uwsgi 模块中)

 	snmp_decr_counter64() (在 uwsgi 模块中)

 	snmp_decr_gauge() (在 uwsgi 模块中)

 	snmp_incr_counter32() (在 uwsgi 模块中)

 	snmp_incr_counter64() (在 uwsgi 模块中)

 	snmp_incr_gauge() (在 uwsgi 模块中)

 	snmp_set_community() (在 uwsgi 模块中)

 	snmp_set_counter32() (在 uwsgi 模块中)

 	snmp_set_counter64() (在 uwsgi 模块中)

 	snmp_set_gauge() (在 uwsgi 模块中)

 	sorry_i_need_to_block() (在 uwsgi 模块中)

 	spool() (在 uwsgidecorators 模块中)

 	spooler_jobs() (在 uwsgi 模块中)

 	spooler_pid() (在 uwsgi 模块中)

 	spoolforever() (在 uwsgidecorators 模块中)

 	spoolraw() (在 uwsgidecorators 模块中)

 	started_on() (在 uwsgi 模块中)

 	stop() (在 uwsgi 模块中)

 	suspend() (在 uwsgi 模块中)

T

 	
 	thread() (在 uwsgidecorators 模块中)

 	
 	timer() (在 uwsgidecorators 模块中)

 	total_requests() (在 uwsgi 模块中)

U

 	
 	unlock() (在 uwsgi 模块中)

 	
 	uwsgi (模块)

 	uwsgidecorators (模块)

W

 	
 	wait_fd_read() (在 uwsgi 模块中)

 	wait_fd_write() (在 uwsgi 模块中)

 	
 	worker_id() (在 uwsgi 模块中)

 	workers() (在 uwsgi 模块中)

 The uWSGI queue framework

The uWSGI queue framework

In addition to the caching framework, uWSGI includes a shared queue.

At the low level it is a simple block-based shared array, with two optional counters, one for stack-style, LIFO usage, the other one for FIFO.

The array is circular, so when one of the two pointers reaches the end (or the beginning), it is reset. Remember this!

To enable the queue, use the queue option. Queue blocks are 8 KiB by default. Use queue-blocksize to change this.

100 slots, 8 KiB of data each
uwsgi --socket :3031 --queue 100
42 slots, 128 KiB of data each
uwsgi --socket :3031 --queue 42 --queue-blocksize 131072

Using the queue as a shared array

Put a binary string in slot 17.
uwsgi.queue_set(17, "Hello, uWSGI queue!")

Get it back.
print uwsgi.queue_get(17)

Using the queue as a shared stack

警告

Remember that uwsgi.queue_pop() and uwsgi.queue_last() will remove the item or items from the queue.

Push a value onto the end of the stack.
uwsgi.queue_push("Hello, uWSGI stack!")

Pop it back
print uwsgi.queue_pop()

Get the number of the next available slot in the stack
print uwsgi.queue_slot()

Pop the last N items from the stack
items = uwsgi.queue_last(3)

Using the queue as a FIFO queue

注解

Currently you can only pull, not push. To enqueue an item, use uwsgi.queue_set().

Grab an item from the queue
uwsgi.queue_pull()
Get the current pull/slot position (this is independent from the stack-based one)
print uwsgi.queue_pull_slot()

Notes

	You can get the queue size with uwsgi.queue_size.

	Use the queue-store option to persist the queue on disk. Use queue-store-sync (in master cycles – usually seconds) to force disk syncing of the queue.

	The tests/queue.py application is a fully working example.

 How uWSGI parses config files

How uWSGI parses config files

Until uWSGI 1.1 the parsing order has not been ‘stable’ or ‘reliable’.

Starting from uWSGI 1.1 (thanks to its new options subsystem) we have a general rule: top-bottom and expand asap.

Top-bottom means options are internally ordered as they are parsed, while “expand asap” means to inject the options of a requested config file, interrupting the currently parsed one:

Note that the inherit option behaves differently from the other include options: It is expanded after variable expansion, so any environment variables, external files and placeholders are not expanded. Magic variables (e.g. %n) are expanded normally.

file1.ini (the one requested from the command line)

[uwsgi]
socket = :3031
ini = file2.ini
socket = :3032
chdir = /var/www

file2.ini

[uwsgi]
master = true
memory-report = true
processes = 4

internally will be assembled in:

[uwsgi]
socket = :3031
ini = file2.ini
master = true
memory-report = true
processes = 4
socket = :3032
chdir = /var/www

A more complex example:

file1.ini (the one requested from the command line)

[uwsgi]
socket = :3031
ini = file2.ini
socket = :3032
chdir = /var/www

file2.ini

[uwsgi]
master = true
xml = file3.xml
memory-report = true
processes = 4

file3.xml

<uwsgi>
 <plugins>router_uwsgi</plugins>
 <route>^/foo uwsgi:127.0.0.1:4040,0,0</route>
</uwsgi>

will result in:

[uwsgi]
socket = :3031
ini = file2.ini
master = true
xml = file3.xml
plugins = router_uwsgi
route = ^/foo uwsgi:127.0.0.1:4040,0,0
memory-report = true
processes = 4
socket = :3032
chdir = /var/www

Expanding variables/placeholders

After the internal config tree is assembled, variables and placeholder substitution will be applied.

The first step is substituting all of the $(VALUE) occurrences with the value of the environment variable VALUE.

[uwsgi]
foobar = $(PATH)

foobar value will be the content of shell’s PATH variable

The second step will expand text files embraced in @(FILENAME)

[uwsgi]
nodename = @(/etc/hostname)

nodename value will be the content of /etc/hostname

The last step is placeholder substitution. A placeholder is a reference to another option:

[uwsgi]
socket = :3031
foobar = %(socket)

the content of foobar will be mapped to the content of socket.

A note on magic variables

Config files, support another form of variables, called ‘magic’ variables. As they refer to the config file itself, they will be parsed asap:

[uwsgi]
my_config_file = %p

The content of my_config_file will be set to %p value (the current file’s absolute path) as soon as it is parsed. That means %p (or whatever magic vars you need) will be always be consistent in the currently parsing config file.

 uWSGI internal routing

uWSGI internal routing

Updated to 1.9

As of uWSGI 1.9, a programmable internal routing subsystem is available (older
releases after 1.1 have a less featureful version). You can use the internal
routing subsystem to dynamically alter the way requests are handled. For
example you can use it to trigger a 301 redirect on specific URLs, or to serve
content from the cache on specific conditions. The internal routing subsystem
is inspired by Apache’s mod_rewrite and Linux’s iptables command.
Please, before blasting it for being messy, not-elegant nor Turing-complete,
remember that it must be FAST and only FAST. If you need elegance and more
complexity, do that in your code.

The routing chains

During the request cycle, various “chains” are traversed. Each chain contains a routing table (see below).

Chains can be “recursive”. A “recursive” chain can be called multiple times in a request cycle.

This is the order of chains:

request it is applied before the request is passed to the plugin

error it is applied as soon as an HTTP status code is generate (recursive chain)

response it is is applied after the last response header has been generated (just before sending the body)

final it is aplied after the response has been sent to the client

The request chain is (for convention) the ‘default’ one, so its options are not prefixed, while the others requires a prefix.

Example:

route-user-agent -> happens in the request chain

while

response-route-uri -> happens in the response chain

The internal routing table

The internal routing table is a sequence of ‘’rules’’ executed one after
another (forward jumps are allowed too). Each rule is composed by a
‘’subject’‘, a ‘’condition’’ and an ‘’action’’ The ‘’condition’’ is generally a
PCRE regexp applied to the subject, if it matches the action is triggered.
Subjects are request’s variables. Currently the following subjects are
supported:

	host (check HTTP_HOST)

	uri (check REQUEST_URI)

	qs (check QUERY_STRING)

	remote-addr (check REMOTE_ADDR)

	remote-user (check REMOTE_USER)

	referer (check HTTP_REFERER)

	user-agent (check HTTP_USER_AGENT)

	status (check HTTP response status code, not available in the request chain)

	default (default subject, maps to PATH_INFO)

In addition to this, a pluggable system of lower-level conditions is available.
You can access this system using the --route-if option. Currently the
following checks are supported:

	exists (check if the subject exists in the filesystem)

	isfile (check if the subject is a file)

	isdir (check if the subject is a directory)

	isexec (check if the subject is an executable file)

	equal/isequal/eq/== (check if the subject is equal to the specified pattern)

	ishigherequal/>=

	ishigher/>

	islower/<

	islowerequal/<=

	startswith (check if the subject starts with the specified pattern)

	endswith (check if the subject ends with the specified pattern)

	regexp/re (check if the subject matches the specified regexp)

	empty (check if the subject is empty)

	contains

When a check requires a pattern (like with ‘equal’ or ‘regexp’) you split it
from the subject with a semicolon:

; never matches
route-if = equal:FOO;BAR log:never here
; matches
route if = regexp:FOO;^F log:starts with F

Actions are the functions to run if a rule matches. This actions are exported
by plugins and have a return value.

Action return values

Each action has a return value which tells the routing engine what to do next.
The following return codes are supported:

	NEXT (continue to the next rule)

	CONTINUE (stop scanning the internal routing table and run the request)

	BREAK (stop scanning the internal routing table and close the request)

	GOTO x (go to rule x)

When a rule does not match, NEXT is assumed.

The first example

[uwsgi]
route-user-agent = .*curl.* redirect:http://uwsgi.it
route-remote-addr = ^127\.0\.0\.1$ break:403 Forbidden
route = ^/test log:someone called /test
route = \.php$ rewrite:/index.php
route = .* addheader:Server: my uWSGI server
route-host = ^localhost$ logvar:local=1
route-uri = ^/foo/(.*)\.jpg$ cache:key=$1.jpg
route-if = equal:${PATH_INFO};/bad break:500 Internal Server Error

The previous rules, build the following table:

	if the HTTP_USER_AGENT var contains ‘curl’ redirect the request to
http://uwsgi.it (code 302, action returns BREAK)

	if REMOTE_ADDR is ‘127.0.0.1’ returns a 403 Forbidden (action returns
BREAK)

	if PATH_INFO starts with /test print the string ‘someone called /test’ in
the logs (action returns NEXT)

	if PATH_INFO ends with ‘.php’ rewrite it to /index.php (action returns
NEXT)

	for all of the PATH_INFO add the HTTP header ‘Server: my uWSGI server’ to
the response (action returns NEXT)

	if HTTP_HOST is localhost add the logvar ‘local’ setting it to ‘1’

	if REQUEST_URI starts with /foo and ends with .jpg get it from the uWSGI
cache using the supplied key (built over regexp grouping) (action returns
BREAK)

	if the PATH_INFO is equal to /bad throws a 500 error

Accessing request vars

In addition to PCRE placeholders/groups (using $1 to $9) you can access request
variables (PATH_INFO, SCRIPT_NAME, REQUEST_METHOD...) using the ${VAR} syntax.

[uwsgi]
route-user-agent = .*curl.* redirect:http://uwsgi.it${REQUEST_URI}

Accessing cookies

You can access a cookie value using the ${cookie[name]} syntax:

[uwsgi]
route = ^/foo log:${cookie[foobar]}

this will log the content of the ‘foobar’ cookie of the current request

Accessing query string items

You can access the value of the HTTP query string using the ${qs[name]} syntax:

[uwsgi]
route = ^/foo log:${qs[foobar]}

this will log the content of the ‘foobar’ item of the current request’s query string

Pluggable routing variables

Both the cookie and qs vars, are so-called “routing vars”. They are pluggable,
so external plugins can add new vars to add new features to your application.
(Check the The GeoIP plugin plugin for an example of this.) A number of embedded
routing variables are also available.

	mime – returns the mime type of the specified var: ${mime[REQUEST_URI]}

[uwsgi]
route = ^/images/(.+) addvar:MYFILE=$1.jpg
route = ^/images/ addheader:Content-Type: ${mime[MYFILE]}

	time – returns time/date in various form. The only supported (for now) is time[unix] returning the epoch

	httptime – return http date adding the numeric argument (if specified)to the current time (use empty arg for current server time)

[uwsgi]
; add Date header
route-run = addheader:Date ${httptime[]}

	math – requires matheval support. Example: math[CONTENT_LENGTH+1]

	base64 – encode the specified var in base64

	hex – encode the specified var in hex

	uwsgi – return internal uWSGI information, uwsgi[wid], uwsgi[pid], uwsgi[uuid] and uwsgi[status] are currently supported

Is –route-if not enough? Why –route-uri and friends?

This is a good question. You just need to always remember that uWSGI is about
versatility and performance. Gaining cycles is always good. The
--route-if option, while versatile, cannot be optimized as all of its parts
have to be recomputed at every request. This is obviously very fast, but
--route-uri option (and friends) can be pre-optimized (during startup) to
directly map to the request memory areas, so if you can use them, you
definitely should. :)

GOTO

Yes, the most controversial construct of the whole information technology
industry (and history) is here. You can make forward (only forward!) jumps to
specific points of the internal routing table. You can set labels to mark
specific point of the table, or if you are brave (or foolish) jump directly to
a rule number. Rule numbers are printed on server startup, but please use
labels.

[uwsgi]

route-host = ^localhost$ goto:localhost
route-host = ^sid\.local$ goto:sid.local
route = .* last:

route-label = sid.local
route-user-agent = .*curl.* redirect:http://uwsgi.it
route-remote-addr = ^192\.168\..* break:403 Forbidden
route = ^/test log:someone called /test
route = \.php$ rewrite:/index.php
route = .* addheader:Server: my sid.local server
route = .* logvar:local=0
route-uri = ^/foo/(.*)\.jpg$ cache:key=$1.jpg
route = .* last:

route-label = localhost
route-user-agent = .*curl.* redirect:http://uwsgi.it
route-remote-addr = ^127\.0\.0\.1$ break:403 Forbidden
route = ^/test log:someone called /test
route = \.php$ rewrite:/index.php
route = .* addheader:Server: my uWSGI server
route = .* logvar:local=1
route-uri = ^/foo/(.*)\.jpg$ cache:key=$1.jpg
route = .* last:

The example is like the previous one, but we with some differences between
domains. Check the use of “last:”, to interrupt the routing table scan. You can
rewrite the first 2 rules as one:

[uwsgi]

route-host = (.*) goto:$1

Collecting response headers

As we have already seen, each uWSGI request has a set of variables associated. They are generally the CGI vars passed by the webserver, but you can
extend them with other variables too (check the ‘addvar’ action).

uWSGI 1.9.16 added a new feature allowing you to store the content of a response header in a request var. This simplify the write of more advanced rules.

For example you may want to gzip all of the text/html responses:

[uwsgi]
; store Content-Type response header in MY_CONTENT_TYPE var
collect-header = Content-Type MY_CONTENT_TYPE
; if response is text/html, and client supports it, gzip it
response-route-if = equal:${MY_CONTENT_TYPE};text/html goto:gzipme
response-route-run = last:

response-route-label = gzipme
; gzip only if the client support it
response-route-if = contains:${HTTP_ACCEPT_ENCODING};gzip gzip:

The available actions

continue/last

Return value: CONTINUE

Stop the scanning of the internal routing table and continue to the selected
request handler.

break

Return value: BREAK

Stop scanning the internal routing table and close the request. Can optionally
returns the specified HTTP status code:

[uwsgi]
route = ^/notfound break:404 Not Found
route = ^/bad break:
route = ^/error break:500

Note: break doesn’t support request variables because it’s intended to notify
browser about the error, not the end user. That said, we can tell following code
will send what it reads to browser (i.e. without ${REMOTE_ADDR} being
translated to the remote IP address).

[uwsgi]
route-remote-addr = ^127\.0\.0\.1$ break:403 Forbidden for ip ${REMOTE_ADDR}

If you really do want to do wacky stuff, see clearheaders.

return/break-with-status

Return value: BREAK

return uses uWSGI’s built-in status code and returns both status code and
message body. It’s similar to break but as mentioned above break
doesn’t have the error message body. return:403 is equivalent to following:

[uwsgi]
 route-run = clearheaders:403 Forbidden
 route-run = addheader:Content-Type: text/plain
 route-run = addheader:Content-Length: 9
 route-run = send:Forbidden
 route-run = break:

log

Return value: NEXT

Print the specified message in the logs.

[uwsgi]
route = ^/logme/(.) log:hey i am printing $1

logvar

Return value: NEXT

Add the specified logvar.

[uwsgi]
route = ^/logme/(.) logvar:item=$1

goto

Return value: NEXT

Make a forward jump to the specified label or rule position

addvar

Return value: NEXT

Add the specified CGI (environment) variable to the request.

[uwsgi]
route = ^/foo/(.) addvar:FOOVAR=prefix$1suffix

addheader

Return value: NEXT

Add the specified HTTP header to the response.

[uwsgi]
route = ^/foo/(.) addheader:Foo: Bar

delheader//remheader

Return value: NEXT

Remove the specified HTTP header from the response.

[uwsgi]
route = ^/foo/(.) delheader:Foo

signal

Return value: NEXT

Raise the specified uwsgi signal.

send

Return value: NEXT

Extremely advanced (and dangerous) function allowing you to add raw data to the
response.

[uwsgi]
route = ^/foo/(.) send:destroy the world

send-crnl

Return value: NEXT

Extremely advanced (and dangerous) function allowing you to add raw data to the
response, suffixed with rn.

[uwsgi]
route = ^/foo/(.) send-crnl:HTTP/1.0 100 Continue

redirect/redirect-302

Return value: BREAK

Plugin: router_redirect

Return a HTTP 302 Redirect to the specified URL.

redirect-permanent/redirect-301

Return value: BREAK

Plugin: router_redirect

Return a HTTP 301 Permanent Redirect to the specified URL.

rewrite

Return value: NEXT

Plugin: router_rewrite

A rewriting engine inspired by Apache mod_rewrite. Rebuild PATH_INFO and
QUERY_STRING according to the specified rules before the request is dispatched
to the request handler.

[uwsgi]
route-uri = ^/foo/(.*) rewrite:/index.php?page=$1.php

rewrite-last

Alias for rewrite but with a return value of CONTINUE, directly passing the
request to the request handler next.

uwsgi

Return value: BREAK

Plugin: router_uwsgi

Rewrite the modifier1, modifier2 and optionally UWSGI_APPID values of a
request or route the request to an external uwsgi server.

[uwsgi]
route = ^/psgi uwsgi:127.0.0.1:3031,5,0

This configuration routes all of the requests starting with /psgi to the
uwsgi server running on 127.0.0.1:3031 setting modifier1 to 5 and modifier2 to
0. If you only want to change the modifiers without routing the request to an
external server, use the following syntax.

[uwsgi]
route = ^/psgi uwsgi:,5,0

To set a specific UWSGI_APPID value, append it.

[uwsgi]
route = ^/psgi uwsgi:127.0.0.1:3031,5,0,fooapp

The subrequest is async-friendly (engines such as gevent or ugreen are
supported) and if offload threads are available they will be used.

http

Return value: BREAK

Plugin: router_http

Route the request to an external HTTP server.

[uwsgi]
route = ^/zope http:127.0.0.1:8181

You can substitute an alternative Host header with the following syntax:

[uwsgi]
route = ^/zope http:127.0.0.1:8181,myzope.uwsgi.it

static

Return value: BREAK

Plugin: router_static

Serve a static file from the specified physical path.

[uwsgi]
route = ^/logo static:/var/www/logo.png

basicauth

Return value: NEXT or BREAK 401 on failed authentication

Plugin: router_basicauth

Four syntaxes are supported.

	basicauth:realm,user:password – a simple user:password mapping

	basicauth:realm,user: – only authenticates username

	basicauth:realm,htpasswd – use a htpasswd-like file. All POSIX
crypt() algorithms are supported. This is _not_ the same behavior as
Apache’s traditional htpasswd files, so use the -d flag of the htpasswd
utility to create compatible files.

	basicauth:realm, – Useful to cause a HTTP 401 response immediately.
As routes are parsed top-bottom, you may want to raise that to avoid bypassing
rules.

Example:

[uwsgi]
route = ^/foo basicauth-next:My Realm,foo:bar
route = ^/foo basicauth:My Realm,foo2:bar2
route = ^/bar basicauth:Another Realm,kratos:

Example: using basicauth for Trac

[uwsgi]
; load plugins (if required)
plugins = python,router_basicauth

; bind to port 9090 using http protocol
http-socket = :9090

; set trac instance path
env = TRAC_ENV=myinstance
; load trac
module = trac.web.main:dispatch_request

; trigger authentication on /login
route = ^/login basicauth-next:Trac Realm,pippo:pluto
route = ^/login basicauth:Trac Realm,foo:bar

;high performance file serving
static-map = /chrome/common=/usr/local/lib/python2.7/dist-packages/trac/htdocs

basicauth-next

same as basicauth but returns NEXT on failed authentication.

ldapauth

Return value: NEXT or BREAK 401 on failed authentication

Plugin: ldap

This auth router is part of the LDAP plugin, so it has to be loaded in order
for this to be available. It’s like the basicauth router, but uses an LDAP
server for authentication, syntax: ldapauth:realm,options Available
options:

	url - LDAP server URI (required)

	binddn - DN used for binding. Required if the LDAP server does not allow
anonymous searches.

	bindpw - password for the binddn user.

	basedn - base DN used when searching for users (required)

	filter - filter used when searching for users (default is
“(objectClass=*)”)

	attr - LDAP attribute that holds user login (default is “uid”)

	loglevel - 0 - don’t log any binds, 1 - log authentication errors, 2 -
log both successful and failed binds

Example:

route = ^/protected ldapauth:LDAP auth realm,url=ldap://ldap.domain.com;basedn=ou=users,dc=domain;binddn=uid=proxy,ou=users,dc=domain;bindpw=password;loglevel=1;filter=(objectClass=posixAccount)

ldapauth-next

Same as ldapauth but returns NEXT on failed authentication.

cache

Return value: BREAK

Plugin: router_cache

cachestore/cache-store

cachevar

cacheset

memcached

rpc

The “rpc” routing instruction allows you to call uWSGI RPC functions directly
from the routing subsystem and forward their output to the client.

[uwsgi]
http-socket = :9090
route = ^/foo addheader:Content-Type: text/html
route = ^/foo rpc:hello ${REQUEST_URI} ${HTTP_USER_AGENT}
route = ^/bar/(.+)$ rpc:test $1 ${REMOTE_ADDR} uWSGI %V
route = ^/pippo/(.+)$ rpc:test@127.0.0.1:4141 $1 ${REMOTE_ADDR} uWSGI %V
import = funcs.py

call

Plugin: rpc

rpcret

Plugin: rpc

rpcret calls the specified rpc function and uses its return value as the
action return code (next, continue, goto, etc)

rpcblob//rpcnext

Plugin: rpc

rpcnext/rpcblob calls the specified RPC function, sends the response to the
client and continues to the next rule.

rpcraw

Plugin: rpc

rpcvar

Plugin: rpc

calls the specified rpc function and assigns its return value to the specified CGI environ variable

access

spnego

In development...

radius

In development...

xslt

参见

The XSLT plugin

ssi

参见

SSI (Server Side Includes) plugin

gridfs

参见

The GridFS plugin

donotlog

chdir

seturi

updates REQUEST_URI

setapp

setuser

sethome

setfile

setscriptname

setprocname

alarm

flush

fixcl

cgi

Plugin: cgi

cgihelper

Plugin: cgi

access

Plugin: router_access

cache-continue

Plugin: router_cache

cachevar

Plugin: router_cache

cacheinc

Plugin: router_cache

cachedec

Plugin: router_cache

cachemul

Plugin: router_cache

cachediv

Plugin: router_cache

proxyhttp

Plugin: router_http

memcached

Plugin: router_memcached

memcached-continue

Plugin: router_memcached

memcachedstore

Plugin: router_memcached

memcached-store

Plugin: router_memcached

redis

Plugin: router_redis

redis-continue

Plugin: router_redis

redisstore

Plugin: router_redis

redis-store

Plugin: router_redis

proxyuwsgi

Plugin: router_uwsgi

harakiri

Set harakiri for the current request.

file

Directly transfer the specified filename without using acceleration (sendfile, offloading, etc.).

[uwsgi]
http-socket = :9090
route-run = file:filename=/var/www/${PATH_INFO}

clearheaders

clear the response headers, setting a new HTTP status code, useful for resetting a response

[uwsgi]
http-socket = :9090
response-route = ^/foo goto:foobar
response-route-run = last:

response-route-label = foobar
response-route-run = clearheaders:404 Not Found
response-route-run = addheader:Content-Type: text/html

resetheaders

alias for clearheaders

 The uWSGI Signal Framework

The uWSGI Signal Framework

警告

Raw usage of uwsgi signals is for advanced users only. You should see uWSGI API - Python decorators for a more elegant abstraction.

注解

uWSGI Signals have _nothing_ in common with UNIX/Posix signals (if you are looking for those, Managing the uWSGI server is your page).

Over time, your uWSGI stack is growing, you add spoolers, more processes, more plugins, whatever. The more features you add the more you need all of these components to speak to each other.

Another important task for today’s rich/advanced web apps is to respond to different events. An event could be a file modification, a new cluster node popping up, another one (sadly) dying, a timer having elapsed... whatever you can imagine.

Communication and event management are all managed by the same subsystem – the uWSGI signal framework.

uWSGI signals are managed with sockets, so they are fully reliable. When you send an uWSGI signal, you can be sure that it will be delivered.

The Signals table

Signals are simple 1 byte messages that are routed by the master process to workers and spoolers.

When a worker receives a signal it searches the signals table for the corresponding handler to execute.

The signal table is shared by all workers (and protected against race conditions by a shared lock).

Every uWSGI process (mainly the master though) can write into it to set signal handlers and recipient processes.

警告

Always pay attention to who will run the signal handler. It must have access to the handler itself.
This means that if you define a new function in worker1 and register it as a signal handler, only worker1 can run it.
The best way to register signals is defining them in the master, so (thanks to fork()) all workers see them.

Defining signal handlers

To manage the signals table the uWSGI API exposes one simple function, uwsgi.register_signal().

These are two simple examples of defining signal table items, in Python and Lua.

import uwsgi

def hello_signal(num):
 print "i am the signal %d" % num

def hello_signal2(num):
 print "Hi, i am the signal %d" % num

define 2 signal table items (30 and 22)
uwsgi.register_signal(30, "worker", hello_signal)
uwsgi.register_signal(22, "workers", hello_signal2)

function hello_signal(sig)
 print("i am Lua, received signal " .. sig ..)
end

define a single signal table item (signal 1)
uwsgi.register_signal(1, "worker", hello_signal)

Raising signals

Signals may be raised using uwsgi.signal(). When you send a signal, it is copied into the master’s queue. The master will then check the signal table and dispatch the messages.

External events

The most useful feature of uWSGI signals is that they can be used to announce external events.

At the time of writing the available external events are

	filesystem modifications

	timers/rb_timers

	cron

Filesystem modifications

To map a specific file/directory modification event to a signal you can use uwsgi.add_file_monitor().

An example:

import uwsgi

def hello_file(num):
 print "/tmp has been modified !!!"

uwsgi.register_signal(17, "worker", hello_file)
uwsgi.add_file_monitor(17, "/tmp")

From now on, every time /tmp is modified, signal 17 will be raised and hello_file will be run by the first available worker.

Timers

Timers are another useful feature in web programming – for instance to clear sessions and shopping carts and what-have-you.

Timers are implemented using kernel facilities (most notably kqueue on BSD systems and timerfd() on modern Linux kernels). uWSGI also contains support for rb_timers, timers implemented in user space using red-black trees.

To register a timer, use uwsgi.add_timer(). To register an rb_timer, use uwsgi.add_rb_timer().

import uwsgi

def hello_timer(num):
 print "2 seconds elapsed, signal %d raised" % num

def oneshot_timer(num):
 print "40 seconds elapsed, signal %d raised. You will never see me again." % num

uwsgi.register_signal(26, "worker", hello_timer)
uwsgi.register_signal(30, "", oneshot_timer)

uwsgi.add_timer(26, 2) # never-ending timer every 2 seconds
uwsgi.add_timer(30, 40, 1) # one shot timer after 40 seconds

Signal 26 will be raised every 2 seconds and handled by the first available worker.
Signal 30 will be raised after 40 seconds and executed only once.

signal_wait and signal_received

Unregistered signals (those without an handler associated) will be routed to the first available worker to use the uwsgi.signal_wait() function.

uwsgi.signal_wait()
signum = uwsgi.signal_received()

You can combine external events (file monitors, timers...) with this technique to implement event-based apps. A good example is a chat server where every core waits for text sent by users.

You can also wait for specific (even registered) signals by passing a signal number to signal_wait.

Todo

	Signal table entry cannot be removed (this will be fixed soon)

	Iterations works only with rb_timers

	uwsgi.signal_wait() does not work in async mode (will be fixed)

	Cluster nodes popup/die signals are still not implemented.

	Bonjour/avahi/MDNS event will be implemented in 0.9.9

	PostgreSQL notifications will be implemented in 0.9.9

	Add iterations to file monitoring (to allow one-shot event as timers)

 The uWSGI build system

The uWSGI build system

	This is updated to 1.9.13

This page describes how the uWSGI build system works and how it can be customized

uwsgiconfig.py

This is the python script aimed at calling the various compile/link stage.

During 2009, when uWSGI guidelines (and mantra) started to be defined, people agreed that autotools, cmake and friends
was not loved by a lot of sysadmins. Albeit they are pretty standardized, the amount of packages needed and the incompatibility
between them (expecially in the autotools world) was a problem for a project with fast development/evolution where “compile from sources” was, is and very probably will be the best way
to get the best from the product. In addition to this the build procedure MUST BE fast (less than 1 minute on entry level x86 is the main rule)

For such a reason, to compile uWSGI you only need to have a c compiler suite (gcc, clang...) and a python interpreter. Someone could argue that perl
could have been a better choice, and maybe it is the truth (it is generally installed by default in lot of operating systems), but we decided to stay with python mainly
because when uWSGI started it was a python-only application. (Obviously if you want to develop an alternative build system you are free to do it)

The uwsgiconfig.py basically detects the available features in the system and builds a uwsgi binary (and eventually its plugins) using the
so called ‘build profile’

build profiles

First example

CC and CPP

These 2 environment variables tell uwsgiconfig.py to use an alternative C compiler and C preprocessor.

If they are not defined the procedure is the following:

For CC -> try to get the CC config_var from the python binary running uwsgiconfig.py, fallback to ‘gcc’

For CPP -> fallback to ‘cpp’

As an example, on a system with both gcc and clang you will end with

CC=clang CPP=clang-cpp python uwsgiconfig.py --build

CPUCOUNT

In the spirit of “easy and fast build even on production systems”, uwsgiconfig.py tries to use all of your cpu cores spawning multiple
instances of the c compiler (one per-core).

You can override this system using the CPUCOUNT environment variable, forcing the number of detected cpu cores (setting to 1 will disable parallel build).

CPUCOUNT=2 python uwsgiconfig.py --build

UWSGI_FORCE_REBUILD

Plugins and uwsgiplugin.py

A uWSGI plugin is a shared library exporting the <name>_plugin symbol. Where <name> is the name of the plugin.

As an example the psgi plugin will export the psgi_plugin symbol as well as pypy will export he pypy_plugin symbol and so on.

This symbol is a uwsgi_plugin C struct defining the hooks of the plugin.

When you ask uWSGI to load a plugin it simply calls dlopen() and get the uwsgi_plugin struct via dlsym().

The vast majority of the uWSGI project is developed as a plugin, this ensure a modular approach to configuration and an obviously saner development style.

The sysadmin is free to embed each plugin in the server binary or to build each plugin as an external shared library.

Embedded plugins are defined in the ‘embedded_plugins’ directive of the build profile. You can add more embedded plugins
from command line using the UWSGI_EMBED_PLUGINS environment variable (see below).

Instead, if you want to build a plugin as a shared library just run uwsgiconfig.py with the –plugin option

python uwsgiconfig.py --plugin plugins/psgi

this will build the plugin in plugins/psgi to the psgi_plugin.so file

To specify a build profile when you build a plugin, you can pass the profile as an additional argument

python uwsgiconfig.py --plugin plugins/psgi mybuildprofile

UWSGI_INCLUDES

	this has been added in 1.9.13

On startup, the CPP binary is run to detect default include paths. You can add more paths using the UWSGI_INCLUDES environment variable

UWSGI_INCLUDES=/usr/local/include,/opt/dev/include python uwsgiconfig.py --build

UWSGI_EMBED_PLUGINS

UWSGI_EMBED_CONFIG

Allows embedding the specified .ini file in the server binary (currently Linux only)

On startup the server parses the embedded file as soon as possible.

Custom options defined in the embedded config will be available as standard ones.

UWSGI_BIN_NAME

CFLAGS and LDFLAGS

UWSGICONFIG_* for plugins

libuwsgi.so

uwsgibuild.log

uwsgibuild.lastcflags

cflags and uwsgi.h magic

embedding files

The fake make

 The uWSGI offloading subsystem

The uWSGI offloading subsystem

Offloading is a way to optimize tiny tasks, delegating them to one or more threads.

These threads run such tasks in a non-blocking/evented way allowing for a huge amount of concurrency.

Various components of the uWSGI stack are offload-friendly, and the long-term target is to allow
application code to abuse them.

To start the offloading subsystem just add –offload-threads <n>, where <n> is the number of threads (per-worker) to spawn.
They are native threads, they are lock-free (no shared resources), thundering-herd free (requests to the system
are made in round-robin) and they are the best way to abuse your CPU cores.

The number of offloaded requests is accounted in the “offloaded_requests” metric of the stats subsystem.

Offloading static files

The first offload-aware component is the static file serving system.

When offload threads are available, the whole transfer of the file is delegated to one of those threads, freeing your worker
suddenly (so it will be ready to accept new requests)

Example:

[uwsgi]
socket = :3031
check-static = /var/www
offload-threads = 4

Offloading internal routing

The router_uwsgi and router_http plugins are offload-friendly.

You can route requests to external uwsgi/HTTP servers without being worried about having a blocked worker during
the response generation.

Example:

[uwsgi]
socket = :3031
offload-threads = 8
route = ^/foo http:127.0.0.1:8080
route = ^/bar http:127.0.0.1:8181
route = ^/node http:127.0.0.1:9090

Since 1.9.11 the cache router is offload friendly too.

[uwsgi]
socket = :3031
offload-threads = 8
route-run = cache:key=${REQUEST_URI}

As soon as the object is retrieved from the cache, it will be transferred in one of the offload threads.

The Future

The offloading subsystem has a great potential, you can think of it as a software DMA: you program it, and then it goes alone.

Currently it is pretty monolithic, but the idea is to allow more complex plugins (a redis one is in the works).

Next step is allowing the user to “program” it via the uwsgi api.

 Configuring uWSGI

Configuring uWSGI

uWSGI can be configured using several different methods. All configuration methods may be mixed and matched in the same invocation of uWSGI.

注解

Some of the configuration methods may require a specific plugin (ie. sqlite and ldap).

参见

Configuration logic

The configuration system is unified, so each command line option maps 1:1 with entries in the config files.

Example:

uwsgi --http-socket :9090 --psgi myapp.pl

can be written as

[uwsgi]
http-socket = :9090
psgi = myapp.pl

Loading configuration files

uWSGI supports loading configuration files over several methods other than simple disk files:

uwsgi --ini http://uwsgi.it/configs/myapp.ini # HTTP
uwsgi --xml - # standard input
uwsgi --yaml fd://0 # file descriptor
uwsgi --json 'exec://nc 192.168.11.2:33000' # arbitrary executable

注解

More esoteric file sources, such as the Emperor, embedded
configuration (in two flavors), dynamic library symbols and ELF sections
could also be used.

Magic variables

uWSGI configuration files can include “magic” variables, prefixed with a
percent sign. Currently the following magic variables (you can access them in
Python via uwsgi.magic_table) are defined.

	%v
	the vassals directory (pwd)

	%V
	the uWSGI version

	%h
	the hostname

	%o
	the original config filename, as specified on the command line

	%O
	same as %o but refer to the first non-template config file
(version 1.9.18)

	%p
	the absolute path of the configuration file

	%P
	same as %p but refer to the first non-template config file
(version 1.9.18)

	%s
	the filename of the configuration file

	%S
	same as %s but refer to the first non-template config file
(version 1.9.18)

	%d
	the absolute path of the directory containing the configuration file

	%D
	same as %d but refer to the first non-template config file
(version 1.9.18)

	%e
	the extension of the configuration file

	%E
	same as %e but refer to the first non-template config file
(version 1.9.18)

	%n
	the filename without extension

	%N
	same as %n but refer to the first non-template config file
(version 1.9.18)

	%c
	the name of the directory containing the config file (version 1.3+)

	%C
	same as %c but refer to the first non-template config file
(version 1.9.18)

	%t
	unix time (in seconds, gathered at instance startup) (version 1.9.20-dev+)

	%T
	unix time (in microseconds, gathered at instance startup) (version 1.9.20-dev+)

	%x
	the current section identifier, eg. config.ini:section (version 1.9-dev+)

	%X
	same as %x but refer to the first non-template config file
(version 1.9.18)

	%i
	inode number of the file (version 2.0.1)

	%I
	same as %i but refer to the first non-template config file

	%0..%9
	a specific component of the full path of the directory containing the config file (version 1.3+)

	%[
	ANSI escape “\033” (useful for printing colors)

	%k
	detected cpu cores (version 1.9.20-dev+)

	%u
	uid of the user running the process (version 2.0)

	%U
	username (if available, otherwise fallback to uid) of the user running the process (version 2.0)

	%g
	gid of the user running the process (version 2.0)

	%G
	group name (if available, otherwise fallback to gid) of the user running the process (version 2.0)

	%j
	HEX representation of the djb33x hash of the full config path

	%J
	same as %j but refer to the first non-template config file

Note that most of these refer to the file they appear in, even if that
file is included from another file.

An exception are most of the uppercase versions, which refer to the
first non-template config file loaded. This means the first config file
not loaded through --include or --inherit, but through for
example --ini, --yaml or --config. These are intended to use
with the emperor, to refer to the actual vassal config file instead of
templates included with --vassals-include or --vassals-inherit.

For example, here’s funnyapp.ini.

[uwsgi]
socket = /tmp/%n.sock
module = werkzeug.testapp:test_app
processes = 4
master = 1

%n will be replaced with the name of the config file, sans extension, so the result in this case will be

[uwsgi]
socket = /tmp/funnyapp.sock
module = werkzeug.testapp:test_app
processes = 4
master = 1

Placeholders

Placeholders are custom magic variables defined during configuration time by
setting a new configuration variable of your own devising.

[uwsgi]
; These are placeholders...
my_funny_domain = uwsgi.it
set-ph = max_customer_address_space=64
set-placeholder = customers_base_dir=/var/www
; And these aren't.
socket = /tmp/sockets/%(my_funny_domain).sock
chdir = %(customers_base_dir)/%(my_funny_domain)
limit-as = %(max_customer_address_space)

Placeholders can be assigned directly, or using the set-placeholder
/ set-ph option. These latter options can be useful to:

	Make it more explicit that you’re setting placeholders instead of
regular options.

	Set options on the commandline, since unknown options like
--foo=bar are rejected but --set-placeholder foo=bar is ok.

	Set placeholders when strict mode is enabled.

Placeholders are accessible, like any uWSGI option, in your application code
via uwsgi.opt.

import uwsgi
print uwsgi.opt['customers_base_dir']

This feature can be (ab)used to reduce the number of configuration files
required by your application.

Similarly, contents of evironment variables and external text files can
be included using the $(ENV_VAR) and @(file_name) syntax. See also
How uWSGI parses config files.

Placeholders math (from uWSGI 1.9.20-dev)

You can apply math formulas to placeholders using this special syntax:

[uwsgi]
foo = 17
bar = 30
; total will be 50
total = %(foo + bar + 3)

Remember to not miss spaces between operations.

Operations are executed in a pipeline (not in common math style):

[uwsgi]
foo = 17
bar = 30
total = %(foo + bar + 3 * 2)

‘total’ will be evaluated as 100:

(((foo + bar) + 3) * 2)

Incremental and decremental shortcuts are available

[uwsgi]
foo = 29
; remember the space !!!
bar = %(foo ++)

bar will be 30

If you do not specify an operation between two items, ‘string concatenation’ is assumed:

[uwsgi]
foo = 2
bar = 9
; remember the space !!!
bar = %(foo bar ++)

the first two items will be evaluated as ‘29’ (not 11 as no math operation has been specified)

The ‘@’ magic

We have already seen we can use the form @(filename) to include the contents of a file

[uwsgi]
foo = @(/tmp/foobar)

the truth is that ‘@’ can read from all of the supported uwsgi schemes

[uwsgi]
; read from a symbol
foo = @(sym://uwsgi_funny_function)
; read from binary appended data
bar = @(data://0)
; read from http
test = @(http://example.com/hello)
; read from a file descriptor
content = @(fd://3)
; read from a process stdout
body = @(exec://foo.pl)
; call a function returning a char *
characters = @(call://uwsgi_func)

Command line arguments

Example:

uwsgi --socket /tmp/uwsgi.sock --socket 127.0.0.1:8000 --master --workers 3

Environment variables

When passed as environment variables, options are capitalized and prefixed with
UWSGI_, and dashes are substituted with underscores.

注解

Several values for the same configuration variable are not supported with
this method.

Example:

UWSGI_SOCKET=127.0.0.1 UWSGI_MASTER=1 UWSGI_WORKERS=3 uwsgi

INI files

.INI files are a standard de-facto configuration format used by many
applications. It consists of [section]s and key=value pairs.

An example uWSGI INI configuration:

[uwsgi]
socket = /tmp/uwsgi.sock
socket = 127.0.0.1:8000
workers = 3
master = true

By default, uWSGI uses the [uwsgi] section, but you can specify another
section name while loading the INI file with the syntax filename:section,
that is:

uwsgi --ini myconf.ini:app1

Alternatively, you can load another section from the same file by
omitting the filename and specifying just the section name. Note that
technically, this loads the named section from the last .ini file loaded
instead of the current one, so be careful when including other files.

[uwsgi]
This will load the app1 section below
ini = :app1
This will load the defaults.ini file
ini = defaults.ini
This will load the app2 section from the defaults.ini file!
ini = :app2

[app1]
plugin = rack

[app2]
plugin = php

	Whitespace is insignificant within lines.

	Lines starting with a semicolon (;) or a hash/octothorpe (#) are ignored as comments.

	Boolean values may be set without the value part. Simply master is thus equivalent to master=true. This may not be compatible with other INI parsers such as paste.deploy.

	For convenience, uWSGI recognizes bare .ini arguments specially, so the invocation uwsgi myconf.ini is equal to uwsgi --ini myconf.ini.

XML files

The root node should be <uwsgi> and option values text nodes.

An example:

<uwsgi>
 <socket>/tmp/uwsgi.sock</socket>
 <socket>127.0.0.1:8000</socket>
 <master/>
 <workers>3</workers>
</uwsgi>

You can also have multiple <uwsgi> stanzas in your file, marked with
different id attributes. To choose the stanza to use, specify its id after
the filename in the xml option, using a colon as a separator. When using
this id mode, the root node of the file may be anything you like. This will
allow you to embed uwsgi configuration nodes in other XML files.

<i-love-xml>
 <uwsgi id="turbogears"><socket>/tmp/tg.sock</socket></uwsgi>
 <uwsgi id="django"><socket>/tmp/django.sock</socket></uwsgi>
</i-love-xml>

	Boolean values may be set without a text value.

	For convenience, uWSGI recognizes bare .xml arguments specially, so the invocation uwsgi myconf.xml is equal to uwsgi --xml myconf.xml.

JSON files

The JSON file should represent an object with one key-value pair, the key being
“uwsgi” and the value an object of configuration variables. Native JSON
lists, booleans and numbers are supported.

An example:

{"uwsgi": {
 "socket": ["/tmp/uwsgi.sock", "127.0.0.1:8000"],
 "master": true,
 "workers": 3
}}

Again, a named section can be loaded using a colon after the filename.

{"app1": {
 "plugin": "rack"
}, "app2": {
 "plugin": "php"
}}

And then load this using:

uwsgi --json myconf.json:app2

注解

The Jansson [http://www.digip.org/jansson/] library is required during uWSGI build time to enable JSON
support. By default the presence of the library will be auto-detected and
JSON support will be automatically enabled, but you can force JSON support
to be enabled or disabled by editing your build configuration.

参见

Installing uWSGI

YAML files

The root element should be uwsgi. Boolean options may be set as true or 1.

An example:

uwsgi:
 socket: /tmp/uwsgi.sock
 socket: 127.0.0.1:8000
 master: 1
 workers: 3

Again, a named section can be loaded using a colon after the filename.

app1:
 plugin: rack
app2:
 plugin: php

And then load this using:

uwsgi --yaml myconf.yaml:app2

SQLite configuration

注解

Under construction.

LDAP configuration

LDAP is a flexible way to centralize configuration of large clusters of uWSGI
servers. Configuring it is a complex topic. See Configuring uWSGI with LDAP for more
information.

 Supported languages and platforms

Supported languages and platforms

	Technology
	Available since
	Notes
	Status

	Python
	0.9.1
	The first available plugin, supports WSGI (PEP 333 [https://www.python.org/dev/peps/pep-0333], PEP 3333 [https://www.python.org/dev/peps/pep-3333]),
Web3 (from version 0.9.7-dev) and Pump (from 0.9.8.4). Works with
Virtualenv, multiple Python interpreters, Python3 and
has unique features like Aliasing Python modules,
DynamicVirtualenv and uGreen – uWSGI Green Threads. A module exporting handy
decorators for the uWSGI API is available in
the source distribution. PyPy is supported since 1.3. The
Python Tracebacker was added in 1.3.
	Stable, 100% uWSGI API support

	Lua
	0.9.5
	Supports LuaWSAPI, coroutines and threads
	Stable, 60% uWSGI API support

	Perl
	0.9.5
	uWSGI Perl support (PSGI) (PSGI) support. Multiple interpreters, threading and async
modes supported
	Stable, 60% uWSGI API support

	Ruby
	0.9.7-dev
	Ruby support support. A loop engine for Ruby 1.9
fibers is available as well as a handy DSL
module.
	Stable, 80% uWSGI API support

	Integrating uWSGI with Erlang
	0.9.5
	Allows message exchanging between uWSGI and Erlang nodes.
	Stable, no uWSGI API support

	Running CGI scripts on uWSGI
	1.0-dev
	Run CGI scripts
	Stable, no uWSGI API support

	Running PHP scripts in uWSGI
	1.0-dev
	Run PHP scripts
	Stable from 1.1, 5% uWSGI API support

	uWSGI Go support (1.4 only)
	1.4-dev
	Allows integration with the Go language
	15% uWSGI API support

	JVM in the uWSGI server (updated to 1.9)
	1.9-dev
	Allows integration between uWSGI and the Java Virtual Machine
JWSGI and Clojure/Ring handlers are available.
	Stable

	The Mono ASP.NET plugin
	0.9.7-dev
	Allows integration between uWSGI and Mono, and execution of ASP.NET
applications.
	Stable

	uWSGI V8 support
	1.9.4
	Allows integration between uWSGI and the V8 JavaScript engine.
	Early stage of development

 Defining new options for your instances

Defining new options for your instances

Sometimes the built-in options are not enough. For example, you may need to
give your customers custom options for configuring their apps on your platform.
Or you need to configure so many instances you want to simplify things such as
per-datacenter or per-server-type options. Declaring new options for your
config files/command-line is a good way of achieving these goals.

To define new options use --declare-option:

--declare-option <option_name>=<option1=value1>[;<option2=value2>;<option3=value3>...]

An useful example could be defining a “redirect” option, using the redirect
plugin of the InternalRouting subsystem:

--declare-option "redirect=route=\$1 redirect:\$2"

This will declare a new option called redirect that takes 2 arguments.
Those arguments will be expanded using the $-prefixed variables. Like shell
scripts, the backslash is required to make your shell not expand these
values.

Now you will be able to define a redirect in your config files:

uwsgi --declare-option "redirect=route=\$1 redirect:\$2" --ini config.ini

Config.ini:

[uwsgi]
socket = :3031
; define my redirects
redirect = ^/foo http://unbit.it
redirect = \.jpg$ http://uwsgi.it/test
redirect = ^/foo/bar/ /test

or directly on the command line:

uwsgi --declare-option "redirect=route=\$1 redirect:\$2" --socket :3031 --redirect "^/foo http://unbit.it" --redirect "\.jpg$ http://uwsgi.it/test" --redirect "^/foo/bar/ /test"

More fun: a bunch of shortcuts

Now we will define new options for frequently-used apps.

Shortcuts.ini:

[uwsgi]
; let's define a shortcut for trac (new syntax: trac=<path_to_trac_instance>)
declare-option = trac=plugin=python;env=TRAC_ENV=$1;module=trac.web.main:dispach_request
; one for web2py (new syntax: web2py=<path_to_web2_py_dir>)
declare-option = web2py=plugin=python;chdir=$1;module=wsgihandler
; another for flask (new syntax: flask=<path_to_your_app_entry_point>)
declare-option = flask=plugin=python;wsgi-file=$1;callable=app

To hook up a Trac instance on /var/www/trac/fooenv:

[uwsgi]
; include new shortcuts
ini = shortcuts.ini

; classic options
http = :8080
master = true
threads = 4

; our new option
trac = /var/www/trac/fooenv

A config for Web2py, in XML:

<uwsgi>
 <!-- import shortcuts -->
 <ini>shortcuts.ini</ini>
 <!-- run the https router with HIGH ciphers -->
 <https>:443,test.crt,test.key,HIGH</https>

 <master/>
 <processes>4</processes>

 <!-- load web2py from /var/www/we2py -->
 <web2py>/var/www/we2py</web2py>
</uwsgi>

A trick for the Emperor: automatically import shortcuts for your vassals

If you manage your customers/users with the Emperor, you can
configure it to automatically import your shortcuts in each vassal.

uwsgi --emperor /etc/uwsgi/vassals --vassals-include /etc/uwsgi/shortcuts.ini

For multiple shortcuts use:

uwsgi --emperor /etc/uwsgi/vassals --vassals-include /etc/uwsgi/shortcuts.ini --vassals-include /etc/uwsgi/shortcuts2.ini --vassals-include /etc/uwsgi/shortcuts3.ini

Or (with a bit of configuration logic magic):

[uwsgi]
emperor = /etc/uwsgi/vassals

for = shortcuts shortcuts2 shortcuts3
 vassals-include = /etc/uwsgi/%(_).ini
endfor =

An advanced trick: embedding shortcuts in your uWSGI binary

uWSGI’s build system allows you to embed files, be they generic files or
configuration, in the server binary. Abusing this feature will enable you to
embed your new option shortcuts into the server binary, automagically allowing
users to use them. To embed your shortcuts file, edit your build profile (like
buildconf/base.ini) and set embed_config to the path of the
shortcuts file. Rebuild your server and your new options will be available.

参见

BuildConf

 Web server integration

Web server integration

uWSGI supports several methods of integrating with web servers. It is also capable of serving HTTP requests by itself.

Cherokee

参见

Cherokee support

The Cherokee webserver officially supports uWSGI.
Cherokee is fast and lightweight, has a beautiful admin interface and a great community.
Their support for uWSGI has been awesome since the beginning and we recommend its use in most situations.
The userbase of the Cherokee uWSGI handler is probably the biggest of all. The Cherokee uWSGI handler is commercially supported by Unbit.

Nginx

参见

Nginx support

The uWSGI module is included in the official Nginx distribution since version 0.8.40. A version supporting Nginx 0.7.x is maintained in the uWSGI package.

This is a stable handler commercially supported by Unbit.

Apache

参见

Apache support

The Apache2 mod_uwsgi module was the first web server integration module developed for uWSGI.
It is stable but could be better integrated with the Apache API.

It is commercially supported by Unbit.

Since uWSGI 0.9.6-dev a second Apache2 module called mod_Ruwsgi is included. It’s more Apache API friendly. mod_Ruwsgi is not commercially supported by Unbit.

During the 1.2 development cycle, another module called mod_proxy_uwsgi has been added. In the near future this should be the best choice for Apache based deployments.

Mongrel2

参见

Attaching uWSGI to Mongrel2

Support for the Mongrel2 Project [http://mongrel2.org/] has been available since 0.9.8-dev via the ZeroMQ protocol plugin.

In our tests Mongrel2 survived practically all of the loads we sent.

Very good and solid project. Try it :)

Lighttpd

This module is the latest developed, but its inclusion in the official Lighttpd distribution has been rejected, as the main author considers the uwsgi protocol a “reinventing the wheel” technology while suggesting a FastCGI approach. We respect this position. The module will continue to reside in the uWSGI source tree, but it is currently unmaintained.

There is currently no commercial support for this handler. We consider this module “experimental”.

Twisted

This is a “commodity” handler, useful mainly for testing applications without installing a full web server. If you want to develop an uWSGI server, look at this module. Twisted.

Tomcat

The included servlet can be used to forward requests from Tomcat to the uWSGI server.
It is stable, but currently lacks documentation.

There is currently no commercial support for this handler.

CGI

The CGI handlers are for “lazy” installations. Their use in production environments is discouraged.

 Upgrading your 1.x uWSGI instances to 2.0 (work in progress)

Upgrading your 1.x uWSGI instances to 2.0 (work in progress)

The following notes are for users moving from 1.0, 1.2 and 1.4 to uWSGI 2.0.

Users of the 1.9 tree can skip this document as 2.0 is a “stabilized/freezed” 1.9.

What’s new

License change

uWSGI is now GPL2 + linking exception instead of plain GPL2.

This should address some legal issues with users compiling uWSGI as a library (libuwsgi.so) and loading non-GPL compatible plugins/libraries.

Non-blocking by default

All of the I/O of the uWSGI stack (from the core to the plugins) is now fully non-blocking.

No area in the whole stack is allowed to block (except your app obviously), and plugins must use uWSGI’s I/O API.

When you load loop engines like gevent or Coro::AnyEvent, the uWSGI internals are patched to support their specific non-blocking hooks.

What does this mean for app developers?

Well, the most important aspect is that network congestions or kernel problems do not block your instances and badly behaving peers
are closed if they do not unblock in the socket-timeout interval (default 4 seconds).

Newer, faster and better parsers

uWSGI 2.0 has support for pluggable protocols. The following protocols are supported and all of them have been updated
for better performance:

	uwsgi – the classic uwsgi parser, improved for reduced syscall usage

	http – the classic HTTP parser, improved for reduced syscall usage (supports the PROXY1 protocol)

	https – (new) support for native HTTPS

	fastcgi – classic FastCGI parser, improved for reduced syscall usage

	scgi – (new) support for SCGI

	suwsgi – (new) secured uwsgi, uwsgi over SSL (supported by Nginx 1.5)

	puwsgi – (new) persistent uwsgi, uwsgi with persistent connections, supported only internally

	mongrel2 – classic zeromq/mongrel2 support, now it is exposed as a plugin

	raw – (new) fake parser, allows you to write applications directly working on file descriptors

New reloading ways

uWSGI 2.0 introduces a blast of new ways for reloading instances.

参见

TheArtOfGracefulReloading

Other new features

	The Master FIFO – A signal-free new approach for managing your instances.

	The uWSGI caching framework & The uWSGI Caching Cookbook – The new generation caching subsystem.

	SharedArea – share memory pages between uWSGI components – The new sharedarea.

	SNI - Server Name Identification (virtual hosting for SSL nodes)

	The uWSGI Legion subsystem

	WebSocket support

	Hooks

	uWSGI Transformations

	Jailing your apps using Linux Namespaces

	FreeBSD Jails

	The Metrics subsystem

	Setting up Graphite on Ubuntu using the Metrics subsystem

	uWSGI RPC Stack – now supports 64-bit length responses

New plugin build system

It is pretty fun (and easy) to write uWSGI plugins, but (funnily enough) the worst aspect was building them, as dealing with build profiles, cflags, ldflags and friends tend to lead to all sorts of bugs and crashes.

A simplified (and saner) build system for external plugins has been added. Now you only need to call the uwsgi binary you want to build the plugin for:

uwsgi --build-plugin <plugin>

where <plugin> is the directory where the plugin sources (and the uwsgiplugin.py file) are stored.

参见

uWSGI third party plugins

Strict mode

while having the freedom of defining custom options in uWSGI config files is a handy features, sometimes typos will
bring you lot of headaches.

Adding –strict to your instance options will instruct uWSGI config parser to raise an error when not-available options have been specified.

If you are in trouble and want to be sure you did not have written wrong options, add –strict and retry

Cygwin support

Yes, you can now build and run uWSGI on Windows systems :(

kFreeBSD support

PyPy support

JVM support

Mono support

V8 support

Upgrading Notes

	Snapshotting mode is no longer available. Check the new graceful reloading ways for better approaches.

	Mongrel2 support is no longer a built-in. you have to build the ‘mongrel2’ plugin to pair uWSGI with Mongrel2.

	LDAP and Sqlite support has been moved to two plugins, you need to load them for using their features.

	Dynamic options are no more.

	The ‘admin’ plugin is gone.

	Probes have been removed, the alarm framework presents better ways to monitor services.

	The shared area API changed dramatically, check the new sharedarea docs.

 The Fork Server (sponsored by Intellisurvey)

The Fork Server (sponsored by Intellisurvey)

This is a really advanced (and complex) feature developed with sponsorship from Intellisurvey.com.

If you have dozens or even hundreds of applications built upon the same codebase you can setup your Emperor to fork vassals
from an already running one (with the application core loaded).

Currently the feature is supported only in the PSGI plugin, and requires Linux kernel >= 3.4.

How it works

When in fork-server mode, the Emperor differentiates between two kind of vassals: base vassals and adopted vassals.

“base” vassals are pretty much classic vassals; generated by fork() + execve() by the Emperor.
The only difference is that they are supposed to load as much of your application code as possible as soon as possible, then suspend themselves waiting for connections on a UNIX socket.

A “base” vassal will be something like this

[uwsgi]
; load myapp.pl as soon as possible
early-psgi = myapp.pl
; suspend and execution and bind on UNIX socket /tmp/fork_server.socket
fork-server = /tmp/fork_server.socket

“Adopted” vassals are the true “new thing”.

Once an adopted vassal is requested, the Emperor connects to the specified fork server (instead of calling fork() + execve() itself).

The Emperor passes an uwsgi-serialized array of command line options of the new vassal and up to 3 file descriptors (since UNIX sockets allow passing file descriptors from one process to another).

Those 3 file descriptors are:

	1 -> the communication pipe with the Emperor (required)

	2 -> the config pipe (optional)

	3 -> on_demand socket (optional)

At this point, the fork server fork()s itself twice and continues the uWSGI startup using the supplied arguments array.

How can the Emperor wait() on an external process, then?

This is why a >= 3.4 kernel is required, as thanks to the prctl(PR_SET_CHILD_SUBREAPER, 1) call we can tell
vassals to be re-parented to the Emperor when their parent dies (in fact the fork-server forks two times, so the vassal has no live parent, poor thing).

Now the Emperor has a new child and a communication pipe. And that’s all.

Configuring the Emperor for fork-server mode

You need only two new options: --emperor-use-fork-serve <addr> and --vassal-fork-base <name>

Let’s start with a slow-loading (10 seconds) Perl app:

myapp.pl
print "I am the App\n";
sleep(10);
my $app = sub {
 return [200, ['Content-Type'=>'text/html'], ["Hello World"]];
};

Save it as myapp.pl and load it in perlbase.ini vassal file (this is a base vassal):

[uwsgi]
early-psgi = myapp.pl
fork-server = /var/run/fork_server.socket

Now create two vassals (one.ini and two.ini) that will fork() from the base one:

[uwsgi]
; one.ini
http-socket = :8181
processes = 4
uid = 1001
gid = 1001

[uwsgi]
; one.ini
http-socket = :8282
processes = 8
uid = 1002
gid = 1002

As you can see they are pretty different, even in privileges.

Now let’s spawn the Emperor in fork-server mode allowing perlbase.ini as a “base” vassal:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-use-fork-server = /var/run/fork_server.socket
vassal-fork-base = perlbase.ini
emperor-stats = 127.0.0.1:5000

The Emperor will start running perlbase.ini as a standard vassal, while for the non-base ones it will fork() from the base, where the app is already loaded.

You will note that instead waiting for 10 seconds, your new vassals will start immediately. Pretty cool, huh?

 Hooks

Hooks

(updated to uWSGI 1.9.16)

uWSGI’s main directive is being “modular”. The vast majority of its features are exposed as plugins, both to allow users to optimize
their build and to encourage developers to extend it.

Writing plugins can be an annoying task, especially if you only need to change/implement a single function.

For simple tasks, uWSGI exposes an hook API you can abuse to modify uWSGI’s internal behaviors.

The “hookable” uWSGI phases

Before being ready to manage requests, uWSGI goes through various “phases”. You can attach one or more “hooks” to these phases.

Each phase can be “fatal”, if so, a failing hook will mean failing of the whole uWSGI instance (generally calling exit(1)).

Currently (September 2013) the following phases are available:

	asap run directly after configuration file has been parsed, before anything else is done. it is fatal.

	pre-jail run before any attempt to drop privileges or put the process in some form of jail. it is fatal.

	post-jail run soon after any jailing, but before privileges drop. If jailing requires fork(), the parent process run this phase. it is fatal.

	in-jail run soon after jayling, but after post-jail. If jailing requires fork(), the chidlren run this phase. it is fatal.

	as-root run soon before privileges drop (last chance to run something as root). it is fatal.

	as-user run soon after privileges drop. it is fatal.

	pre-app run before applications loading. it is fatal.

	post-app run after applications loading. it is fatal.

	accepting run before the each worker starts accepting requests (available from uWSGI 1.9.21).

	accepting1 run before the first worker starts accepting requests (available from uWSGI 1.9.21).

	accepting-once run before the each worker starts accepting requests (available from uWSGI 1.9.21, runs one time per instance).

	accepting1-once run before the first worker starts accepting requests (available from uWSGI 1.9.21, runs one time per instance).

	as-user-atexit run before shutdown of the instance. it is non-fatal.

	as-emperor run soon after the spawn of a vassal in the Emperor process. it is non-fatal.

	as-vassal run in the vassal before executing the uwsgi binary. it is fatal.

The “hardcoded” hooks

As said before, the purpose of the hook subsystem is to allow attaching “hooks” to the various uWSGI phases.

There are two kind of hooks. The simple ones are the so-called “hardcoded” ones. They expose common patterns at the cost of versatility.

Currently (September 2013) the following “hardcoded” hooks are available (they run in the order they are shown below):

mount – mount filesystems

Arguments: <filesystem> <src> <mountpoint> [flags]

The exposed flags are the ones available for the operating system. As an example on Linux you will options like bind, recursive, readonly etc.

umount – unmount filesystems

Arguments: <mountpoint> [flags]

exec run shell commands

Arguments: <command> [args...]

Run the command under /bin/sh.

If for some reason you do not want to use /bin/sh as the running shell, you can override it with the --binsh option. You can specify multiple --binsh options – they will be tried until one valid shell is found.

call call functions in the current process address space

Arguments: <symbol> [args...]

Generally the arguments are ignored (the only exceptions are the emperor/vassal phases, see below) as the system expects to call the symbol without arguments.

<symbol> can be any symbol currently available in the process’s address space.

This allows some interesting tricks when combined with the --dlopen uWSGI option:

// foo.c
#include <stdio.h>
void foo_hello() {
 printf("I am the foo_hello function called by a hook!\n");
}

Build this as a shared library:

gcc -o foo.so -shared -fPIC foo.c

and load it into the uWSGI symbol table.

uwsgi --dlopen ./foo.so ...

From now on, the “foo_hello” symbol is available in the uWSGI symbol table, ready to be called by the ‘call’ hooks.

警告

As –dlopen is a wrapper for the dlopen() function, beware of absolute paths and library search paths. If you do not want headaches, use always absolute paths when dealing with shared libraries.

Attaching “hardcoded” hooks

Each hardcoded hook exposes a set of options for each phase (with some exceptions).

Each option is composed by the name of the hook and its phase, so to run a command in the as-root phase you will use --exec-as-root, or --exec-as-user for the as-user phase.

Remember, you can attach all of the hooks you need to a hook-phase pair.

[uwsgi]
...
exec-as-root = cat /proc/cpuinfo
exec-as-root = echo 1 > /proc/sys/net/ipv4/ip_forward

exec-as-user = ls /tmp
exec-as-user-at-exit = rm /tmp/foobar

dlopen = ./foo.so
call-as-user = foo_hello
...

The only exception to the rule are the as-emperor and as-vassal phases. For various reasons they expose a bunch of handy variants – see below.

The “advanced” hooks

A problem that limits their versatility (a big no-no in the uWSGI state of mind) with hardcoded hooks, is that you cannot control the order of the whole chain (as each phase executes each hooks grouped by type). If you want more control, “advanced” hooks are the best choice.

Each phase has a single chain in which you specify the hook the call and which handler.

Handlers specify how to run hooks. New handlers can be registered by plugins.

Currently the handlers exposed by the core are:

	exec - same as the ‘exec’ hardcoded options

	call - call the specified symbol ignoring return value

	callret - call the specified symbol expecting an int return. anything != 0 means failure

	callint - call the specified symbol parsing the argument as an int

	callintret - call the specified symbol parsing the argument as an int and expecting an int return.

	mount - same as ‘mount’ hardcoded options

	umount - same as ‘umount’ hardcoded options

	cd - convenience handler, same as call:chdir <directory>

	exit - convenience handler, same as callint:exit [num]

	print - convenience handler, same as calling the uwsgi_log symbol

	write - (from uWSGI 1.9.21), write a string to the specified file using write:<file> <string>

	writefifo - (from uWSGI 1.9.21), write a string to the specified FIFO using writefifo:<file> <string>

	unlink - (from uWSGI 1.9.21), unlink the specified file

[uwsgi]
...
hook-as-root = mount:proc none /proc
hook-as-root = exec:cat /proc/self/mounts
hook-pre-app = callint:putenv PATH=bin:$(PATH)
hook-post-app = call:uwsgi_log application has been loaded
hook-as-user-atexit = print:goodbye cruel world
...

 The uwsgi Protocol

The uwsgi Protocol

The uwsgi (lowercase!) protocol is the native protocol used by the uWSGI server.

It is a binary protocol that can carry any type of data. The first 4 bytes of a uwsgi packet describe the type of the data contained by the packet.

Every uwsgi request generates a response in the uwsgi format.

Even the web server handlers obey this rule, as an HTTP response is a valid uwsgi packet (look at the modifier1 = 72).

The protocol works mainly via TCP but the master process can bind to a UDP Unicast/Multicast for The embedded SNMP server or cluster management/messaging requests.

SCTP support is being worked on.

uwsgi packet header

struct uwsgi_packet_header {
 uint8_t modifier1;
 uint16_t datasize;
 uint8_t modifier2;
};

Unless otherwise specified the datasize value contains the size (16-bit little endian) of the packet body.

Packet descriptions

	modifier1
	datasize
	modifier2
	packet type

	0
	size of WSGI block vars (HTTP request body excluded)
	0
	Standard WSGI request followed by the HTTP request body

	1
	reserved for UNBIT
	
	

	2
	reserved for UNBIT
	
	

	3
	reserved for UNBIT
	
	

	5
	size of PSGI block vars (HTTP request body excluded)
	0
	Standard PSGI request followed by the HTTP request body

	6
	size of LUA WSAPI block vars (HTTP request body excluded)
	0
	Standard LUA/WSAPI request followed by the HTTP request body

	7
	size of RACK block vars (HTTP request body excluded)
	0
	Standard RACK request followed by the HTTP request body

	8
	size of JWSGI/Ring block vars (HTTP request body excluded)
	0
	Standard JVM request for The JWSGI interface and The Clojure/Ring JVM request handler followed by the HTTP request body

	9
	size of CGI block vars (HTTP request body excluded)
	0
	Standard Running CGI scripts on uWSGI request followed by the HTTP request body

	10
	size of block vars
	0- 255
	Management interface request: setup flag specified by modifier2. For a list of management flag look at ManagementFlag

	14
	size of CGI block vars (HTTP request body excluded)
	0
	Standard Running PHP scripts in uWSGI request followed by the HTTP request body

	15
	size of Mono ASP.NET block vars (HTTP request body excluded)
	0
	Standard The Mono ASP.NET plugin request followed by the HTTP request body

	17
	size of Spooler block vars
	0- 255
	The uWSGI Spooler request, the block vars is converted to a dictionary/hash/table and passed to the spooler callable. The second modifier is currently ignored.

	18
	size of CGI block vars
	0-255
	direct call to c-like symbols

	22
	size of code string
	0- 255
	Raw Code evaluation. The interpreter is choosen by the modifier2. 0 is Python, 5 is Perl.
It does not return a valid uwsgi response, but a raw string (that may be an HTTP response)

	23
	size of CGI vars
	0- 255
	invoke the The XSLT plugin

	24
	size of CGI vars
	0- 255
	invoke the uWSGI V8 support

	25
	size of CGI vars
	0- 255
	invoke the The GridFS plugin

	26
	size of CGI vars
	0- 255
	invoke the The GlusterFS plugin

	27
	0
	0- 255
	call the FastFuncs specified by the modifier2 field

	28
	0
	0- 255
	invoke the The RADOS plugin

	30
	size of WSGI block vars (HTTP request body excluded)
	0 (if defined the size of the block vars is 24bit le, for now none of the webserver handlers support this feature)
	Standard WSGI request followed by the HTTP request body. The PATH_INFO is automatically modified, removing the SCRIPT_NAME from it

	31
	size of block vars
	0- 255
	Generic message passing (reserved)

	32
	size of char array
	0- 255
	array of char passing (reserved)

	33
	size of marshal object
	0- 255
	marshalled/serialzed object passing (reserved)

	48
	snmp specific
	snmp specific
	identify a SNMP request/response (mainly via UDP)

	72
	chr(TT)
	chr(P)
	Corresponds to the ‘HTTP’ string and signals that this is a raw HTTP response.

	73
	announce message size (for sanity check)
	announce type (0 = hostname)
	announce message

	74
	multicast message size (for sanity check)
	0
	array of chars; a custom multicast message managed by uwsgi.multicast_manager

	95
	cluster membership dict size
	action
	add/remove/enable/disable node from a cluster. Action may be 0 = add, 1 = remove, 2 = enable, 3 = disable. Add action requires a dict of at least 3 keys: hostname, address and workers

	96
	log message size
	0
	Remote logging (clustering/multicast/unicast)

	97
	0
	0, 1
	brutal reload request (0 request - 1 confirmation)

	98
	0
	0, 1
	graceful reload request (0 request - 1 confirmation)

	99
	size of options dictionary (if response)
	0, 1
	request configuration data from a uwsgi node (even via multicast)

	100
	0
	0, 1
	PING- PONG if modifier2 is 0 it is a PING request otherwise it is a PONG (a response). Useful for cluster health- check

	101
	size of packet
	0
	ECHO service

	109
	size of clean payload
	0 to 255
	legion msg (UDP, the body is encrypted)

	110
	size of payload
	0 to 255
	uwsgi_signal framework (payload is optional), modifier2 is the signal num

	111
	size of packet
	0, 1, 2, 3
	Cache operations. 0: read, 1: write, 2: delete, 3: dict_based

	123
	size of packet
	
	

	special modifier for signaling corerouters about special conditions

	173
	size of packet
	0, 1
	RPC. The packet is an uwsgi array where the first item is the name of the function and the following are the args (if modifier2 is 1 the RPC will be ‘raw’ and all of the response will be returned to the app, uwsgi header included, if available.

	200
	0
	0
	Close mark for persistent connections

	224
	size of packet
	0
	Subscription packet. see SubscriptionServer

	255
	0
	0- 255
	Generic response. Request dependent. For example a spooler response set 0 for a failed spool or 1 for a successful one

The uwsgi vars

The uwsgi block vars represent a dictionary/hash. Every key-value is encoded in this way:

struct uwsgi_var {
 uint16_t key_size;
 uint8_t key[key_size];
 uint16_t val_size;
 uint8_t val[val_size];
}

 Configuration logic

Configuration logic

Starting from 1.1 certain logic constructs are available.

The following statements are currently supported:

	for .. endfor

	if-dir / if-not-dir

	if-env / if-not-env

	if-exists / if-not-exists

	if-file / if-not-file

	if-opt / if-not-opt

	if-reload / if-not-reload – undocumented

Each of these statements exports a context value you can access with the
special placeholder %(_). For example, the “for” statement sets %(_) to
the current iterated value.

警告

Recursive logic is not supported and will cause uWSGI to promptly exit.

for

For iterates over space-separated strings. The following three code blocks are equivalent.

[uwsgi]
master = true
; iterate over a list of ports
for = 3031 3032 3033 3034 3035
socket = 127.0.0.1:%(_)
endfor =
module = helloworld

<uwsgi>
 <master/>
 <for>3031 3032 3033 3034 3035</for>
 <socket>127.0.0.1:%(_)</socket>
 <endfor/>
 <module>helloworld</module>
</uwsgi>

uwsgi --for="3031 3032 3033 3034 3035" --socket="127.0.0.1:%(_)" --endfor --module helloworld

Note that the for-loop is applied to each line inside the block
separately, not to the block as a whole. For example, this:

[uwsgi]
for = a b c
socket = /var/run/%(_).socket
http-socket = /var/run/%(_)-http.socket
endfor =

is expanded to:

[uwsgi]
socket = /var/run/a.socket
socket = /var/run/b.socket
socket = /var/run/c.socket
http-socket = /var/run/a-http.socket
http-socket = /var/run/b-http.socket
http-socket = /var/run/c-http.socket

if-env

Check if an environment variable is defined, putting its value in the context
placeholder.

[uwsgi]
if-env = PATH
print = Your path is %(_)
check-static = /var/www
endif =
socket = :3031

if-exists

Check for the existence of a file or directory. The context placeholder is set
to the filename found.

[uwsgi]
http = :9090
; redirect all requests if a file exists
if-exists = /tmp/maintainance.txt
route = .* redirect:/offline
endif =

注解

The above example uses uWSGI internal routing.

if-file

Check if the given path exists and is a regular file. The context placeholder
is set to the filename found.

<uwsgi>
 <plugins>python</plugins>
 <http-socket>:8080</http-socket>
 <if-file>settings.py</if-file>
 <module>django.core.handlers.wsgi:WSGIHandler()</module>
 <endif/>
</uwsgi>

if-dir

Check if the given path exists and is a directory. The context placeholder is
set to the filename found.

uwsgi:
 socket: 4040
 processes: 2
 if-dir: config.ru
 rack: %(_)
 endif:

if-opt

Check if the given option is set, or has a given value. The context
placeholder is set to the value of the option reference.

To check if an option was set, pass just the option name to if-opt.

uwsgi:
 cheaper: 3
 if-opt: cheaper
 print: Running in cheaper mode, with initially %(_) processes
 endif:

To check if an option was set to a specific value, pass
option-name=value to if-opt.

uwsgi:
 # Set busyness parameters if it was chosen
 if-opt: cheaper-algo=busyness
 cheaper-busyness-max: 25
 cheaper-busyness-min: 10
 endif:

Due to the way uWSGI parses its configs, you can only refer to options
that uWSGI has previously seen. In particular, this means:

	Only options that are set above the if-opt option are taken into
account. This includes any options set by previous include (or
type specific includes like ini) options, but does not include
options set by previous inherit options).

	if-opt is processed after expanding magic variables, but before
expanding placeholders and other variables. So if you use if-opt
to compare the value of an option, check against the value as stated
in the config file, with only the magic variables filled in.

If you use the context placeholder %(_) inside the if-opt
block, you should be ok: any placeholders will later be expanded.

	If an option is specified multiple times, only the value of the first
one will be seen by if-opt.

	Only explicitly set values will be seen, not implicit defaults.

参见

How uWSGI parses config files

 Fallback configuration

Fallback configuration

(available from 1.9.15-dev)

If you need a “reset to factory defaults”, or “show a welcome page if the user has made mess with its config” scenario, fallback configuration
is your silver bullet

Simple case

A very common problem is screwing-up the port on which the instance is listening.

To emulate this kind of error we try to bind on port 80 as an unprivileged user:

uwsgi --uid 1000 --http-socket :80

uWSGI will exit with:

bind(): Permission denied [core/socket.c line 755]

Internally (from the kernel point of view) the instance exited with status 1

Now we want to allow the instance to automatically bind on port 8080 when the user supplied config fails.

Let’s define a fallback config (you can save it as safe.ini):

[uwsgi]
print = Hello i am the fallback config !!!
http-socket = :8080
wsgi-file = welcomeapp.wsgi

Now we can re-run the (broken) instance:

uwsgi --fallback-config safe.ini --uid 1000 --http-socket :80

Your error will be now something like:

bind(): Permission denied [core/socket.c line 755]
Thu Jul 25 21:55:39 2013 - !!! /home/roberto/uwsgi/uwsgi (pid: 7409) exited with status 1 !!!
Thu Jul 25 21:55:39 2013 - !!! Fallback config to safe.ini !!!
[uWSGI] getting INI configuration from safe.ini
*** Starting uWSGI 1.9.15-dev-a0cb71c (64bit) on [Thu Jul 25 21:55:39 2013] ***
...

As you can see, the instance has detected the exit code 1 and has binary patched itself with a new config (without changing the pid, or calling fork())

Broken apps

Another common problem is the inability to load an application, but instead of bringing down the whole site we want to load
an alternate application:

uwsgi --fallback-config safe.ini --need-app --http-socket :8080 --wsgi-file brokenapp.py

Here the key is –need-app. It will call exit(1) if the instance has not been able to load at least one application.

Multiple fallback levels

Your fallback config file can specify a fallback-config directive too, allowing multiple fallback levels. BEWARE OF LOOPS!!!

How it works

The objective is catching the exit code of a process before the process itself is destroyed (we do not want to call another fork(), or destroy already opened file descriptors)

uWSGI makes heavy usage of atexit() hooks, so we only need to register the fallback handler as the first one (hooks are executed in reverse order).

In addition to this we need to get the exit code in our atexit() hook, something is not supported by default (the on_exit() function is now deprecated).

The solution is “patching” exit(x) with uwsgi_exit(x) that is a simple wrapper setting uwsgi.last_exit_code memory pointer.

Now the hook only needs to check for uwsgi.last_exit_code == 1 and eventually execve() the binary again passing the fallback config to it

char *argv[3];
argv[0] = uwsgi.binary_path;
argv[1] = uwsgi.fallback_config;
argv[2] = NULL;
execvp(uwsgi.binary_path, argv);

Notes

Try to place –fallback-config as soon as possibile in your config tree. The various config parsers may fail (calling exit(1)) before the fallback file is registered

 Installing uWSGI

Installing uWSGI

Installing from a distribution package

参见

See the Getting uWSGI page for a list of known distributions
shipping uWSGI.

Installing from source

To build uWSGI you need Python and a C compiler (gcc and clang are
supported). Depending on the languages you wish to support you will need their
development headers. On a Debian/Ubuntu system you can install them (and the
rest of the infrastructure required to build software) with:

apt-get install build-essential python

And if you want to build a binary with python/wsgi support (as an example)

apt-get install python-dev

On a Fedora/Redhat system you can install them with:

yum groupinstall "Development Tools"
yum install python

For python/wsgi support:

yum install python-devel

If you have a variant of make available in your system you can simply run
make. If you do not have make (or want to have more control) simply run:

python uwsgiconfig.py --build

You can also use pip to install uWSGI (it will build a binary with python support).

Install the latest stable release:
pip install uwsgi
... or if you want to install the latest LTS (long term support) release,
pip install http://projects.unbit.it/downloads/uwsgi-lts.tar.gz

Or you can use ruby gems (it will build a binary with ruby/rack support).

Install the latest stable release:
gem install uwsgi

At the end of the build, you will get a report of the enabled features. If
something you require is missing, just add the development headers and rerun
the build. For example to build uWSGI with ssl and perl regexp support you
need libssl-dev and pcre headers.

Alternative build profiles

For historical reasons when you run ‘make’, uWSGI is built with Python as the
only supported language. You can build customized uWSGI servers using build
profiles, located in the buildconf/ directory. You can use a specific
profile with:

python uwsgiconfig --build <profile>

Or you can pass it via an environment variable:

UWSGI_PROFILE=lua make
... or even ...
UWSGI_PROFILE=gevent pip install uwsgi

Modular builds

This is the approach your distribution should follow, and this is the approach
you MUST follow if you want to build a commercial service over uWSGI (see
below). The vast majority of uWSGI features are available as plugins. Plugins
can be loaded using the –plugin option. If you want to give users the maximum
amount of flexibility allowing them to use only the minimal amount of
resources, just create a modular build. A build profile named “core” is
available.

python uwsgiconfig.py --build core

This will build a uWSGi binary without plugins. This is called the “server
core”. Now you can start building all of the plugins you need. Check the
plugins/ directory in the source distribution for a full list.

python uwsgiconfig.py --plugin plugins/psgi core
python uwsgiconfig.py --plugin plugins/rack core
python uwsgiconfig.py --plugin plugins/python core
python uwsgiconfig.py --plugin plugins/lua core
python uwsgiconfig.py --plugin plugins/corerouter core
python uwsgiconfig.py --plugin plugins/http core
...

Remember to always pass the build profile (‘core’ in this case) as the third
argument.

 The uWSGI alarm subsystem (from 1.3)

The uWSGI alarm subsystem (from 1.3)

As of 1.3, uWSGI includes an alarm system. This subsystem allows the
developer/sysadmin to ‘announce’ special conditions of an app via various
channels. For example, you may want to get notified via Jabber/XMPP of a full
listen queue, or a harakiri condition. The alarm subsystem is based on
two components: an event monitor and an event action.

An event monitor is something waiting for a specific condition (like an event on a file descriptor or a specific log message).

As soon as the condition is true an action (like sending an email) is triggered.

Embedded event monitors

Event monitors can be added via plugins, the uWSGI core includes the following:

	log-alarm triggers an alarm when a specific regexp matches a log line

	alarm-fd triggers an alarm when the specified file descriptor is ready (which is pretty low-level and the basis of most of the alarm plugins)

	alarm-backlog triggers an alarm when the socket backlog queue is full

	alarm-segfault (since 1.9.9) triggers an alarm when uWSGI segfaults.

	alarm-cheap Use main alarm thread rather than creating dedicated threads for each curl-based alarm

Defining an alarm

You can define an unlimited number of alarms. Each alarm has a unique name.

Currently the following alarm actions are available in the main distribution:

'cmd' - run a command passing the log line to the stdin
'signal' - generate an uWSGI signal
'mule' - send the log line to a mule
'curl' - pass the log line to a curl url (http,https and smtp are supported)
'xmpp' - send the log line via XMPP/jabber

To define an alarm, use the option --alarm.

--alarm "<name> <plugin>:<opts>"

Remember to quote ONLY when you are defining alarms on the command line.

[uwsgi]
alarm = mailme cmd:mail -s 'uWSGI alarm' -a 'From: foobar@example.com' admin@example.com
alarm = cachefull signal:17

Here we define two alarms: mailme and cachefull. The first one invokes
the mail binary to send the log line to a mail address; the second one
generates an uWSGI signal. We now need to add rules to trigger alarms:

[uwsgi]
alarm = mailme cmd:mail -s 'uWSGI alarm' -a 'From: foobar@example.com' admin@example.com
alarm = cachefull signal:17
log-alarm = cachefull,mailme uWSGI listen queue of socket
log-alarm = mailme HARAKIRI ON WORKER

The syntax of log-alarm is

--log-alarm "<name> <regexp>"

In our previous example we defined two conditions using regexps applied to log
lines. The first one will trigger both alarms when the listen queue is full,
while the second will only invoke ‘mailme’ when a worker commits harakiri.

Damnit, this... this is the rawest thing I’ve seen...

You may be right. But if you throw away your “being a cool programmer with a
lot of friends and zero money” book for a moment, you will realize just how
many things you can do with such a simple system. Want an example?

[uwsgi]
alarm = jabber xmpp:foobar@jabber.xxx;mysecretpassword;admin@jabber.xxx,admin2@jabber.xxx
log-alarm = jabber ^TERRIBLE ALARM

Now in your app you only need to add

print "TERRIBLE ALARM! The world exploded!!!"

to send a Jabber message to admin@jabber.xxx and admin2@jabber.xxx
without adding any significant overhead to your app (as alarms are triggered by
one or more threads in the master process, without bothering workers).

How about another example?

Check this Rack middleware:

class UploadCheck
 def initialize(app)
 @app = app
 end

 def call(env)
 if env['REQUEST_METHOD'] == 'POST' and env['PATH_INFO'] == '/upload'
 puts "TERRIBLE ALARM! An upload has been made!"
 end
 @app.call(env)
 end
end

Protecting from bad rules

Such a versatile system could be open to a lot of ugly bugs, mainly infinite
loops. Thus, try to build your regexps carefully. The embedded anti-loop
subsystem should protect against loglines wrongly generated by alarm plugin.
This system is not perfect so please double-check your regexps.

If you are building a plugin, be sure to prepend your log messages with the
‘[uwsgi-alarm’ string. These lines will be skipped and directly passed to the
log subsystem. A convenience API function is available: uwsgi_log_alarm().

How does log-alarm work?

Enabling log-alarm automatically puts the uWSGI instance in log-master
mode, delegating log writes to the master. The alarm subsystem is executed by
the master just before passing the log line to the log plugin. Blocking alarm
plugins should run in a thread (like the curl and xmpp one), while the simple
ones (like signal and cmd) may run directly in the master.

Available plugins and their syntax

cmd

Run a shell command, passing the log line to its stdin:

cmd:<command>

signal

Raise an uWSGI signal.

signal:[signum]

参见

The uWSGI Signal Framework

mule

Send the log line to a mule waiting for messages.

mule:[mule_id]

参见

uWSGI Mules

curl

Send the log line to a cURL-able URL. This alarm plugin is not compiled in by default, so if you need to build it just run:

python uwsgiconfig.py --plugin plugins/alarm_curl

curl:<url>[;opt1=val1;opt2=val2]

url is any standard cURL URL, while the options currently exposed are

	“auth_pass”

	“auth_user”

	“conn_timeout”

	“mail_from”

	“mail_to”

	“method”

	“ssl”

	“subject”

	“timeout”

	“url”

	“ssl_insecure”

So, for sending mail via SMTP AUTH:

[uwsgi]
plugins = alarm_curl
alarm = test curl:smtp://mail.example.com;mail_to=admin@example.com;mail_from=uwsgi@example.com;auth_user=uwsgi;auth_pass=secret;subject=alarm from uWSGI !!!

Or we can use Gmail to send alarms:

[uwsgi]
plugins = alarm_curl
alarm = gmail curl:smtps://smtp.gmail.com;mail_to=admin@example.com;auth_user=uwsgi@gmail.com;auth_pass=secret;subject=alarm from uWSGI !!!

Or to PUT the log line to an HTTP server protected with basic authentication:

[uwsgi]
plugins = alarm_curl
alarm = test2 curl:http://192.168.173.6:9191/argh;auth_user=topogigio;auth_pass=foobar

Or to POST the log line to an HTTPS server with self-generated SSL certificate.

[uwsgi]
plugins = alarm_curl
alarm = test3 curl:https://192.168.173.6/argh;method=POST;ssl_insecure=true

xmpp

Probably the most interesting one of the built-in bunch. You need the libgloox package to build the XMPP alarm plugin (on Debian/Ubuntu, apt-get install gloox-dev).

python uwsgiconfig.py --plugin plugins/alarm_xmpp

xmpp:<jid>;<password>;<recipients>

You can set multiple recipients using ‘,’ as delimiter.

[uwsgi]
plugins = alarm_xmpp
alarm = jabber xmpp:app@example.it;secret1;foo1@foo.it,foo2@foo.it

An even more interesting thing still about the XMPP plugin is that you will see the Jabber account of your app going down when your app dies. :-)

Some XMPP servers (most notably the OSX Server one) requires you to bind to a resource. You can do thus by appending /resource to the JID.

[uwsgi]
plugins = alarm_xmpp
alarm = jabber xmpp:max@server.local/uWSGI;secret1;foo1@foo.it,foo2@foo.it

speech

A toy plugin for OSX, used mainly for showing off Objective-C integration with uWSGI.
It simply uses the OSX speech synthesizer to ‘announce’ the alarm.

python uwsgiconfig.py --plugin plugins/alarm_speech

[uwsgi]
plugins = alarm_speech
http-socket = :8080
alarm = say speech:
log-alarm = say .*

Turn on your speakers, run uWSGI and start listening...

airbrake

Starting with 1.9.9 uWSGI includes the --alarm-segfault option to raise an
alarm when uWSGI segfaults.

The airbrake plugin can be used to send segfault backtraces to airbrake
compatible servers. Like Airbrake itself and its open source clone errbit
(https://github.com/errbit/errbit), Airbrake support is experimental and it
might not fully work in all cases.

plugins = airbrake
alarm = errbit airbrake:http://errbit.domain.com/notifier_api/v2/notices;apikey=APIKEY;subject=uWSGI segfault
alarm-segfault = errbit

Note that alarm-segfault does not require the Airbrake plugin. A backtrace can just as well be sent using any other alarm plugin.

 Things to know (best practices and “issues”) READ IT !!!

Things to know (best practices and “issues”) READ IT !!!

	The http and http-socket options are entirely different beasts.
The first one spawns an additional process forwarding requests to a series of workers (think about it as a form of shield, at the same level of apache or nginx), while the second one sets workers to natively speak the http protocol.
TL/DR: if you plan to expose uWSGI directly to the public, use –http, if you want to proxy it behind a webserver speaking http with backends, use –http-socket.
.. seealso:: Native HTTP support

	Til uWSGI 2.1, by default, sending the SIGTERM signal to uWSGI means “brutally reload the stack” while the convention is to shut an application down on SIGTERM. To shutdown uWSGI use SIGINT or SIGQUIT instead.
If you absolutely can not live with uWSGI being so disrespectful towards SIGTERM, by all means enable the die-on-term option. Fortunately, this bad choice has been fixed in uWSGI 2.1

	If you plan to host multiple applications do yourself a favor and check the The uWSGI Emperor – multi-app deployment docs.

	Always use uwsgitop, through The uWSGI Stats Server or something similar to monitor your apps’ health.

	uWSGI can include features in the core or as loadable plugins. uWSGI packages supplied with OS distributions tend to be modular. In such setups, be sure to load the plugins you require with the plugins option. A good symptom to recognize an unloaded plugin is messages like “Unavailable modifier requested” in your logs. If you are using distribution supplied packages, double check that you have installed the plugin for your language of choice.

	Config files support a limited form of inheritance, variables, if constructs and simple cycles. Check the Configuration logic and How uWSGI parses config files pages.

	To route requests to a specific plugin, the webserver needs to pass a magic number known as a modifier to the uWSGI instances. By default this number is set to 0, which is mapped to Python. As an example, routing a request to a PSGI app requires you to set the modifier to 5 - or optionally to load the PSGI plugin as modifier 0. (This will mean that all modifierless requests will be considered Perl.)

	There is no magic rule for setting the number of processes or threads to use. It is very much application and system dependent. Simple math like processes = 2 * cpucores will not be enough. You need to experiment with various setups and be prepared to constantly monitor your apps. uwsgitop could be a great tool to find the best values.

	If an HTTP request has a body (like a POST request generated by a form), you have to read (consume) it in your application. If you do not do this, the communication socket with your webserver may be clobbered. If you are lazy you can use the post-buffering option that will automatically read data for you. For Rack applications this is automatically enabled.

	Always check the memory usage of your apps. The memory-report option could be your best friend.

	If you plan to use UNIX sockets (as opposed to TCP), remember they are standard filesystem objects. This means they have permissions and as such your webserver must have write access to them.

	Common sense: do not run uWSGI instances as root. You can start your uWSGIs as root, but be sure to drop privileges with the uid and gid options.

	uWSGI tries to (ab)use the Copy On Write semantics of the fork() [http://en.wikipedia.org/wiki/Fork_%28operating_system%29] call whenever possible. By default it will fork after having loaded your applications to share as much of their memory as possible. If this behavior is undesirable for some reason, use the lazy-apps option. This will instruct uWSGI to load the applications after each worker’s fork(). Beware as there is an older options named lazy that is way more invasive and highly discouraged (it is still here only for backward compatibility)

	By default the Python plugin does not initialize the GIL. This means your app-generated threads will not run. If you need threads, remember to enable them with enable-threads. Running uWSGI in multithreading mode (with the threads options) will automatically enable threading support. This “strange” default behaviour is for performance reasons, no shame in that.

	If you spawn a new process during a request it will inherit the file descriptors of the worker spawning it - including the socket connected with the webserver/router. If you do not want this behaviour set the close-on-exec option.

	The Ruby garbage collector is configured by default to run after every request. This is an aggressive policy that may slow down your apps a bit – but CPU resources are cheaper than memory, and especially cheaper than running out of memory. To tune this frequency use the ruby-gc <freq> option.

	On OpenBSD, NetBSD and FreeBSD < 9, SysV IPC semaphores are used as the locking subsystem. These operating systems tend to limit the number of allocable semaphores to fairly small values. You should raise the default limits if you plan to run more than one uWSGI instance. FreeBSD 9 has POSIX semaphores, so you do not need to bother with that.

	Do not build plugins using a different config file than used to build the uWSGI binary itself – unless you like pain or know exactly what you are doing.

	By default uWSGI allocates a very small buffer (4096 bytes) for the headers of each request. If you start receiving “invalid request block size” in your logs, it could mean you need a bigger buffer. Increase it (up to 65535) with the buffer-size option.

注解

If you receive ‘21573’ as the request block size in your logs, it could mean you are using the HTTP protocol to speak with an instance speaking the uwsgi protocol. Don’t do this.

	If your (Linux) server seems to have lots of idle workers, but performance is still sub-par, you may want to look at the value of the ip_conntrack_max system variable (/proc/sys/net/ipv4/ip_conntrack_max) and increase it to see if it helps.

	Some Linux distributions (read: Debian Etch 4) make a mix of newer kernels with very old userspace. This kind of combination can make the uWSGI build system spit out errors (most notably on unshare(), pthread locking, inotify...). You can force uWSGI to configure itself for an older system prefixing the ‘make’ (or whatever way you use to build it) with CFLAGS="-DOBSOLETE_LINUX_KERNEL"

	By default, stdin is remapped to /dev/null on uWSGI startup. If you need a valid stdin (for debugging, piping and so on) add --honour-stdin.

	You can easily add non-existent options to your config files (as placeholders, custom options, or app-related configuration items). This is a really handy feature, but can lead to headaches on typos. The strict mode (–strict) will disable this feature, and only valid uWSGI options are tolerated.

	Some plugins (most notably Python and Perl) have code auto-reloading facilities. Although they might sound very appealing, you MUST use them only under development as they are really heavy-weight. For example the Python –py-autoreload option will scan your whole module tree at every check cycle.

 Socket activation with inetd/xinetd

Socket activation with inetd/xinetd

Inetd and Xinetd are two daemons used to start network processes on demand.
You can use this in uWSGI too.

Inetd

127.0.0.1:3031 stream tcp wait root /usr/bin/uwsgi uwsgi -M -p 4 --wsgi-file /root/uwsgi/welcome.py --log-syslog=uwsgi

With this config you will run uWSGI on port 3031 as soon as the first
connection is made. Note: the first argument (the one soon after
/usr/bin/uwsgi) is mapped to argv[0]. Do not forget this – always set it
to uwsgi if you want to be sure.

Xinetd

service uwsgi
 {
 disable = no
 id = uwsgi-000
 type = UNLISTED
 socket_type = stream
 server = /root/uwsgi/uwsgi
 server_args = --chdir /root/uwsgi/ --module welcome --logto /tmp/uwsgi.log
 port = 3031
 bind = 127.0.0.1
 user = root
 wait = yes
 }

Again, you do not need to specify the socket in uWSGI, as it will be passed to
the server by xinetd.

 The uWSGI api

The uWSGI api

Language plugins should expose the following api. Each language has its conventions, limits and strength’s point.

When porting the api to a specific language try to be friendly to the language style.

This is the “official” list of functions exposed by the uWSGI api, functions not appearing here are not standardized
so they could change their semanthics in future uWSGI relases.

The syntax proposed here is a pseudo-python, each language will expose each function with its specific style

When not_defined is used, it means the language-specific NULL representation (like None in python or undef in perl)

uwsgi.signal(signum)

raise the specified uwsgi signal

uwsgi.register_rpc(name, func, argc=0)

register the function “func” as an RPC one with the specified “name”

argc will force the accepted number of arguments

uwsgi.rpc(node, name, *args)

call the uWSGI RPC function “name” on server “node” with the supplied args (if any)

if node is not_defined a “local” RPC will be made

uwsgi.call(name, *args)

call the uWSGI RPC function “name” locally with the supplied args (if any)

uwsgi.cache_get(key[, cache])

get “key” from the specified “cache”. If “cache” is not_defined, the default local cache will be used.

To get an item from a remote cache use the cachename@addr:port syntax for the “cache” value

returns not_defined if the item is not found or an error has occurred

uwsgi.add_timer(signum, secs)

register a timer raising “signum” every “secs”

uwsgi.add_rb_timer(signum, secs)

register a redblack timer raising “signum” every “secs”

uwsgi.lock(num=0)

acquire the specified user lock

uwsgi.unlock(num=0)

release the specified user lock

uwsgi.masterpid()

return the current pid of the master process

uwsgi.alarm(alarm, msg)

raise the specified “alarm” with the message “msg”

uwsgi.suspend()

suspend the current async core and give cpu to the next core in the schedule chain

uwsgi.async_sleep(secs)

suspend the current async core for the specified number of seconds

(requires uwsgi.suspend() or form of “yield” to be committed)

uwsgi.connection_fd()

returns the file descriptor of the connection opened with the client

uwsgi.async_connect(addr)

returns the file descriptor of a non-blocking connection to the specified “addr”

will raise an exception on error

uwsgi.wait_fd_read(fd[, timeout])

(requires uwsgi.suspend() or form of “yield” to be committed)

will raise an exception on error

uwsgi.wait_fd_write(fd[, timeout])

(requires uwsgi.suspend() or form of “yield” to be committed)

will raise an exception on error

uwsgi.ready_fd()

after resume from suspend() returns the currently available file descriptor or -1 if a timeout was the cause of resume

uwsgi.send([fd,] data)

send the specified “data” to the file descriptor “fd”.

If “fd” is not specified the output of uwsgi.connection_fd() will be used

The position of arguments is a bit strange, but allows easier integration with POSIX write()

uwsgi.recv([fd,] len)

receive at most “len” bytes from the specified “fd”

If “fd” is not specified the output of uwsgi.connection_fd() will be used

The position of arguments is a bit strange, but allows easier integration with POSIX read()

uwsgi.close(fd)

close the specified file descriptor

uwsgi.setprocname(name)

set the name of the calling process

uwsgi.add_cron(signum, minute, hour, day, month, week)

register a cron raising the uwsgi signal “signum”

uwsgi.disconnect()

disconnect the client without stopping the request handler

uwsgi.worker_id()

returns the current worker id (as integer).

0 means the calling process is not a worker

uwsgi.mule_id()

returns the current mule id (as integer).

0 means the calling process is not a mule

uwsgi.signal_registered(signum)

check if “signum” is registered

returns boolean

uwsgi.opt

This is a hash/dictionary of all the specified options for the instance (both registered and virtuals)

uwsgi.version

the uWSGI version string

uwsgi.hostname

the server hostname

uwsgi.register_signal(signum, kind, handler)

register the uwsgi signal “signum” of the specified “kind” mapped to “handler”

raise an Exception on error

uwsgi.set_user_harakiri(sec)

set the user harakiri (for workers, mules and spoolers).

A value of 0, reset the timer

 Managing external daemons/services

Managing external daemons/services

uWSGI can easily monitor external processes, allowing you to increase
reliability and usability of your multi-tier apps. For example you can manage
services like Memcached, Redis, Celery, Ruby delayed_job or even dedicated
PostgreSQL instances.

Kinds of services

Currently uWSGI supports 3 categories of processes:

	--attach-daemon – directly attached non daemonized processes

	--smart-attach-daemon – pidfile governed (both foreground and daemonized)

	--smart-attach-daemon2 – pidfile governed with daemonization management

The first category allows you to directly attach processes to the uWSGI master.
When the master dies or is reloaded these processes are destroyed. This is the
best choice for services that must be flushed whenever the app is restarted.

Pidfile governed processes can survive death or reload of the master so long as
their pidfiles are available and the pid contained therein matches a running
pid. This is the best choice for processes requiring longer persistence, and
for which a brutal kill could mean loss of data such as a database.

The last category is a superset of the second one. If your process does not
support daemonization or writing to pidfile, you can let the master do the
management. Very few daemons/applications require this feature, but it could
be useful for tiny prototype applications or simply poorly designed ones.

Since uWSGI 2.0 a fourth option, --attach-daemon2 has been added for advanced configurations (see below).

Examples

Managing a memcached instance in ‘dumb’ mode. Whenever uWSGI is stopped or reloaded, memcached is destroyed.

[uwsgi]
master = true
socket = :3031
attach-daemon = memcached -p 11311 -u roberto

Managing a memcached instance in ‘smart’ mode. Memcached survives uWSGI stop and reload.

[uwsgi]
master = true
socket = :3031
smart-attach-daemon = /tmp/memcached.pid memcached -p 11311 -d -P /tmp/memcached.pid -u roberto

Managing 2 mongodb instances in smart mode:

[uwsgi]
master = true
socket = :3031
smart-attach-daemon = /tmp/mongo1.pid mongod --pidfilepath /tmp/mongo1.pid --dbpath foo1 --port 50001
smart-attach-daemon = /tmp/mongo2.pid mongod --pidfilepath /tmp/mongo2.pid --dbpath foo2 --port 50002

Managing PostgreSQL dedicated-instance (cluster in /db/foobar1):

[uwsgi]
master = true
socket = :3031
smart-attach-daemon = /db/foobar1/postmaster.pid /usr/lib/postgresql/9.1/bin/postgres -D /db/foobar1

Managing celery:

[uwsgi]
master = true
socket = :3031
smart-attach-daemon = /tmp/celery.pid celery -A tasks worker --pidfile=/tmp/celery.pid

Managing delayed_job:

[uwsgi]
master = true
socket = :3031
env = RAILS_ENV=production
rbrequire = bundler/setup
rack = config.ru
chdir = /var/apps/foobar
smart-attach-daemon = %(chdir)/tmp/pids/delayed_job.pid %(chdir)/script/delayed_job start

Managing dropbear:

[uwsgi]
namespace = /ns/001/:testns
namespace-keep-mount = /dev/pts
socket = :3031
exec-as-root = chown -R www-data /etc/dropbear
attach-daemon = /usr/sbin/dropbear -j -k -p 1022 -E -F -I 300

When using the namespace option you can attach a dropbear daemon to allow direct
access to the system inside the specified namespace. This requires the
/dev/pts filesystem to be mounted inside the namespace, and the user your
workers will be running as have access to the /etc/dropbear directory inside
the namespace.

Legion support

Starting with uWSGI 1.9.9 it’s possible to use the The uWSGI Legion subsystem subsystem for
daemon management. Legion daemons will be executed only on the legion
lord node, so there will always be a single daemon instance running in each
legion. Once the lord dies a daemon will be spawned on another node. To add a
legion daemon use –legion-attach-daemon, –legion-smart-attach-daemon and
–legion-smart-attach-daemon2 options, they have the same syntax as normal
daemon options. The difference is the need to add legion name as first
argument.

Example:

Managing celery beat:

[uwsgi]
master = true
socket = :3031
legion-mcast = mylegion 225.1.1.1:9191 90 bf-cbc:mysecret
legion-smart-attach-daemon = mylegion /tmp/celery-beat.pid celery beat --pidfile=/tmp/celery-beat.pid

–attach-daemon2

This option has been added in uWSGI 2.0 and allows advanced configurations. It is a keyval option, and it accepts the following keys:

	command/cmd/exec: the command line to execute

	freq: maximum attempts before considering a daemon “broken”

	pidfile: the pidfile to check (enable smart mode)

	control: if set, the daemon becomes a ‘control’ one: if it dies the whole uWSGI instance dies

	daemonize/daemon: daemonize the process (enable smart2 mode)

	touch semicolon separated list of files to check: whenever they are ‘touched’, the daemon is restarted

	stopsignal/stop_signal: the signal number to send to the daemon when uWSGI is stopped

	reloadsignal/reload_signal: the signal to send to the daemon when uWSGI is reloaded

	stdin: if set the file descriptor zero is not remapped to /dev/null

	uid: drop privileges to the specified uid (requires master running as root)

	gid: drop privileges to the specified gid (requires master running as root)

	ns_pid: spawn the process in a new pid namespace (requires master running as root, Linux only)

	chdir: chdir() to the specified directory before running the command (added in uWSGI 2.0.6)

Example:

[uwsgi]
attach-daemon2 = cmd=my_daemon.sh,pidfile=/tmp/my.pid,uid=33,gid=33,stopsignal=3

 Log encoders

Log encoders

uWSGI 1.9.16 got the “log encoding” feature.

An encoder receives a logline and give back a “transformation” of it.

Encoders can be added by plugins, and can be enabled in chain (the output of an encoder will be the input of the following one and so on).

[uwsgi]
; send logs to udp address 192.168.173.13:1717
logger = socket:192.168.173.13:1717
; before sending a logline to the logger encode it in gzip
log-encoder = gzip
; after gzip add a 'clear' prefix to easy decode
log-encoder = prefix i am gzip encoded
...

with this configuration the log server will receive the “i am gzip encoded” string followed by the tru log message encoded in gzip

The log encoder syntax is the following:

log-encoder = <encoder>[args]

so args (if any) are separated by a single space

Request logs VS stdout/stderr

The –log-encoder option encodes only the stdout/stderr logs.

If you want to encode request logs to use –log-req-encoder:

[uwsgi]
; send request logs to udp address 192.168.173.13:1717
req-logger = socket:192.168.173.13:1717
; before sending a logline to the logger encode it in gzip
log-req-encoder = gzip
; after gzip add a 'clear' prefix to easy decode
log-req-encoder = prefix i am gzip encoded
...

Routing encoders

Log routing allows sending each logline to a different log engine based on regexps. You can use the same system with encoders too:

[uwsgi]
; by default send logs to udp address 192.168.173.13:1717
logger = socket:192.168.173.13:1717
; an alternative logger using the same address
logger = secondlogger socket:192.168.173.13:1717
; use 'secondlogger' for the logline containing 'uWSGI'
log-route = secondlogger uWSGI
; before sending a logline to the 'secondlogger' logger encode it in gzip
log-encoder = gzip:secondlogger
...

Core encoders

The following encoders are available in the uwsgi ‘core’:

prefix add a raw prefix to each log msg

suffix add a raw suffix to each log msg

nl add a newline char to each log msg

gzip compress each msg with gzip (requires zlib)

compress compress each msg with zlib compress (requires zlib)

format apply the specified format to each log msg:

[uwsgi]
...
log-encoder = format [FOO ${msg} BAR]
...

json like format but each variable is json escaped

[uwsgi]
...
log-encoder = json {"unix":${unix}, "msg":"${msg}"}
...

The following variables (for format and json) are available:

${msg} the raw log message (newline stripped)

${msgnl} the raw log message (with newline)

${unix} the current unix time

${micros} the current unix time in microseconds

${strftime:xxx} strftime using the xxx format:

[uwsgi]
...
; we need to escape % to avoid magic vars nameclash
log-encoder = json {"unix":${unix}, "msg":"${msg}", "date":"${strftime:%%d/%%m/%%Y %%H:%%M:%%S}"}
...

The msgpack encoder

This is the first log-encoder plugin officially added to uWSGI sources. It allows encoding of loglines in msgpack (http://msgpack.org/) format.

The syntax is pretty versatile as it has been developed for adding any information to a single packet

log-encoder = msgpack <format>

format is pretty complex as it is a list of the single items in the whole packet.

For example if you want to encode the {‘foo’:’bar’, ‘test’:17} dictionary you need to read it as:

a map of 2 items | the string foo | the string bar | the string test | the integer 17

for a total of 5 items.

A more complex structure {‘boo’:30, ‘foo’:’bar’, ‘test’: [1,3,3,17.30,nil,true,false]}

will be

a map of 3 items | the string boo | the number 30| the string foo| the string bar | the string test | an array of 7 items | the integer 1 | the integer 3 | the integer 3 | the float 17.30 | a nil | a true | a false

The <format> string is a representation of this way:

map:2|str:foo|str:bar|str:test|int:17

The pipe is the seprator of each item. The string before the colon is the type of item, followed by the optional argument

The following item types are supported:

map a dictionary, the argument is the number of items

array an array, the argument is the number of items

str a string, the argument is the string itself

bin a byte array, the argument is the binary stream itself

int an integer, the argument is the number

float a float, the argument is the number

nil undefined/NULL

true boolean TRUE

false boolean FALSE

in addition to msgpack types, a series of dynamic types are available:

msg translate the logline to a msgpack string with newline chopped

msgbin translate the logline to a msgpack byte array with newline chopped

msgnl translate the logline to a msgpack string (newline included)

msgbin translate the logline to a msgpack byte array (newline included)

unix translate to an integer of the unix time

micros translate to an integer of the unix time in microseconds

strftime translate to a string using strftime syntax. The strftime format is the argument

As an example you can send logline to a logstash server via udp:

(logstash debug configuration):

input {
 udp {
 codec => msgpack {}
 port => 1717
 }
}
output {
 stdout { debug => true }
 elasticsearch { embedded => true }
}

[uwsgi]
logger = socket:192.168.173.13:1717
log-encoder = msgpack map:4|str:message|msg|str:hostname|str:%h|str:version|str:%V|str:appname|str:myapp
...

this will generate the following structure:

{
 "message": "*** Starting uWSGI 1.9.16-dev-29d80ce (64bit) on [Sat Sep 7 15:04:32 2013] ***",
 "hostname": "unbit.it",
 "version": "1.9.16-dev",
 "appname": "myapp"
}

that will be stored in elasticsearch

Notes

Encoders automatically enable –log-master

For best performance consider allocating a thread for log sending with –threaded-logger

 uWSGI RPC Stack

uWSGI RPC Stack

uWSGI contains a fast, simple, pan-and-cross-language RPC stack.

Although you may fall in love with this subsystem, try to use it only when you need it. There are plenty of higher-level RPC technologies better suited for the vast majority of situations.

That said, the uWSGI RPC subsystem shines with its performance and memory usage. As an example, if you need to split the load of a request to multiple servers, the uWSGI RPC is a great choice, as it allows you to offload tasks with very little effort.

Its biggest limit is in its “typeless” approach.

RPC functions can take up to 254 args. Each argument has to be a string with a 16 bit maximum size (65535 bytes), while the return value has to be a string (this time 64-bit, so that’s not a practical limit).

警告

64 bit response length has been implemented only in uWSGI 1.9.20, older releases have 16 bit response length limit.

注解

RPC functions receive arguments in the form of binary strings, so every RPC exportable function must assume that each argument is a string. Every RPC function returns a binary string of 0 or more characters.

So, if you need “elegance” or strong typing, just look in another place (or roll your own typing on top of uWSGI RPC, maybe...).

Since 1.9 the RPC subsystem is fully async-friendly, so you can use it with gevent and Coro::AnyEvent etc.

Learning by example

Let’s start with a simple RPC call from 10.0.0.1:3031 to 10.0.0.2:3031.

So let’s export a “hello” function on .2.

import uwsgi

def hello_world():
 return "Hello World"

uwsgi.register_rpc("hello", hello_world)

This uses uwsgi.register_rpc() to declare a function called “hello” to be exported. We’ll start the server with --socket :3031.

On the caller’s side, on 10.0.0.1, let’s declare the world’s (second) simplest WSGI app.

import uwsgi

def application(env, start_response):
 start_response('200 Ok', [('Content-Type', 'text/html')])
 return uwsgi.rpc('10.0.0.2:3031', 'hello')

That’s it!

What about, let’s say, Lua?

Glad you asked. If you want to export functions in Lua, simply do:

function hello_with_args(arg1, arg2)
 return 'args are '..arg1..' '..arg2
end

uwsgi.register_rpc('hellolua', hello_with_args)

And in your Python WSGI app:

import uwsgi

def application(env, start_response):
 start_response('200 Ok', [('Content-Type', 'text/html')]
 return uwsgi.rpc('10.0.0.2:3031', 'hellolua', 'foo', 'bar')

And other languages/platforms?

Check the language specific docs, basically all of them should support registering and calling RPC functions.

You can build multi-languages app with really no effort at all and will be happily surprised about how easy it is to call Java functions from Perl, JavaScript from Python and so on.

Doing RPC locally

Doing RPC locally may sound a little silly, but if you need to call a Lua function from Python with the absolute least possible overhead, uWSGI RPC is your man.

If you want to call a RPC defined in the same server (governed by the same master, etc.), simply set the first parameter of uwsgi.rpc to None or nil, or use the convenience function uwsgi.call().

Doing RPC from the internal routing subsystem

The RPC plugin exports a bunch of internal routing actions:

	rpc call the specified rpc function and send the response to the client

	rpcnext/rpcblob call the specified rpc function, send the response to the client and continue to the next rule

	rpcret calls the specified rpc function and uses its return value as the action return code (next, continue, goto ...)

[uwsgi]
route = ^/foo rpc:hello ${REQUEST_URI} ${REMOTE_ADDR}
; call on remote nodes
route = ^/multi rpcnext:part1@192.168.173.100:3031
route = ^/multi rpcnext:part2@192.168.173.100:3031
route = ^/multi rpcnext:part3@192.168.173.100:3031

Doing RPC from nginx

As Nginx supports low-level manipulation of the uwsgi packets sent to upstream uWSGI servers, you can do RPC directly through it. Madness!

location /call {
 uwsgi_modifier1 173;
 uwsgi_modifier2 1;

 uwsgi_param hellolua foo
 uwsgi_param bar ""

 uwsgi_pass 10.0.0.2:3031;

 uwsgi_pass_request_headers off;
 uwsgi_pass_request_body off;
}

Zero size strings will be ignored by the uWSGI array parser, so you can safely use them when the numbers of parameters + function_name is not even.

Modifier2 is set to 1 to inform that raw strings (HTTP responses in this case) are received. Otherwise the RPC subsystem would encapsulate the output in an uwsgi protocol packet, and nginx isn’t smart enough to read those.

HTTP PATH_INFO -> RPC bridge

XML-RPC -> RPC bridge

 uWSGI third party plugins

uWSGI third party plugins

The following plugins (unless otherwise specified) are not commercially supported.

Feel free to add your plugin to the list by sending a pull request to the uwsgi-docs project.

uwsgi-capture

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-capture

Allows gathering video4linux frames in a sharedarea.

uwsgi-wstcp

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-wstcp

Maps websockets to TCP connections (useful for proxying via javascript).

uwsgi-pgnotify

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-pgnotify

Integrates the PostgreSQL notification system with the uWSGI signal framework.

uwsgi-quota

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-quota

Allows to set and monitor filesystem quotas.

uwsgi-eventfd

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-eventfd

Allows to monitor eventfd() objects (like events sent by the cgroup system).

uwsgi-console-broadcast

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-console-broadcast

Exposes hooks for sending broadcast messages to user terminals.

uwsgi-strophe

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-strophe

Integration with the libstrophe library (xmpp).

uwsgi-alarm-chain

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-alarm-chain

Virtual alarm handler combining multiple alarms into a single one.

uwsgi-netlink

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-netlink

Integration with the Linux netlink subsystem.

uwsgi-pushover

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-pushover

Integration with Pushover.net services.

uwsgi-consul

	License: MIT

	Author: unbit, ultrabug

	Website: https://github.com/unbit/uwsgi-consul

Integration with consul agents (consul.io)

uwsgi-influxdb

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-influxdb

Allows sending metrics to the InfluxDB time series database.

uwsgi-opentsdb

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-opentsdb

Allows sending metrics to the OpenTSDB monitoring system.

uwsgi-cares

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-cares

Exposes non-blocking DNS querying via the c-ares asynchronous name resolution library.

uwsgi-ganglia

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-ganglia

Allows sending metrics to Ganglia.

uwsgi-bonjour

	License: MIT

	Author: unbit, 20tab

	Website: https://github.com/unbit/uwsgi-bonjour

Automatically register domain names in OSX’s Bonjour subsystem.

uwsgi-avahi

	License: MIT

	Author: 20tab

	Website: https://github.com/20tab/uwsgi-avahi

Automatically register domain names in the Avahi subsystem.

uwsgi-datadog

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-datadog

Automatically send metrics to Datadog (https://www.datadoghq.com/).

uwsgi-apparmor

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-apparmor

Allows setting Apparmor profiles for instances.

uwsgi-docker

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-docker

Allows running dockerized (https://docker.io) vassals.

uwsgi-gif

	License: MIT

	Author: unbit

	Website: https://github.com/unbit/uwsgi-gif

dynamic generation of gif images

 The uWSGI cron-like interface

The uWSGI cron-like interface

uWSGI’s master has an internal cron-like facility that can generate
events at predefined times. You can use it

	via the uWSGI API, in which case cron events will generate uWSGI signals

	directly via options, in which case events will run shell commands

uWSGI signal based

The uwsgi.add_cron() function is the interface to the uWSGI signal cron
facility. The syntax is

uwsgi.add_cron(signal, minute, hour, day, month, weekday)

The last 5 arguments work similarly to a standard crontab, but instead of “*”,
use -1, and instead of “/2”, “/3”, etc. use -2 and -3, etc.

import uwsgi

def five_o_clock_on_the_first_day_of_the_month(signum):
 print "It's 5 o'clock of the first day of the month."

uwsgi.register_signal(99, "", five_o_clock_on_the_first_day_of_the_month)
uwsgi.add_cron(99, 0, 5, 1, -1, -1)

Timers vs. cron

Recurring events not related to specific dates should use timers/rb_timers.
When you are interested in a specific date/hour use cron.

For example:

uwsgi.add_cron(99, -1, -1, -1, -1, -1) # ugly, bad and inefficient way to run signal 99 every minute :(
uwsgi.add_timer(99, 60) # much better.

Notes

	day and weekday are ORed as the original crontab specifications.

	By default, you can define up to 64 signal-based cron jobs per master. This

value may be increased in uwsgi.h.

Option-based cron

You can define cron tasks directly in configuration with the cron option.
You can specify an unlimited number of option-based cron records. The syntax is
the same of the signal-based ones.

For example:

[uwsgi]
cron = 59 2 -1 -1 -1 /usr/bin/backup_my_home --recursive
cron = 9 11 -1 -1 2 /opt/dem/bin/send_reminders

<uwsgi>
 <cron>59 2 -1 -1 -1 /usr/bin/backup_my_home --recursive</cron>
 <cron>9 11 -1 -1 2 /opt/dem/bin/send_reminders</cron>
</uwsgi>

[uwsgi]
; every two hours
cron = -1 -2 -1 -1 -1 /usr/bin/backup_my_home --recursive

Legion crons

When your instance is part of a The uWSGI Legion subsystem, you can configure it to run
crons only if it is the Lord of the specified Legion:

[uwsgi]
legion = mycluster 225.1.1.1:1717 100 bf-cbc:hello
legion-node = mycluster 225.1.1.1:1717
; every two hours
legion-cron = mycluster -1 -2 -1 -1 -1 /usr/bin/backup_my_home --recursive

Unique crons

注解

This feature is available since 1.9.11.

Some commands can take a long time to finish or just hang doing their thing. Sometimes this is okay, but there are also cases when running multiple instances of the same command can be dangerous.

For such cases the unique-cron and unique-legion-cron options were added. The syntax is the same as with cron and legion-cron, but the difference is that uWSGI will keep track of execution state and not execute the cronjob again until it is complete.

Example:

[uwsgi]
cron = -1 -1 -1 -1 -1 sleep 70

This would execute sleep 70 every minute, but sleep command will be running longer than our execution interval, we will end up with a growing number of sleep processes.
To fix this we can simply replace cron with unique-cron and uWSGI will make sure that only single sleep process is running. A new process will be started right after the previous one finishes.

Harakiri

注解

Available since 1.9.11.

--cron-harakiri will enforce a time limit on executed commands. If any command is taking longer it will be killed.

[uwsgi]

cron = sleep 30
cron-harakiri = 10

This will kill the cron command after 10 seconds. Note that cron-harakiri is a global limit, it affects all cron commands. To set a per-command time limit, use the cron2 option (see below).

New syntax for cron options

注解

Available since 1.9.11

To allow better control over crons, a new option was added to uWSGI:

[uwsgi]
cron2 = option1=value,option2=value command to execute

Example:

[uwsgi]

cron2 = minute=-2,unique=1 sleep 130

Will spawn an unique cron command sleep 130 every 2 minutes.

Option list is optional, available options for every cron:

	minute - minute part of crontab entry, default is -1 (interpreted as *)

	hour - hour part of crontab entry, default is -1 (interpreted as *)

	day - day part of crontab entry, default is -1 (interpreted as *)

	month - month part of crontab entry, default is -1 (interpreted as *)

	week - week part of crontab entry, default is -1 (interpreted as *)

	unique - marks cron command as unique (see above), default is 0 (not unique)

	harakiri - set harakiri timeout (in seconds) for this cron command, default is 0 (no harakiri)

	legion - set legion name for use with this cron command, cron legions are only executed on the legion lord node.

Note that you cannot use spaces in options list. (minute=1, hour=2 will not work, but minute=1,hour=2 will work just fine.)
If any option is missing, a default value is used.

[uwsgi]
execute ``my command`` every minute (-1 -1 -1 -1 -1 crontab).
cron2 = my command
execute unique command ``/usr/local/bin/backup.sh`` at 5:30 every day.
cron2 = minute=30,hour=5,unique=1 /usr/local/bin/backup.sh

[uwsgi]
legion = mycluster 225.1.1.1:1717 100 bf-cbc:hello
legion-node = mycluster 225.1.1.1:1717
cron2 = minute=-10,legion=mycluster my command

This will disable harakiri for my command, but other cron commands will still be killed after 10 seconds:

[uwsgi]
cron-harakiri = 10
cron2 = harakiri=0 my command
cron2 = my second command

 Locks

Locks

uWSGI supports a configurable number of locks you can use to synchronize worker
processes. Lock 0 (zero) is always available, but you can add more with the
locks option. If your app has a lot of critical areas, holding and
releasing the same lock over and over again can kill performance.

def use_lock_zero_for_important_things():
 uwsgi.lock() # Implicit parameter 0
 # Critical section
 uwsgi.unlock() # Implicit parameter 0

def use_another_lock():
 uwsgi.lock(1)
 time.sleep(1) # Take that, performance! Ha!
 uwsgi.unlock(1)

 uWSGI Options

uWSGI Options

This is an automatically generated reference list of the uWSGI options.

It is the same output you can get via the --help option.

This page is probably the worst way to understand uWSGI for newbies. If you are still learning how the project
works, you should read the various quickstarts and tutorials.

Each option has the following attributes:

	argument: it is the struct option (used by getopt()/getopt_long()) has_arg element. Can be ‘required’, ‘no_argument’ or ‘optional_argument’

	shortcut: some option can be specified with the short form (a dash followed by a single letter)

	parser: this is how uWSGI parses the parameter. There are dozens of way, the most common are ‘uwsgi_opt_set_str’ when it takes a simple string, ‘uwsgi_opt_set_int’ when it takes a 32bit number, ‘uwsgi_opt_add_string_list’ when the parameter can be specified multiple times to build a list.

	help: the help message, the same you get from uwsgi --help

	reference: a link to a documentation page that gives better understanding and context of an option

You can add more detailed infos to this page, editing https://github.com/unbit/uwsgi-docs/blob/master/optdefs.pl (please, double check it before sending a pull request)

uWSGI core

socket

argument: required_argument

shortcut: -s

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using default protocol

uwsgi-socket

argument: required_argument

shortcut: -s

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using uwsgi protocol

suwsgi-socket

argument: required_argument

parser: uwsgi_opt_add_ssl_socket

help: bind to the specified UNIX/TCP socket using uwsgi protocol over SSL

ssl-socket

argument: required_argument

parser: uwsgi_opt_add_ssl_socket

help: bind to the specified UNIX/TCP socket using uwsgi protocol over SSL

http-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using HTTP protocol

http-socket-modifier1

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier1 when using HTTP protocol

http-socket-modifier2

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier2 when using HTTP protocol

http11-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using HTTP 1.1 (Keep-Alive) protocol

https-socket

argument: required_argument

parser: uwsgi_opt_add_ssl_socket

help: bind to the specified UNIX/TCP socket using HTTPS protocol

https-socket-modifier1

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier1 when using HTTPS protocol

https-socket-modifier2

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier2 when using HTTPS protocol

fastcgi-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using FastCGI protocol

fastcgi-nph-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using FastCGI protocol (nph mode)

fastcgi-modifier1

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier1 when using FastCGI protocol

fastcgi-modifier2

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier2 when using FastCGI protocol

scgi-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using SCGI protocol

scgi-nph-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using SCGI protocol (nph mode)

scgi-modifier1

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier1 when using SCGI protocol

scgi-modifier2

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier2 when using SCGI protocol

raw-socket

argument: required_argument

parser: uwsgi_opt_add_socket_no_defer

help: bind to the specified UNIX/TCP socket using RAW protocol

raw-modifier1

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier1 when using RAW protocol

raw-modifier2

argument: required_argument

parser: uwsgi_opt_set_64bit

help: force the specified modifier2 when using RAW protocol

puwsgi-socket

argument: required_argument

parser: uwsgi_opt_add_socket

help: bind to the specified UNIX/TCP socket using persistent uwsgi protocol (puwsgi)

protocol

argument: required_argument

parser: uwsgi_opt_set_str

help: force the specified protocol for default sockets

socket-protocol

argument: required_argument

parser: uwsgi_opt_set_str

help: force the specified protocol for default sockets

shared-socket

argument: required_argument

parser: uwsgi_opt_add_shared_socket

help: create a shared socket for advanced jailing or ipc

undeferred-shared-socket

argument: required_argument

parser: uwsgi_opt_add_shared_socket

help: create a shared socket for advanced jailing or ipc (undeferred mode)

processes

argument: required_argument

shortcut: -p

parser: uwsgi_opt_set_int

help: spawn the specified number of workers/processes

workers

argument: required_argument

shortcut: -p

parser: uwsgi_opt_set_int

help: spawn the specified number of workers/processes

thunder-lock

argument: no_argument

parser: uwsgi_opt_true

help: serialize accept() usage (if possible)

reference: Serializing accept(), AKA Thundering Herd, AKA the Zeeg Problem

harakiri

argument: required_argument

shortcut: -t

parser: uwsgi_opt_set_int

help: set harakiri timeout

harakiri-verbose

argument: no_argument

parser: uwsgi_opt_true

help: enable verbose mode for harakiri

harakiri-no-arh

argument: no_argument

parser: uwsgi_opt_true

help: do not enable harakiri during after-request-hook

no-harakiri-arh

argument: no_argument

parser: uwsgi_opt_true

help: do not enable harakiri during after-request-hook

no-harakiri-after-req-hook

argument: no_argument

parser: uwsgi_opt_true

help: do not enable harakiri during after-request-hook

backtrace-depth

argument: required_argument

parser: uwsgi_opt_set_int

help: set backtrace depth

mule-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: set harakiri timeout for mule tasks

xmlconfig

argument: required_argument

shortcut: -x

parser: uwsgi_opt_load_xml

flags: UWSGI_OPT_IMMEDIATE

help: load config from xml file

xml

argument: required_argument

shortcut: -x

parser: uwsgi_opt_load_xml

flags: UWSGI_OPT_IMMEDIATE

help: load config from xml file

config

argument: required_argument

parser: uwsgi_opt_load_config

flags: UWSGI_OPT_IMMEDIATE

help: load configuration using the pluggable system

fallback-config

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_IMMEDIATE

help: re-exec uwsgi with the specified config when exit code is 1

strict

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_IMMEDIATE

help: enable strict mode (placeholder cannot be used)

skip-zero

argument: no_argument

parser: uwsgi_opt_true

help: skip check of file descriptor 0

skip-atexit

argument: no_argument

parser: uwsgi_opt_true

help: skip atexit hooks (ignored by the master)

set

argument: required_argument

shortcut: -S

parser: uwsgi_opt_set_placeholder

flags: UWSGI_OPT_IMMEDIATE

help: set a placeholder or an option

set-placeholder

argument: required_argument

parser: uwsgi_opt_set_placeholder

flags: UWSGI_OPT_IMMEDIATE

help: set a placeholder

set-ph

argument: required_argument

parser: uwsgi_opt_set_placeholder

flags: UWSGI_OPT_IMMEDIATE

help: set a placeholder

get

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_NO_INITIAL

help: print the specified option value and exit

declare-option

argument: required_argument

parser: uwsgi_opt_add_custom_option

flags: UWSGI_OPT_IMMEDIATE

help: declare a new uWSGI custom option

reference: Defining new options for your instances

declare-option2

argument: required_argument

parser: uwsgi_opt_add_custom_option

help: declare a new uWSGI custom option (non-immediate)

resolve

argument: required_argument

parser: uwsgi_opt_resolve

flags: UWSGI_OPT_IMMEDIATE

help: place the result of a dns query in the specified placeholder, sytax: placeholder=name (immediate option)

for

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) for cycle

for-glob

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) for cycle (expand glob)

for-times

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) for cycle (expand the specified num to a list starting from 1)

for-readline

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) for cycle (expand the specified file to a list of lines)

endfor

argument: optional_argument

parser: uwsgi_opt_noop

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) end for cycle

end-for

argument: optional_argument

parser: uwsgi_opt_noop

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) end for cycle

if-opt

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for option

if-not-opt

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for option

if-env

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for environment variable

if-not-env

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for environment variable

ifenv

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for environment variable

if-reload

argument: no_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for reload

if-not-reload

argument: no_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for reload

if-hostname

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for hostname

if-not-hostname

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for hostname

if-exists

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for file/directory existance

if-not-exists

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for file/directory existance

ifexists

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for file/directory existance

if-plugin

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for plugin

if-not-plugin

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for plugin

ifplugin

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for plugin

if-file

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for file existance

if-not-file

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for file existance

if-dir

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for directory existance

if-not-dir

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for directory existance

ifdir

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for directory existance

if-directory

argument: required_argument

parser: uwsgi_opt_logic

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) check for directory existance

endif

argument: optional_argument

parser: uwsgi_opt_noop

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) end if

end-if

argument: optional_argument

parser: uwsgi_opt_noop

flags: UWSGI_OPT_IMMEDIATE

help: (opt logic) end if

blacklist

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_IMMEDIATE

help: set options blacklist context

end-blacklist

argument: no_argument

parser: uwsgi_opt_set_null

flags: UWSGI_OPT_IMMEDIATE

help: clear options blacklist context

whitelist

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_IMMEDIATE

help: set options whitelist context

end-whitelist

argument: no_argument

parser: uwsgi_opt_set_null

flags: UWSGI_OPT_IMMEDIATE

help: clear options whitelist context

ignore-sigpipe

argument: no_argument

parser: uwsgi_opt_true

help: do not report (annoying) SIGPIPE

ignore-write-errors

argument: no_argument

parser: uwsgi_opt_true

help: do not report (annoying) write()/writev() errors

write-errors-tolerance

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the maximum number of allowed write errors (default: no tolerance)

write-errors-exception-only

argument: no_argument

parser: uwsgi_opt_true

help: only raise an exception on write errors giving control to the app itself

disable-write-exception

argument: no_argument

parser: uwsgi_opt_true

help: disable exception generation on write()/writev()

inherit

argument: required_argument

parser: uwsgi_opt_load

help: use the specified file as config template

include

argument: required_argument

parser: uwsgi_opt_load

flags: UWSGI_OPT_IMMEDIATE

help: include the specified file as immediate configuration

inject-before

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_IMMEDIATE

help: inject a text file before the config file (advanced templating)

inject-after

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_IMMEDIATE

help: inject a text file after the config file (advanced templating)

daemonize

argument: required_argument

shortcut: -d

parser: uwsgi_opt_set_str

help: daemonize uWSGI

daemonize2

argument: required_argument

parser: uwsgi_opt_set_str

help: daemonize uWSGI after app loading

stop

argument: required_argument

parser: uwsgi_opt_pidfile_signal

flags: UWSGI_OPT_IMMEDIATE

help: stop an instance

reload

argument: required_argument

parser: uwsgi_opt_pidfile_signal

flags: UWSGI_OPT_IMMEDIATE

help: reload an instance

pause

argument: required_argument

parser: uwsgi_opt_pidfile_signal

flags: UWSGI_OPT_IMMEDIATE

help: pause an instance

suspend

argument: required_argument

parser: uwsgi_opt_pidfile_signal

flags: UWSGI_OPT_IMMEDIATE

help: suspend an instance

resume

argument: required_argument

parser: uwsgi_opt_pidfile_signal

flags: UWSGI_OPT_IMMEDIATE

help: resume an instance

connect-and-read

argument: required_argument

parser: uwsgi_opt_connect_and_read

flags: UWSGI_OPT_IMMEDIATE

help: connect to a socket and wait for data from it

extract

argument: required_argument

parser: uwsgi_opt_extract

flags: UWSGI_OPT_IMMEDIATE

help: fetch/dump any supported address to stdout

listen

argument: required_argument

shortcut: -l

parser: uwsgi_opt_set_int

help: set the socket listen queue size

max-vars

argument: required_argument

shortcut: -v

parser: uwsgi_opt_max_vars

help: set the amount of internal iovec/vars structures

max-apps

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of per-worker applications

buffer-size

argument: required_argument

shortcut: -b

parser: uwsgi_opt_set_64bit

help: set internal buffer size

Set the max size of a request (request-body excluded), this generally maps to the size of request headers. By default it is 4k. If you receive a bigger request (for example with big cookies or query string) you may need to increase it. It is a security measure too, so adapt to your app needs instead of maxing it out.

memory-report

argument: no_argument

shortcut: -m

parser: uwsgi_opt_true

help: enable memory report

profiler

argument: required_argument

parser: uwsgi_opt_set_str

help: enable the specified profiler

cgi-mode

argument: no_argument

shortcut: -c

parser: uwsgi_opt_true

help: force CGI-mode for plugins supporting it

abstract-socket

argument: no_argument

shortcut: -a

parser: uwsgi_opt_true

help: force UNIX socket in abstract mode (Linux only)

chmod-socket

argument: optional_argument

shortcut: -C

parser: uwsgi_opt_chmod_socket

help: chmod-socket

chmod

argument: optional_argument

shortcut: -C

parser: uwsgi_opt_chmod_socket

help: chmod-socket

chown-socket

argument: required_argument

parser: uwsgi_opt_set_str

help: chown unix sockets

umask

argument: required_argument

parser: uwsgi_opt_set_umask

flags: UWSGI_OPT_IMMEDIATE

help: set umask

freebind

argument: no_argument

parser: uwsgi_opt_true

help: put socket in freebind mode

set the IP_FREEBIND flag to every socket created by uWSGI. This kind of socket can bind to non-existent ip addresses. Its main purpose is for high availability (this is Linux only)

map-socket

argument: required_argument

parser: uwsgi_opt_add_string_list

help: map sockets to specific workers

enable-threads

argument: no_argument

shortcut: -T

parser: uwsgi_opt_true

help: enable threads

no-threads-wait

argument: no_argument

parser: uwsgi_opt_true

help: do not wait for threads cancellation on quit/reload

auto-procname

argument: no_argument

parser: uwsgi_opt_true

help: automatically set processes name to something meaningful

procname-prefix

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_PROCNAME

help: add a prefix to the process names

procname-prefix-spaced

argument: required_argument

parser: uwsgi_opt_set_str_spaced

flags: UWSGI_OPT_PROCNAME

help: add a spaced prefix to the process names

procname-append

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_PROCNAME

help: append a string to process names

procname

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_PROCNAME

help: set process names

procname-master

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_PROCNAME

help: set master process name

single-interpreter

argument: no_argument

shortcut: -i

parser: uwsgi_opt_true

help: do not use multiple interpreters (where available)

need-app

argument: no_argument

parser: uwsgi_opt_true

help: exit if no app can be loaded

master

argument: no_argument

shortcut: -M

parser: uwsgi_opt_true

help: enable master process

honour-stdin

argument: no_argument

parser: uwsgi_opt_true

help: do not remap stdin to /dev/null

emperor

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the Emperor

reference: The uWSGI Emperor – multi-app deployment

The Emperor is a special uWSGI instance aimed at governing other uWSGI instances (named: vassals). By default it is configured to monitor a directory containing valid uWSGI config files, whenever a file is created a new instance is spawned, when the file is touched the instance is reloaded, when the file is removed the instance is destroyed. It can be extended to support more paradigms

emperor-proxy-socket

argument: required_argument

parser: uwsgi_opt_set_str

help: force the vassal to became an Emperor proxy

emperor-wrapper

argument: required_argument

parser: uwsgi_opt_set_str

help: set a binary wrapper for vassals

emperor-nofollow

argument: no_argument

parser: uwsgi_opt_true

help: do not follow symlinks when checking for mtime

emperor-procname

argument: required_argument

parser: uwsgi_opt_set_str

help: set the Emperor process name

emperor-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set the Emperor scan frequency (default 3 seconds)

emperor-required-heartbeat

argument: required_argument

parser: uwsgi_opt_set_int

help: set the Emperor tolerance about heartbeats

emperor-curse-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

help: set the Emperor tolerance about cursed vassals

emperor-pidfile

argument: required_argument

parser: uwsgi_opt_set_str

help: write the Emperor pid in the specified file

emperor-tyrant

argument: no_argument

parser: uwsgi_opt_true

help: put the Emperor in Tyrant mode

emperor-tyrant-nofollow

argument: no_argument

parser: uwsgi_opt_true

help: do not follow symlinks when checking for uid/gid in Tyrant mode

emperor-tyrant-initgroups

argument: no_argument

parser: uwsgi_opt_true

help: add additional groups set via initgroups() in Tyrant mode

emperor-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the Emperor stats server

emperor-stats-server

argument: required_argument

parser: uwsgi_opt_set_str

help: run the Emperor stats server

early-emperor

argument: no_argument

parser: uwsgi_opt_true

help: spawn the emperor as soon as possibile

emperor-broodlord

argument: required_argument

parser: uwsgi_opt_set_int

help: run the emperor in BroodLord mode

emperor-throttle

argument: required_argument

parser: uwsgi_opt_set_int

help: set throttling level (in milliseconds) for bad behaving vassals (default 1000)

emperor-max-throttle

argument: required_argument

parser: uwsgi_opt_set_int

help: set max throttling level (in milliseconds) for bad behaving vassals (default 3 minutes)

emperor-magic-exec

argument: no_argument

parser: uwsgi_opt_true

help: prefix vassals config files with exec:// if they have the executable bit

emperor-on-demand-extension

argument: required_argument

parser: uwsgi_opt_set_str

help: search for text file (vassal name + extension) containing the on demand socket name

emperor-on-demand-ext

argument: required_argument

parser: uwsgi_opt_set_str

help: search for text file (vassal name + extension) containing the on demand socket name

emperor-on-demand-directory

argument: required_argument

parser: uwsgi_opt_set_str

help: enable on demand mode binding to the unix socket in the specified directory named like the vassal + .socket

emperor-on-demand-dir

argument: required_argument

parser: uwsgi_opt_set_str

help: enable on demand mode binding to the unix socket in the specified directory named like the vassal + .socket

emperor-on-demand-exec

argument: required_argument

parser: uwsgi_opt_set_str

help: use the output of the specified command as on demand socket name (the vassal name is passed as the only argument)

emperor-extra-extension

argument: required_argument

parser: uwsgi_opt_add_string_list

help: allows the specified extension in the Emperor (vassal will be called with –config)

emperor-extra-ext

argument: required_argument

parser: uwsgi_opt_add_string_list

help: allows the specified extension in the Emperor (vassal will be called with –config)

emperor-no-blacklist

argument: no_argument

parser: uwsgi_opt_true

help: disable Emperor blacklisting subsystem

emperor-use-clone

argument: required_argument

parser: uwsgi_opt_set_unshare

help: use clone() instead of fork() passing the specified unshare() flags

emperor-use-fork-server

argument: required_argument

parser: uwsgi_opt_set_str

help: connect to the specified fork server instead of using plain fork() for new vassals

vassal-fork-base

argument: required_argument

parser: uwsgi_opt_add_string_list

help: use plain fork() for the specified vassal (instead of a fork-server)

emperor-subreaper

argument: no_argument

parser: uwsgi_opt_true

help: force the Emperor to be a sub-reaper (if supported)

emperor-cap

argument: required_argument

parser: uwsgi_opt_set_emperor_cap

help: set vassals capability

vassals-cap

argument: required_argument

parser: uwsgi_opt_set_emperor_cap

help: set vassals capability

vassal-cap

argument: required_argument

parser: uwsgi_opt_set_emperor_cap

help: set vassals capability

emperor-collect-attribute

argument: required_argument

parser: uwsgi_opt_add_string_list

help: collect the specified vassal attribute from imperial monitors

emperor-collect-attr

argument: required_argument

parser: uwsgi_opt_add_string_list

help: collect the specified vassal attribute from imperial monitors

emperor-fork-server-attr

argument: required_argument

parser: uwsgi_opt_set_str

help: set teh vassal’s attribute to get when checking for fork-server

emperor-wrapper-attr

argument: required_argument

parser: uwsgi_opt_set_str

help: set the vassal’s attribute to get when checking for fork-wrapper

emperor-chdir-attr

argument: required_argument

parser: uwsgi_opt_set_str

help: set the vassal’s attribute to get when checking for chdir

imperial-monitor-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled imperial monitors

imperial-monitors-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled imperial monitors

vassals-inherit

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add config templates to vassals config (uses –inherit)

vassals-include

argument: required_argument

parser: uwsgi_opt_add_string_list

help: include config templates to vassals config (uses –include instead of –inherit)

vassals-inherit-before

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add config templates to vassals config (uses –inherit, parses before the vassal file)

vassals-include-before

argument: required_argument

parser: uwsgi_opt_add_string_list

help: include config templates to vassals config (uses –include instead of –inherit, parses before the vassal file)

vassals-start-hook

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command before each vassal starts

vassals-stop-hook

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command after vassal’s death

vassal-sos

argument: required_argument

parser: uwsgi_opt_set_int

help: ask emperor for reinforcement when overloaded

vassal-sos-backlog

argument: required_argument

parser: uwsgi_opt_set_int

help: ask emperor for sos if backlog queue has more items than the value specified

vassals-set

argument: required_argument

parser: uwsgi_opt_add_string_list

help: automatically set the specified option (via –set) for every vassal

vassal-set

argument: required_argument

parser: uwsgi_opt_add_string_list

help: automatically set the specified option (via –set) for every vassal

heartbeat

argument: required_argument

parser: uwsgi_opt_set_int

help: announce healthiness to the emperor

zeus

argument: required_argument

parser: uwsgi_opt_set_str

help: enable Zeus mode

reload-mercy

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum time (in seconds) we wait for workers and other processes to die during reload/shutdown

worker-reload-mercy

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum time (in seconds) a worker can take to reload/shutdown (default is 60)

mule-reload-mercy

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum time (in seconds) a mule can take to reload/shutdown (default is 60)

exit-on-reload

argument: no_argument

parser: uwsgi_opt_true

help: force exit even if a reload is requested

die-on-term

argument: no_argument

parser: uwsgi_opt_deprecated

help: exit instead of brutal reload on SIGTERM (no more needed)

force-gateway

argument: no_argument

parser: uwsgi_opt_true

help: force the spawn of the first registered gateway without a master

help

argument: no_argument

shortcut: -h

parser: uwsgi_help

flags: UWSGI_OPT_IMMEDIATE

help: show this help

usage

argument: no_argument

shortcut: -h

parser: uwsgi_help

flags: UWSGI_OPT_IMMEDIATE

help: show this help

print-sym

argument: required_argument

parser: uwsgi_print_sym

flags: UWSGI_OPT_IMMEDIATE

help: print content of the specified binary symbol

print-symbol

argument: required_argument

parser: uwsgi_print_sym

flags: UWSGI_OPT_IMMEDIATE

help: print content of the specified binary symbol

reaper

argument: no_argument

shortcut: -r

parser: uwsgi_opt_true

help: call waitpid(-1,...) after each request to get rid of zombies

max-requests

argument: required_argument

shortcut: -R

parser: uwsgi_opt_set_64bit

help: reload workers after the specified amount of managed requests

max-requests-delta

argument: required_argument

parser: uwsgi_opt_set_64bit

help: add (worker_id * delta) to the max_requests value of each worker

min-worker-lifetime

argument: required_argument

parser: uwsgi_opt_set_64bit

help: number of seconds worker must run before being reloaded (default is 60)

max-worker-lifetime

argument: required_argument

parser: uwsgi_opt_set_64bit

help: reload workers after the specified amount of seconds (default is disabled)

socket-timeout

argument: required_argument

shortcut: -z

parser: uwsgi_opt_set_int

help: set internal sockets timeout

no-fd-passing

argument: no_argument

parser: uwsgi_opt_true

help: disable file descriptor passing

locks

argument: required_argument

parser: uwsgi_opt_set_int

help: create the specified number of shared locks

lock-engine

argument: required_argument

parser: uwsgi_opt_set_str

help: set the lock engine

ftok

argument: required_argument

parser: uwsgi_opt_set_str

help: set the ipcsem key via ftok() for avoiding duplicates

persistent-ipcsem

argument: no_argument

parser: uwsgi_opt_true

help: do not remove ipcsem’s on shutdown

sharedarea

argument: required_argument

shortcut: -A

parser: uwsgi_opt_add_string_list

help: create a raw shared memory area of specified pages (note: it supports keyval too)

reference: SharedArea – share memory pages between uWSGI components

safe-fd

argument: required_argument

parser: uwsgi_opt_safe_fd

help: do not close the specified file descriptor

fd-safe

argument: required_argument

parser: uwsgi_opt_safe_fd

help: do not close the specified file descriptor

cache

argument: required_argument

parser: uwsgi_opt_set_64bit

help: create a shared cache containing given elements

cache-blocksize

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set cache blocksize

cache-store

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: enable persistent cache to disk

cache-store-sync

argument: required_argument

parser: uwsgi_opt_set_int

help: set frequency of sync for persistent cache

cache-no-expire

argument: no_argument

parser: uwsgi_opt_true

help: disable auto sweep of expired items

cache-expire-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set the frequency of cache sweeper scans (default 3 seconds)

cache-report-freed-items

argument: no_argument

parser: uwsgi_opt_true

help: constantly report the cache item freed by the sweeper (use only for debug)

cache-udp-server

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: bind the cache udp server (used only for set/update/delete) to the specified socket

cache-udp-node

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: send cache update/deletion to the specified cache udp server

cache-sync

argument: required_argument

parser: uwsgi_opt_set_str

help: copy the whole content of another uWSGI cache server on server startup

cache-use-last-modified

argument: no_argument

parser: uwsgi_opt_true

help: update last_modified_at timestamp on every cache item modification (default is disabled)

add-cache-item

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an item in the cache

load-file-in-cache

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a static file in the cache

load-file-in-cache-gzip

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a static file in the cache with gzip compression

cache2

argument: required_argument

parser: uwsgi_opt_add_string_list

help: create a new generation shared cache (keyval syntax)

queue

argument: required_argument

parser: uwsgi_opt_set_int

help: enable shared queue

queue-blocksize

argument: required_argument

parser: uwsgi_opt_set_int

help: set queue blocksize

queue-store

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: enable persistent queue to disk

queue-store-sync

argument: required_argument

parser: uwsgi_opt_set_int

help: set frequency of sync for persistent queue

spooler

argument: required_argument

shortcut: -Q

parser: uwsgi_opt_add_spooler

flags: UWSGI_OPT_MASTER

help: run a spooler on the specified directory

spooler-external

argument: required_argument

parser: uwsgi_opt_add_spooler

flags: UWSGI_OPT_MASTER

help: map spoolers requests to a spooler directory managed by an external instance

spooler-ordered

argument: no_argument

parser: uwsgi_opt_true

help: try to order the execution of spooler tasks

spooler-chdir

argument: required_argument

parser: uwsgi_opt_set_str

help: chdir() to specified directory before each spooler task

spooler-processes

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_IMMEDIATE

help: set the number of processes for spoolers

spooler-quiet

argument: no_argument

parser: uwsgi_opt_true

help: do not be verbose with spooler tasks

spooler-max-tasks

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of tasks to run before recycling a spooler

spooler-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: set harakiri timeout for spooler tasks

spooler-frequency

argument: required_argument

parser: uwsgi_opt_set_int

help: set spooler frequency

spooler-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set spooler frequency

mule

argument: optional_argument

parser: uwsgi_opt_add_mule

flags: UWSGI_OPT_MASTER

help: add a mule

mules

argument: required_argument

parser: uwsgi_opt_add_mules

flags: UWSGI_OPT_MASTER

help: add the specified number of mules

farm

argument: required_argument

parser: uwsgi_opt_add_farm

flags: UWSGI_OPT_MASTER

help: add a mule farm

mule-msg-size

argument: optional_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set mule message buffer size

signal

argument: required_argument

parser: uwsgi_opt_signal

flags: UWSGI_OPT_IMMEDIATE

help: send a uwsgi signal to a server

signal-bufsize

argument: required_argument

parser: uwsgi_opt_set_int

help: set buffer size for signal queue

signals-bufsize

argument: required_argument

parser: uwsgi_opt_set_int

help: set buffer size for signal queue

signal-timer

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: add a timer (syntax: <signal> <seconds>)

timer

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: add a timer (syntax: <signal> <seconds>)

signal-rbtimer

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: add a redblack timer (syntax: <signal> <seconds>)

rbtimer

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: add a redblack timer (syntax: <signal> <seconds>)

rpc-max

argument: required_argument

parser: uwsgi_opt_set_64bit

help: maximum number of rpc slots (default: 64)

disable-logging

argument: no_argument

shortcut: -L

parser: uwsgi_opt_false

help: disable request logging

flock

argument: required_argument

parser: uwsgi_opt_flock

flags: UWSGI_OPT_IMMEDIATE

help: lock the specified file before starting, exit if locked

flock-wait

argument: required_argument

parser: uwsgi_opt_flock_wait

flags: UWSGI_OPT_IMMEDIATE

help: lock the specified file before starting, wait if locked

flock2

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_IMMEDIATE

help: lock the specified file after logging/daemon setup, exit if locked

flock-wait2

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_IMMEDIATE

help: lock the specified file after logging/daemon setup, wait if locked

pidfile

argument: required_argument

parser: uwsgi_opt_set_str

help: create pidfile (before privileges drop)

pidfile2

argument: required_argument

parser: uwsgi_opt_set_str

help: create pidfile (after privileges drop)

safe-pidfile

argument: required_argument

parser: uwsgi_opt_set_str

help: create safe pidfile (before privileges drop)

safe-pidfile2

argument: required_argument

parser: uwsgi_opt_set_str

help: create safe pidfile (after privileges drop)

chroot

argument: required_argument

parser: uwsgi_opt_set_str

help: chroot() to the specified directory

pivot-root

argument: required_argument

parser: uwsgi_opt_set_str

help: pivot_root() to the specified directories (new_root and put_old must be separated with a space)

pivot_root

argument: required_argument

parser: uwsgi_opt_set_str

help: pivot_root() to the specified directories (new_root and put_old must be separated with a space)

uid

argument: required_argument

parser: uwsgi_opt_set_uid

help: setuid to the specified user/uid

gid

argument: required_argument

parser: uwsgi_opt_set_gid

help: setgid to the specified group/gid

add-gid

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add the specified group id to the process credentials

immediate-uid

argument: required_argument

parser: uwsgi_opt_set_immediate_uid

flags: UWSGI_OPT_IMMEDIATE

help: setuid to the specified user/uid IMMEDIATELY

immediate-gid

argument: required_argument

parser: uwsgi_opt_set_immediate_gid

flags: UWSGI_OPT_IMMEDIATE

help: setgid to the specified group/gid IMMEDIATELY

no-initgroups

argument: no_argument

parser: uwsgi_opt_true

help: disable additional groups set via initgroups()

cap

argument: required_argument

parser: uwsgi_opt_set_cap

help: set process capability

unshare

argument: required_argument

parser: uwsgi_opt_set_unshare

help: unshare() part of the processes and put it in a new namespace

unshare2

argument: required_argument

parser: uwsgi_opt_set_unshare

help: unshare() part of the processes and put it in a new namespace after rootfs change

setns-socket

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: expose a unix socket returning namespace fds from /proc/self/ns

setns-socket-skip

argument: required_argument

parser: uwsgi_opt_add_string_list

help: skip the specified entry when sending setns file descriptors

setns-skip

argument: required_argument

parser: uwsgi_opt_add_string_list

help: skip the specified entry when sending setns file descriptors

setns

argument: required_argument

parser: uwsgi_opt_set_str

help: join a namespace created by an external uWSGI instance

setns-preopen

argument: no_argument

parser: uwsgi_opt_true

help: open /proc/self/ns as soon as possible and cache fds

fork-socket

argument: required_argument

parser: uwsgi_opt_set_str

help: suspend the execution after early initialization and fork() at every unix socket connection

fork-server

argument: required_argument

parser: uwsgi_opt_set_str

help: suspend the execution after early initialization and fork() at every unix socket connection

jailed

argument: no_argument

parser: uwsgi_opt_true

help: mark the instance as jailed (force the execution of post_jail hooks)

jail

argument: required_argument

parser: uwsgi_opt_set_str

help: put the instance in a FreeBSD jail

jail-ip4

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an ipv4 address to the FreeBSD jail

jail-ip6

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an ipv6 address to the FreeBSD jail

jidfile

argument: required_argument

parser: uwsgi_opt_set_str

help: save the jid of a FreeBSD jail in the specified file

jid-file

argument: required_argument

parser: uwsgi_opt_set_str

help: save the jid of a FreeBSD jail in the specified file

jail2

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an option to the FreeBSD jail

libjail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an option to the FreeBSD jail

jail-attach

argument: required_argument

parser: uwsgi_opt_set_str

help: attach to the FreeBSD jail

refork

argument: no_argument

parser: uwsgi_opt_true

help: fork() again after privileges drop. Useful for jailing systems

re-fork

argument: no_argument

parser: uwsgi_opt_true

help: fork() again after privileges drop. Useful for jailing systems

refork-as-root

argument: no_argument

parser: uwsgi_opt_true

help: fork() again before privileges drop. Useful for jailing systems

re-fork-as-root

argument: no_argument

parser: uwsgi_opt_true

help: fork() again before privileges drop. Useful for jailing systems

refork-post-jail

argument: no_argument

parser: uwsgi_opt_true

help: fork() again after jailing. Useful for jailing systems

re-fork-post-jail

argument: no_argument

parser: uwsgi_opt_true

help: fork() again after jailing. Useful for jailing systems

hook-asap

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook as soon as possible

hook-pre-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook before jailing

hook-post-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after jailing

hook-in-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook in jail after initialization

hook-as-root

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook before privileges drop

hook-as-user

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after privileges drop

hook-as-user-atexit

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook before app exit and reload

hook-pre-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook before app loading

hook-post-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after app loading

hook-post-fork

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after each fork

hook-accepting

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after each worker enter the accepting phase

hook-accepting1

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after the first worker enters the accepting phase

hook-accepting-once

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after each worker enter the accepting phase (once per-instance)

hook-accepting1-once

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook after the first worker enters the accepting phase (once per instance)

hook-master-start

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook when the Master starts

hook-touch

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook when the specified file is touched (syntax: <file> <action>)

hook-emperor-start

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook when the Emperor starts

hook-emperor-stop

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook when the Emperor send a stop message

hook-emperor-reload

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook when the Emperor send a reload message

hook-emperor-lost

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook when the Emperor connection is lost

hook-as-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook before exec()ing the vassal

hook-as-emperor

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook in the emperor after the vassal has been started

hook-as-on-demand-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook whenever a vassal enters on-demand mode

hook-as-on-config-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook whenever the emperor detects a config change for an on-demand vassal

hook-as-emperor-before-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook before the new vassal is spawned

hook-as-vassal-before-drop

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook into vassal, before dropping its privileges

hook-as-emperor-setns

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook in the emperor entering vassal namespace

hook-as-mule

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook in each mule

hook-as-gateway

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified hook in each gateway

after-request-hook

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified function/symbol after each request

after-request-call

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified function/symbol after each request

exec-asap

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command as soon as possible

exec-pre-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command before jailing

exec-post-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command after jailing

exec-in-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command in jail after initialization

exec-as-root

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command before privileges drop

exec-as-user

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command after privileges drop

exec-as-user-atexit

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command before app exit and reload

exec-pre-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command before app loading

exec-post-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command after app loading

exec-as-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command before exec()ing the vassal

exec-as-emperor

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the specified command in the emperor after the vassal has been started

mount-asap

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem as soon as possible

mount-pre-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem before jailing

mount-post-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem after jailing

mount-in-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem in jail after initialization

mount-as-root

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem before privileges drop

mount-as-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem before exec()ing the vassal

mount-as-emperor

argument: required_argument

parser: uwsgi_opt_add_string_list

help: mount filesystem in the emperor after the vassal has been started

umount-asap

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem as soon as possible

umount-pre-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem before jailing

umount-post-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem after jailing

umount-in-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem in jail after initialization

umount-as-root

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem before privileges drop

umount-as-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem before exec()ing the vassal

umount-as-emperor

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unmount filesystem in the emperor after the vassal has been started

wait-for-interface

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified network interface to come up before running root hooks

wait-for-interface-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set the timeout for wait-for-interface

wait-interface

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified network interface to come up before running root hooks

wait-interface-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set the timeout for wait-for-interface

wait-for-iface

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified network interface to come up before running root hooks

wait-for-iface-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set the timeout for wait-for-interface

wait-iface

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified network interface to come up before running root hooks

wait-iface-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set the timeout for wait-for-interface

wait-for-fs

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified filesystem item to appear before running root hooks

wait-for-file

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified file to appear before running root hooks

wait-for-dir

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified directory to appear before running root hooks

wait-for-mountpoint

argument: required_argument

parser: uwsgi_opt_add_string_list

help: wait for the specified mountpoint to appear before running root hooks

wait-for-fs-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set the timeout for wait-for-fs/file/dir

call-asap

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function as soon as possible

call-pre-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function before jailing

call-post-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function after jailing

call-in-jail

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function in jail after initialization

call-as-root

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function before privileges drop

call-as-user

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function after privileges drop

call-as-user-atexit

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function before app exit and reload

call-pre-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function before app loading

call-post-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function after app loading

call-as-vassal

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function() before exec()ing the vassal

call-as-vassal1

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function before exec()ing the vassal

call-as-vassal3

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function(char *, uid_t, gid_t) before exec()ing the vassal

call-as-emperor

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function() in the emperor after the vassal has been started

call-as-emperor1

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function in the emperor after the vassal has been started

call-as-emperor2

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function(char *, pid_t) in the emperor after the vassal has been started

call-as-emperor4

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified function(char *, pid_t, uid_t, gid_t) in the emperor after the vassal has been started

ini

argument: required_argument

parser: uwsgi_opt_load_ini

flags: UWSGI_OPT_IMMEDIATE

help: load config from ini file

yaml

argument: required_argument

shortcut: -y

parser: uwsgi_opt_load_yml

flags: UWSGI_OPT_IMMEDIATE

help: load config from yaml file

yml

argument: required_argument

shortcut: -y

parser: uwsgi_opt_load_yml

flags: UWSGI_OPT_IMMEDIATE

help: load config from yaml file

json

argument: required_argument

shortcut: -j

parser: uwsgi_opt_load_json

flags: UWSGI_OPT_IMMEDIATE

help: load config from json file

js

argument: required_argument

shortcut: -j

parser: uwsgi_opt_load_json

flags: UWSGI_OPT_IMMEDIATE

help: load config from json file

weight

argument: required_argument

parser: uwsgi_opt_set_64bit

help: weight of the instance (used by clustering/lb/subscriptions)

auto-weight

argument: required_argument

parser: uwsgi_opt_true

help: set weight of the instance (used by clustering/lb/subscriptions) automatically

no-server

argument: no_argument

parser: uwsgi_opt_true

help: force no-server mode

command-mode

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_IMMEDIATE

help: force command mode

no-defer-accept

argument: no_argument

parser: uwsgi_opt_true

help: disable deferred-accept on sockets

tcp-nodelay

argument: no_argument

parser: uwsgi_opt_true

help: enable TCP NODELAY on each request

so-keepalive

argument: no_argument

parser: uwsgi_opt_true

help: enable TCP KEEPALIVEs

so-send-timeout

argument: no_argument

parser: uwsgi_opt_set_int

help: set SO_SNDTIMEO

socket-send-timeout

argument: no_argument

parser: uwsgi_opt_set_int

help: set SO_SNDTIMEO

so-write-timeout

argument: no_argument

parser: uwsgi_opt_set_int

help: set SO_SNDTIMEO

socket-write-timeout

argument: no_argument

parser: uwsgi_opt_set_int

help: set SO_SNDTIMEO

socket-sndbuf

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set SO_SNDBUF

socket-rcvbuf

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set SO_RCVBUF

limit-as

argument: required_argument

parser: uwsgi_opt_set_megabytes

help: limit processes address space/vsz

limit-nproc

argument: required_argument

parser: uwsgi_opt_set_int

help: limit the number of spawnable processes

reload-on-as

argument: required_argument

parser: uwsgi_opt_set_megabytes

flags: UWSGI_OPT_MEMORY

help: reload if address space is higher than specified megabytes

reload-on-rss

argument: required_argument

parser: uwsgi_opt_set_megabytes

flags: UWSGI_OPT_MEMORY

help: reload if rss memory is higher than specified megabytes

evil-reload-on-as

argument: required_argument

parser: uwsgi_opt_set_megabytes

flags: UWSGI_OPT_MASTER | UWSGI_OPT_MEMORY

help: force the master to reload a worker if its address space is higher than specified megabytes

evil-reload-on-rss

argument: required_argument

parser: uwsgi_opt_set_megabytes

flags: UWSGI_OPT_MASTER | UWSGI_OPT_MEMORY

help: force the master to reload a worker if its rss memory is higher than specified megabytes

reload-on-fd

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: reload if the specified file descriptor is ready

brutal-reload-on-fd

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: brutal reload if the specified file descriptor is ready

ksm

argument: optional_argument

parser: uwsgi_opt_set_int

help: enable Linux KSM

pcre-jit

argument: no_argument

parser: uwsgi_opt_pcre_jit

flags: UWSGI_OPT_IMMEDIATE

help: enable pcre jit (if available)

never-swap

argument: no_argument

parser: uwsgi_opt_true

help: lock all memory pages avoiding swapping

touch-reload

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: reload uWSGI if the specified file is modified/touched

touch-workers-reload

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: trigger reload of (only) workers if the specified file is modified/touched

touch-chain-reload

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: trigger chain reload if the specified file is modified/touched

touch-logrotate

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: trigger logrotation if the specified file is modified/touched

touch-logreopen

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: trigger log reopen if the specified file is modified/touched

touch-exec

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: run command when the specified file is modified/touched (syntax: file command)

touch-signal

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: signal when the specified file is modified/touched (syntax: file signal)

fs-reload

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: graceful reload when the specified filesystem object is modified

fs-brutal-reload

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: brutal reload when the specified filesystem object is modified

fs-signal

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise a uwsgi signal when the specified filesystem object is modified (syntax: file signal)

check-mountpoint

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: destroy the instance if a filesystem is no more reachable (useful for reliable Fuse management)

mountpoint-check

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: destroy the instance if a filesystem is no more reachable (useful for reliable Fuse management)

check-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: destroy the instance if a filesystem is no more reachable (useful for reliable Fuse management)

mount-check

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: destroy the instance if a filesystem is no more reachable (useful for reliable Fuse management)

propagate-touch

argument: no_argument

parser: uwsgi_opt_true

help: over-engineering option for system with flaky signal management

limit-post

argument: required_argument

parser: uwsgi_opt_set_64bit

help: limit request body

no-orphans

argument: no_argument

parser: uwsgi_opt_true

help: automatically kill workers if master dies (can be dangerous for availability)

prio

argument: required_argument

parser: uwsgi_opt_set_rawint

help: set processes/threads priority

cpu-affinity

argument: required_argument

parser: uwsgi_opt_set_int

help: set cpu affinity

post-buffering

argument: required_argument

parser: uwsgi_opt_set_64bit

help: enable post buffering

post-buffering-bufsize

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set buffer size for read() in post buffering mode

body-read-warning

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the amount of allowed memory allocation (in megabytes) for request body before starting printing a warning

upload-progress

argument: required_argument

parser: uwsgi_opt_set_str

help: enable creation of .json files in the specified directory during a file upload

no-default-app

argument: no_argument

parser: uwsgi_opt_true

help: do not fallback to default app

manage-script-name

argument: no_argument

parser: uwsgi_opt_true

help: automatically rewrite SCRIPT_NAME and PATH_INFO

ignore-script-name

argument: no_argument

parser: uwsgi_opt_true

help: ignore SCRIPT_NAME

catch-exceptions

argument: no_argument

parser: uwsgi_opt_true

help: report exception as http output (discouraged, use only for testing)

reload-on-exception

argument: no_argument

parser: uwsgi_opt_true

help: reload a worker when an exception is raised

reload-on-exception-type

argument: required_argument

parser: uwsgi_opt_add_string_list

help: reload a worker when a specific exception type is raised

reload-on-exception-value

argument: required_argument

parser: uwsgi_opt_add_string_list

help: reload a worker when a specific exception value is raised

reload-on-exception-repr

argument: required_argument

parser: uwsgi_opt_add_string_list

help: reload a worker when a specific exception type+value (language-specific) is raised

exception-handler

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: add an exception handler

enable-metrics

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: enable metrics subsystem

metric

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: add a custom metric

metric-threshold

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: add a metric threshold/alarm

metric-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: add a metric threshold/alarm

alarm-metric

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: add a metric threshold/alarm

metrics-dir

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: export metrics as text files to the specified directory

metrics-dir-restore

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: restore last value taken from the metrics dir

metric-dir

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: export metrics as text files to the specified directory

metric-dir-restore

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: restore last value taken from the metrics dir

metrics-no-cores

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_METRICS|UWSGI_OPT_MASTER

help: disable generation of cores-related metrics

reference: The Metrics subsystem

Do not expose metrics of async cores.

udp

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: run the udp server on the specified address

stats

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: enable the stats server on the specified address

stats-server

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: enable the stats server on the specified address

stats-http

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: prefix stats server json output with http headers

stats-minified

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: minify statistics json output

stats-min

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: minify statistics json output

stats-push

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER|UWSGI_OPT_METRICS

help: push the stats json to the specified destination

stats-pusher-default-freq

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the default frequency of stats pushers

stats-pushers-default-freq

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the default frequency of stats pushers

stats-no-cores

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: disable generation of cores-related stats

reference: The Metrics subsystem

Do not expose the information about cores in the stats server.

stats-no-metrics

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: do not include metrics in stats output

reference: The Metrics subsystem

Do not expose the metrics at all in the stats server.

multicast

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: subscribe to specified multicast group

multicast-ttl

argument: required_argument

parser: uwsgi_opt_set_int

help: set multicast ttl

multicast-loop

argument: required_argument

parser: uwsgi_opt_set_int

help: set multicast loop (default 1)

master-fifo

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: enable the master fifo

notify-socket

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: enable the notification socket

subscription-notify-socket

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: set the notification socket for subscriptions

subscription-mountpoints

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: enable mountpoints support for subscription system

subscription-mountpoint

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: enable mountpoints support for subscription system

legion

argument: required_argument

parser: uwsgi_opt_legion

flags: UWSGI_OPT_MASTER

help: became a member of a legion

legion-mcast

argument: required_argument

parser: uwsgi_opt_legion_mcast

flags: UWSGI_OPT_MASTER

help: became a member of a legion (shortcut for multicast)

legion-node

argument: required_argument

parser: uwsgi_opt_legion_node

flags: UWSGI_OPT_MASTER

help: add a node to a legion

legion-freq

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the frequency of legion packets

legion-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the tolerance of legion subsystem

legion-death-on-lord-error

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: declare itself as a dead node for the specified amount of seconds if one of the lord hooks fails

legion-skew-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the clock skew tolerance of legion subsystem (default 30 seconds)

legion-lord

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call on Lord election

legion-unlord

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call on Lord dismiss

legion-setup

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call on legion setup

legion-death

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call on legion death (shutdown of the instance)

legion-join

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call on legion join (first time quorum is reached)

legion-node-joined

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call on new node joining legion

legion-node-left

argument: required_argument

parser: uwsgi_opt_legion_hook

flags: UWSGI_OPT_MASTER

help: action to call node leaving legion

legion-quorum

argument: required_argument

parser: uwsgi_opt_legion_quorum

flags: UWSGI_OPT_MASTER

help: set the quorum of a legion

legion-scroll

argument: required_argument

parser: uwsgi_opt_legion_scroll

flags: UWSGI_OPT_MASTER

help: set the scroll of a legion

legion-scroll-max-size

argument: required_argument

parser: uwsgi_opt_set_16bit

help: set max size of legion scroll buffer

legion-scroll-list-max-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set max size of legion scroll list buffer

subscriptions-sign-check

argument: required_argument

parser: uwsgi_opt_scd

flags: UWSGI_OPT_MASTER

help: set digest algorithm and certificate directory for secured subscription system

subscriptions-sign-check-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the maximum tolerance (in seconds) of clock skew for secured subscription system

subscriptions-sign-skip-uid

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: skip signature check for the specified uid when using unix sockets credentials

subscriptions-credentials-check

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: add a directory to search for subscriptions key credentials

subscriptions-use-credentials

argument: no_argument

parser: uwsgi_opt_true

help: enable management of SCM_CREDENTIALS in subscriptions UNIX sockets

subscription-algo

argument: required_argument

parser: uwsgi_opt_ssa

help: set load balancing algorithm for the subscription system

subscription-dotsplit

argument: no_argument

parser: uwsgi_opt_true

help: try to fallback to the next part (dot based) in subscription key

subscribe-to

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: subscribe to the specified subscription server

st

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: subscribe to the specified subscription server

subscribe

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: subscribe to the specified subscription server

subscribe2

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: subscribe to the specified subscription server using advanced keyval syntax

subscribe-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: send subscription announce at the specified interval

subscription-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

help: set tolerance for subscription servers

unsubscribe-on-graceful-reload

argument: no_argument

parser: uwsgi_opt_true

help: force unsubscribe request even during graceful reload

start-unsubscribed

argument: no_argument

parser: uwsgi_opt_true

help: configure subscriptions but do not send them (useful with master fifo)

subscribe-with-modifier1

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: force the specififed modifier1 when subscribing

snmp

argument: optional_argument

parser: uwsgi_opt_snmp

help: enable the embedded snmp server

snmp-community

argument: required_argument

parser: uwsgi_opt_snmp_community

help: set the snmp community string

ssl-verbose

argument: no_argument

parser: uwsgi_opt_true

help: be verbose about SSL errors

ssl-sessions-use-cache

argument: optional_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: use uWSGI cache for ssl sessions storage

ssl-session-use-cache

argument: optional_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: use uWSGI cache for ssl sessions storage

ssl-sessions-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set SSL sessions timeout (default: 300 seconds)

ssl-session-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set SSL sessions timeout (default: 300 seconds)

sni

argument: required_argument

parser: uwsgi_opt_sni

help: add an SNI-governed SSL context

sni-dir

argument: required_argument

parser: uwsgi_opt_set_str

help: check for cert/key/client_ca file in the specified directory and create a sni/ssl context on demand

sni-dir-ciphers

argument: required_argument

parser: uwsgi_opt_set_str

help: set ssl ciphers for sni-dir option

ssl-enable3

argument: no_argument

parser: uwsgi_opt_true

help: enable SSLv3 (insecure)

ssl-option

argument: no_argument

parser: uwsgi_opt_add_string_list

help: set a raw ssl option (numeric value)

sni-regexp

argument: required_argument

parser: uwsgi_opt_sni

help: add an SNI-governed SSL context (the key is a regexp)

ssl-tmp-dir

argument: required_argument

parser: uwsgi_opt_set_str

help: store ssl-related temp files in the specified directory

check-interval

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set the interval (in seconds) of master checks

forkbomb-delay

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: sleep for the specified number of seconds when a forkbomb is detected

binary-path

argument: required_argument

parser: uwsgi_opt_set_str

help: force binary path

privileged-binary-patch

argument: required_argument

parser: uwsgi_opt_set_str

help: patch the uwsgi binary with a new command (before privileges drop)

unprivileged-binary-patch

argument: required_argument

parser: uwsgi_opt_set_str

help: patch the uwsgi binary with a new command (after privileges drop)

privileged-binary-patch-arg

argument: required_argument

parser: uwsgi_opt_set_str

help: patch the uwsgi binary with a new command and arguments (before privileges drop)

unprivileged-binary-patch-arg

argument: required_argument

parser: uwsgi_opt_set_str

help: patch the uwsgi binary with a new command and arguments (after privileges drop)

async

argument: required_argument

parser: uwsgi_opt_set_int

help: enable async mode with specified cores

disable-async-warn-on-queue-full

argument: no_argument

parser: uwsgi_opt_false

help: Disable printing ‘async queue is full’ warning messages.

max-fd

argument: required_argument

parser: uwsgi_opt_set_int

help: set maximum number of file descriptors (requires root privileges)

logto

argument: required_argument

parser: uwsgi_opt_set_str

help: set logfile/udp address

logto2

argument: required_argument

parser: uwsgi_opt_set_str

help: log to specified file or udp address after privileges drop

log-format

argument: required_argument

parser: uwsgi_opt_set_str

help: set advanced format for request logging

logformat

argument: required_argument

parser: uwsgi_opt_set_str

help: set advanced format for request logging

logformat-strftime

argument: no_argument

parser: uwsgi_opt_true

help: apply strftime to logformat output

log-format-strftime

argument: no_argument

parser: uwsgi_opt_true

help: apply strftime to logformat output

logfile-chown

argument: no_argument

parser: uwsgi_opt_true

help: chown logfiles

logfile-chmod

argument: required_argument

parser: uwsgi_opt_logfile_chmod

help: chmod logfiles

log-syslog

argument: optional_argument

parser: uwsgi_opt_set_logger

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: log to syslog

log-socket

argument: required_argument

parser: uwsgi_opt_set_logger

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: send logs to the specified socket

req-logger

argument: required_argument

parser: uwsgi_opt_set_req_logger

flags: UWSGI_OPT_REQ_LOG_MASTER

help: set/append a request logger

logger-req

argument: required_argument

parser: uwsgi_opt_set_req_logger

flags: UWSGI_OPT_REQ_LOG_MASTER

help: set/append a request logger

logger

argument: required_argument

parser: uwsgi_opt_set_logger

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: set/append a logger

logger-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled loggers

loggers-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled loggers

threaded-logger

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: offload log writing to a thread

log-encoder

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: add an item in the log encoder chain

log-req-encoder

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: add an item in the log req encoder chain

log-drain

argument: required_argument

parser: uwsgi_opt_add_regexp_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: drain (do not show) log lines matching the specified regexp

log-filter

argument: required_argument

parser: uwsgi_opt_add_regexp_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: show only log lines matching the specified regexp

log-route

argument: required_argument

parser: uwsgi_opt_add_regexp_custom_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: log to the specified named logger if regexp applied on logline matches

log-req-route

argument: required_argument

parser: uwsgi_opt_add_regexp_custom_list

flags: UWSGI_OPT_REQ_LOG_MASTER

help: log requests to the specified named logger if regexp applied on logline matches

use-abort

argument: no_argument

parser: uwsgi_opt_true

help: call abort() on segfault/fpe, could be useful for generating a core dump

alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: create a new alarm, syntax: <alarm> <plugin:args>

alarm-cheap

argument: required_argument

parser: uwsgi_opt_true

help: use main alarm thread rather than create dedicated threads for curl-based alarms

alarm-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: tune the anti-loop alam system (default 3 seconds)

alarm-fd

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when an fd is read for read (by default it reads 1 byte, set 8 for eventfd)

alarm-segfault

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the segmentation fault handler is executed

segfault-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the segmentation fault handler is executed

alarm-backlog

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the socket backlog queue is full

backlog-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the socket backlog queue is full

lq-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the socket backlog queue is full

alarm-lq

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the socket backlog queue is full

alarm-listen-queue

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the socket backlog queue is full

listen-queue-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: raise the specified alarm when the socket backlog queue is full

log-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: raise the specified alarm when a log line matches the specified regexp, syntax: <alarm>[,alarm...] <regexp>

alarm-log

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: raise the specified alarm when a log line matches the specified regexp, syntax: <alarm>[,alarm...] <regexp>

not-log-alarm

argument: required_argument

parser: uwsgi_opt_add_string_list_custom

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: skip the specified alarm when a log line matches the specified regexp, syntax: <alarm>[,alarm...] <regexp>

not-alarm-log

argument: required_argument

parser: uwsgi_opt_add_string_list_custom

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: skip the specified alarm when a log line matches the specified regexp, syntax: <alarm>[,alarm...] <regexp>

alarm-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled alarms

alarms-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled alarms

alarm-msg-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the max size of an alarm message (default 8192)

log-master

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER|UWSGI_OPT_LOG_MASTER

help: delegate logging to master process

log-master-bufsize

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the buffer size for the master logger. bigger log messages will be truncated

log-master-stream

argument: no_argument

parser: uwsgi_opt_true

help: create the master logpipe as SOCK_STREAM

log-master-req-stream

argument: no_argument

parser: uwsgi_opt_true

help: create the master requests logpipe as SOCK_STREAM

log-reopen

argument: no_argument

parser: uwsgi_opt_true

help: reopen log after reload

log-truncate

argument: no_argument

parser: uwsgi_opt_true

help: truncate log on startup

log-maxsize

argument: required_argument

parser: uwsgi_opt_set_64bit

flags: UWSGI_OPT_MASTER|UWSGI_OPT_LOG_MASTER

help: set maximum logfile size

log-backupname

argument: required_argument

parser: uwsgi_opt_set_str

help: set logfile name after rotation

logdate

argument: optional_argument

parser: uwsgi_opt_log_date

help: prefix logs with date or a strftime string

log-date

argument: optional_argument

parser: uwsgi_opt_log_date

help: prefix logs with date or a strftime string

log-prefix

argument: optional_argument

parser: uwsgi_opt_log_date

help: prefix logs with a string

log-zero

argument: no_argument

parser: uwsgi_opt_true

help: log responses without body

log-slow

argument: required_argument

parser: uwsgi_opt_set_int

help: log requests slower than the specified number of milliseconds

log-4xx

argument: no_argument

parser: uwsgi_opt_true

help: log requests with a 4xx response

log-5xx

argument: no_argument

parser: uwsgi_opt_true

help: log requests with a 5xx response

log-big

argument: required_argument

parser: uwsgi_opt_set_64bit

help: log requestes bigger than the specified size

log-sendfile

argument: required_argument

parser: uwsgi_opt_true

help: log sendfile requests

log-ioerror

argument: required_argument

parser: uwsgi_opt_true

help: log requests with io errors

log-micros

argument: no_argument

parser: uwsgi_opt_true

help: report response time in microseconds instead of milliseconds

log-x-forwarded-for

argument: no_argument

parser: uwsgi_opt_true

help: use the ip from X-Forwarded-For header instead of REMOTE_ADDR

master-as-root

argument: no_argument

parser: uwsgi_opt_true

help: leave master process running as root

drop-after-init

argument: no_argument

parser: uwsgi_opt_true

help: run privileges drop after plugin initialization

drop-after-apps

argument: no_argument

parser: uwsgi_opt_true

help: run privileges drop after apps loading

force-cwd

argument: required_argument

parser: uwsgi_opt_set_str

help: force the initial working directory to the specified value

binsh

argument: required_argument

parser: uwsgi_opt_add_string_list

help: override /bin/sh (used by exec hooks, it always fallback to /bin/sh)

chdir

argument: required_argument

parser: uwsgi_opt_set_str

help: chdir to specified directory before apps loading

chdir2

argument: required_argument

parser: uwsgi_opt_set_str

help: chdir to specified directory after apps loading

lazy

argument: no_argument

parser: uwsgi_opt_true

help: set lazy mode (load apps in workers instead of master)

lazy-apps

argument: no_argument

parser: uwsgi_opt_true

help: load apps in each worker instead of the master

cheap

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: set cheap mode (spawn workers only after the first request)

cheaper

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER | UWSGI_OPT_CHEAPER

help: set cheaper mode (adaptive process spawning)

cheaper-initial

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER | UWSGI_OPT_CHEAPER

help: set the initial number of processes to spawn in cheaper mode

cheaper-algo

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: choose to algorithm used for adaptive process spawning

cheaper-step

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER | UWSGI_OPT_CHEAPER

help: number of additional processes to spawn at each overload

cheaper-overload

argument: required_argument

parser: uwsgi_opt_set_64bit

flags: UWSGI_OPT_MASTER | UWSGI_OPT_CHEAPER

help: increase workers after specified overload

cheaper-algo-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled cheapers algorithms

cheaper-algos-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled cheapers algorithms

cheaper-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled cheapers algorithms

cheaper-rss-limit-soft

argument: required_argument

parser: uwsgi_opt_set_64bit

flags: UWSGI_OPT_MASTER | UWSGI_OPT_CHEAPER

help: don’t spawn new workers if total resident memory usage of all workers is higher than this limit

cheaper-rss-limit-hard

argument: required_argument

parser: uwsgi_opt_set_64bit

flags: UWSGI_OPT_MASTER | UWSGI_OPT_CHEAPER

help: if total workers resident memory usage is higher try to stop workers

idle

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: set idle mode (put uWSGI in cheap mode after inactivity)

die-on-idle

argument: no_argument

parser: uwsgi_opt_true

help: shutdown uWSGI when idle

mount

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load application under mountpoint

worker-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load application under mountpoint in the specified worker or after workers spawn

threads

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS

help: run each worker in prethreaded mode with the specified number of threads

thread-stacksize

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS

help: set threads stacksize

threads-stacksize

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS

help: set threads stacksize

thread-stack-size

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS

help: set threads stacksize

threads-stack-size

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS

help: set threads stacksize

vhost

argument: no_argument

parser: uwsgi_opt_true

help: enable virtualhosting mode (based on SERVER_NAME variable)

vhost-host

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_VHOST

help: enable virtualhosting mode (based on HTTP_HOST variable)

route

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route

route-host

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on Host header

route-uri

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on REQUEST_URI

route-qs

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on QUERY_STRING

route-remote-addr

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on REMOTE_ADDR

route-user-agent

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on HTTP_USER_AGENT

route-remote-user

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on REMOTE_USER

route-referer

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on HTTP_REFERER

route-label

argument: required_argument

parser: uwsgi_opt_add_route

help: add a routing label (for use with goto)

route-if

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on condition

route-if-not

argument: required_argument

parser: uwsgi_opt_add_route

help: add a route based on condition (negate version)

route-run

argument: required_argument

parser: uwsgi_opt_add_route

help: always run the specified route action

final-route

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route

final-route-status

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route for the specified status

final-route-host

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on Host header

final-route-uri

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on REQUEST_URI

final-route-qs

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on QUERY_STRING

final-route-remote-addr

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on REMOTE_ADDR

final-route-user-agent

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on HTTP_USER_AGENT

final-route-remote-user

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on REMOTE_USER

final-route-referer

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on HTTP_REFERER

final-route-label

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final routing label (for use with goto)

final-route-if

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on condition

final-route-if-not

argument: required_argument

parser: uwsgi_opt_add_route

help: add a final route based on condition (negate version)

final-route-run

argument: required_argument

parser: uwsgi_opt_add_route

help: always run the specified final route action

error-route

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route

error-route-status

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route for the specified status

error-route-host

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on Host header

error-route-uri

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on REQUEST_URI

error-route-qs

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on QUERY_STRING

error-route-remote-addr

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on REMOTE_ADDR

error-route-user-agent

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on HTTP_USER_AGENT

error-route-remote-user

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on REMOTE_USER

error-route-referer

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on HTTP_REFERER

error-route-label

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error routing label (for use with goto)

error-route-if

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on condition

error-route-if-not

argument: required_argument

parser: uwsgi_opt_add_route

help: add an error route based on condition (negate version)

error-route-run

argument: required_argument

parser: uwsgi_opt_add_route

help: always run the specified error route action

response-route

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route

response-route-status

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route for the specified status

response-route-host

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on Host header

response-route-uri

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on REQUEST_URI

response-route-qs

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on QUERY_STRING

response-route-remote-addr

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on REMOTE_ADDR

response-route-user-agent

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on HTTP_USER_AGENT

response-route-remote-user

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on REMOTE_USER

response-route-referer

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on HTTP_REFERER

response-route-label

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response routing label (for use with goto)

response-route-if

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on condition

response-route-if-not

argument: required_argument

parser: uwsgi_opt_add_route

help: add a response route based on condition (negate version)

response-route-run

argument: required_argument

parser: uwsgi_opt_add_route

help: always run the specified response route action

router-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled routers

routers-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled routers

error-page-403

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an error page (html) for managed 403 response

error-page-404

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an error page (html) for managed 404 response

error-page-500

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an error page (html) for managed 500 response

websockets-ping-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set the frequency (in seconds) of websockets automatic ping packets

websocket-ping-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set the frequency (in seconds) of websockets automatic ping packets

websockets-pong-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

help: set the tolerance (in seconds) of websockets ping/pong subsystem

websocket-pong-tolerance

argument: required_argument

parser: uwsgi_opt_set_int

help: set the tolerance (in seconds) of websockets ping/pong subsystem

websockets-max-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the max allowed size of websocket messages (in Kbytes, default 1024)

websocket-max-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the max allowed size of websocket messages (in Kbytes, default 1024)

chunked-input-limit

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the max size of a chunked input part (default 1MB, in bytes)

chunked-input-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set default timeout for chunked input

clock

argument: required_argument

parser: uwsgi_opt_set_str

help: set a clock source

clock-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled clocks

clocks-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled clocks

add-header

argument: required_argument

parser: uwsgi_opt_add_string_list

help: automatically add HTTP headers to response

rem-header

argument: required_argument

parser: uwsgi_opt_add_string_list

help: automatically remove specified HTTP header from the response

del-header

argument: required_argument

parser: uwsgi_opt_add_string_list

help: automatically remove specified HTTP header from the response

collect-header

argument: required_argument

parser: uwsgi_opt_add_string_list

help: store the specified response header in a request var (syntax: header var)

response-header-collect

argument: required_argument

parser: uwsgi_opt_add_string_list

help: store the specified response header in a request var (syntax: header var)

pull-header

argument: required_argument

parser: uwsgi_opt_add_string_list

help: store the specified response header in a request var and remove it from the response (syntax: header var)

check-static

argument: required_argument

parser: uwsgi_opt_check_static

flags: UWSGI_OPT_MIME

help: check for static files in the specified directory

check-static-docroot

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MIME

help: check for static files in the requested DOCUMENT_ROOT

static-check

argument: required_argument

parser: uwsgi_opt_check_static

flags: UWSGI_OPT_MIME

help: check for static files in the specified directory

static-map

argument: required_argument

parser: uwsgi_opt_static_map

flags: UWSGI_OPT_MIME

help: map mountpoint to static directory (or file)

static-map2

argument: required_argument

parser: uwsgi_opt_static_map

flags: UWSGI_OPT_MIME

help: like static-map but completely appending the requested resource to the docroot

static-skip-ext

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: skip specified extension from staticfile checks

static-index

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: search for specified file if a directory is requested

static-safe

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: skip security checks if the file is under the specified path

static-cache-paths

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MIME|UWSGI_OPT_MASTER

help: put resolved paths in the uWSGI cache for the specified amount of seconds

static-cache-paths-name

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MIME|UWSGI_OPT_MASTER

help: use the specified cache for static paths

mimefile

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: set mime types file path (default /etc/apache2/mime.types)

mime-file

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: set mime types file path (default /etc/apache2/mime.types)

mimefile

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: set mime types file path (default /etc/mime.types)

mime-file

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: set mime types file path (default /etc/mime.types)

static-expires-type

argument: required_argument

parser: uwsgi_opt_add_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on content type

static-expires-type-mtime

argument: required_argument

parser: uwsgi_opt_add_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on content type and file mtime

static-expires

argument: required_argument

parser: uwsgi_opt_add_regexp_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on filename regexp

static-expires-mtime

argument: required_argument

parser: uwsgi_opt_add_regexp_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on filename regexp and file mtime

static-expires-uri

argument: required_argument

parser: uwsgi_opt_add_regexp_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on REQUEST_URI regexp

static-expires-uri-mtime

argument: required_argument

parser: uwsgi_opt_add_regexp_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on REQUEST_URI regexp and file mtime

static-expires-path-info

argument: required_argument

parser: uwsgi_opt_add_regexp_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on PATH_INFO regexp

static-expires-path-info-mtime

argument: required_argument

parser: uwsgi_opt_add_regexp_dyn_dict

flags: UWSGI_OPT_MIME

help: set the Expires header based on PATH_INFO regexp and file mtime

static-gzip

argument: required_argument

parser: uwsgi_opt_add_regexp_list

flags: UWSGI_OPT_MIME

help: if the supplied regexp matches the static file translation it will search for a gzip version

static-gzip-all

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MIME

help: check for a gzip version of all requested static files

static-gzip-dir

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: check for a gzip version of all requested static files in the specified dir/prefix

static-gzip-prefix

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: check for a gzip version of all requested static files in the specified dir/prefix

static-gzip-ext

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: check for a gzip version of all requested static files with the specified ext/suffix

static-gzip-suffix

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: check for a gzip version of all requested static files with the specified ext/suffix

honour-range

argument: no_argument

parser: uwsgi_opt_true

help: enable support for the HTTP Range header

offload-threads

argument: required_argument

parser: uwsgi_opt_set_int

help: set the number of offload threads to spawn (per-worker, default 0)

offload-thread

argument: required_argument

parser: uwsgi_opt_set_int

help: set the number of offload threads to spawn (per-worker, default 0)

file-serve-mode

argument: required_argument

parser: uwsgi_opt_fileserve_mode

flags: UWSGI_OPT_MIME

help: set static file serving mode

fileserve-mode

argument: required_argument

parser: uwsgi_opt_fileserve_mode

flags: UWSGI_OPT_MIME

help: set static file serving mode

disable-sendfile

argument: no_argument

parser: uwsgi_opt_true

help: disable sendfile() and rely on boring read()/write()

check-cache

argument: optional_argument

parser: uwsgi_opt_set_str

help: check for response data in the specified cache (empty for default cache)

close-on-exec

argument: no_argument

parser: uwsgi_opt_true

help: set close-on-exec on connection sockets (could be required for spawning processes in requests)

close-on-exec2

argument: no_argument

parser: uwsgi_opt_true

help: set close-on-exec on server sockets (could be required for spawning processes in requests)

mode

argument: required_argument

parser: uwsgi_opt_set_str

help: set uWSGI custom mode

env

argument: required_argument

parser: uwsgi_opt_set_env

help: set environment variable

ienv

argument: required_argument

parser: uwsgi_opt_set_env

flags: UWSGI_OPT_IMMEDIATE

help: set environment variable (IMMEDIATE version)

envdir

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a daemontools compatible envdir

early-envdir

argument: required_argument

parser: uwsgi_opt_envdir

flags: UWSGI_OPT_IMMEDIATE

help: load a daemontools compatible envdir ASAP

unenv

argument: required_argument

parser: uwsgi_opt_unset_env

help: unset environment variable

vacuum

argument: no_argument

parser: uwsgi_opt_true

help: try to remove all of the generated file/sockets

file-write

argument: required_argument

parser: uwsgi_opt_add_string_list

help: write the specified content to the specified file (syntax: file=value) before privileges drop

cgroup

argument: required_argument

parser: uwsgi_opt_add_string_list

help: put the processes in the specified cgroup

cgroup-opt

argument: required_argument

parser: uwsgi_opt_add_string_list

help: set value in specified cgroup option

cgroup-dir-mode

argument: required_argument

parser: uwsgi_opt_set_str

help: set permission for cgroup directory (default is 700)

namespace

argument: required_argument

parser: uwsgi_opt_set_str

help: run in a new namespace under the specified rootfs

namespace-keep-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

help: keep the specified mountpoint in your namespace

ns

argument: required_argument

parser: uwsgi_opt_set_str

help: run in a new namespace under the specified rootfs

namespace-net

argument: required_argument

parser: uwsgi_opt_set_str

help: add network namespace

ns-net

argument: required_argument

parser: uwsgi_opt_set_str

help: add network namespace

enable-proxy-protocol

argument: no_argument

parser: uwsgi_opt_true

help: enable PROXY1 protocol support (only for http parsers)

reuse-port

argument: no_argument

parser: uwsgi_opt_true

help: enable REUSE_PORT flag on socket (BSD only)

tcp-fast-open

argument: required_argument

parser: uwsgi_opt_set_int

help: enable TCP_FASTOPEN flag on TCP sockets with the specified qlen value

tcp-fastopen

argument: required_argument

parser: uwsgi_opt_set_int

help: enable TCP_FASTOPEN flag on TCP sockets with the specified qlen value

tcp-fast-open-client

argument: no_argument

parser: uwsgi_opt_true

help: use sendto(..., MSG_FASTOPEN, ...) instead of connect() if supported

tcp-fastopen-client

argument: no_argument

parser: uwsgi_opt_true

help: use sendto(..., MSG_FASTOPEN, ...) instead of connect() if supported

zerg

argument: required_argument

parser: uwsgi_opt_add_string_list

help: attach to a zerg server

zerg-fallback

argument: no_argument

parser: uwsgi_opt_true

help: fallback to normal sockets if the zerg server is not available

zerg-server

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MASTER

help: enable the zerg server on the specified UNIX socket

cron

argument: required_argument

parser: uwsgi_opt_add_cron

flags: UWSGI_OPT_MASTER

help: add a cron task

cron2

argument: required_argument

parser: uwsgi_opt_add_cron2

flags: UWSGI_OPT_MASTER

help: add a cron task (key=val syntax)

unique-cron

argument: required_argument

parser: uwsgi_opt_add_unique_cron

flags: UWSGI_OPT_MASTER

help: add a unique cron task

cron-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum time (in seconds) we wait for cron command to complete

legion-cron

argument: required_argument

parser: uwsgi_opt_add_legion_cron

flags: UWSGI_OPT_MASTER

help: add a cron task runnable only when the instance is a lord of the specified legion

cron-legion

argument: required_argument

parser: uwsgi_opt_add_legion_cron

flags: UWSGI_OPT_MASTER

help: add a cron task runnable only when the instance is a lord of the specified legion

unique-legion-cron

argument: required_argument

parser: uwsgi_opt_add_unique_legion_cron

flags: UWSGI_OPT_MASTER

help: add a unique cron task runnable only when the instance is a lord of the specified legion

unique-cron-legion

argument: required_argument

parser: uwsgi_opt_add_unique_legion_cron

flags: UWSGI_OPT_MASTER

help: add a unique cron task runnable only when the instance is a lord of the specified legion

loop

argument: required_argument

parser: uwsgi_opt_set_str

help: select the uWSGI loop engine

loop-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled loop engines

loops-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled loop engines

worker-exec

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command as worker

worker-exec2

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command as worker (after post_fork hook)

attach-daemon

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: attach a command/daemon to the master process (the command has to not go in background)

attach-control-daemon

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: attach a command/daemon to the master process (the command has to not go in background), when the daemon dies, the master dies too

smart-attach-daemon

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: attach a command/daemon to the master process managed by a pidfile (the command has to daemonize)

smart-attach-daemon2

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: attach a command/daemon to the master process managed by a pidfile (the command has to NOT daemonize)

legion-attach-daemon

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: same as –attach-daemon but daemon runs only on legion lord node

legion-smart-attach-daemon

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: same as –smart-attach-daemon but daemon runs only on legion lord node

legion-smart-attach-daemon2

argument: required_argument

parser: uwsgi_opt_add_daemon

flags: UWSGI_OPT_MASTER

help: same as –smart-attach-daemon2 but daemon runs only on legion lord node

daemons-honour-stdin

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MASTER

help: do not change the stdin of external daemons to /dev/null

attach-daemon2

argument: required_argument

parser: uwsgi_opt_add_daemon2

flags: UWSGI_OPT_MASTER

help: attach-daemon keyval variant (supports smart modes too)

plugins

argument: required_argument

parser: uwsgi_opt_load_plugin

flags: UWSGI_OPT_IMMEDIATE

help: load uWSGI plugins

plugin

argument: required_argument

parser: uwsgi_opt_load_plugin

flags: UWSGI_OPT_IMMEDIATE

help: load uWSGI plugins

need-plugins

argument: required_argument

parser: uwsgi_opt_load_plugin

flags: UWSGI_OPT_IMMEDIATE

help: load uWSGI plugins (exit on error)

need-plugin

argument: required_argument

parser: uwsgi_opt_load_plugin

flags: UWSGI_OPT_IMMEDIATE

help: load uWSGI plugins (exit on error)

plugins-dir

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_IMMEDIATE

help: add a directory to uWSGI plugin search path

plugin-dir

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_IMMEDIATE

help: add a directory to uWSGI plugin search path

plugins-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled plugins

plugin-list

argument: no_argument

parser: uwsgi_opt_true

help: list enabled plugins

autoload

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_IMMEDIATE

help: try to automatically load plugins when unknown options are found

dlopen

argument: required_argument

parser: uwsgi_opt_load_dl

flags: UWSGI_OPT_IMMEDIATE

help: blindly load a shared library

allowed-modifiers

argument: required_argument

parser: uwsgi_opt_set_str

help: comma separated list of allowed modifiers

remap-modifier

argument: required_argument

parser: uwsgi_opt_set_str

help: remap request modifier from one id to another

dump-options

argument: no_argument

parser: uwsgi_opt_true

help: dump the full list of available options

show-config

argument: no_argument

parser: uwsgi_opt_true

help: show the current config reformatted as ini

binary-append-data

argument: required_argument

parser: uwsgi_opt_binary_append_data

flags: UWSGI_OPT_IMMEDIATE

help: return the content of a resource to stdout for appending to a uwsgi binary (for data:// usage)

print

argument: required_argument

parser: uwsgi_opt_print

help: simple print

iprint

argument: required_argument

parser: uwsgi_opt_print

flags: UWSGI_OPT_IMMEDIATE

help: simple print (immediate version)

exit

argument: optional_argument

parser: uwsgi_opt_exit

flags: UWSGI_OPT_IMMEDIATE

help: force exit() of the instance

cflags

argument: no_argument

parser: uwsgi_opt_cflags

flags: UWSGI_OPT_IMMEDIATE

help: report uWSGI CFLAGS (useful for building external plugins)

dot-h

argument: no_argument

parser: uwsgi_opt_dot_h

flags: UWSGI_OPT_IMMEDIATE

help: dump the uwsgi.h used for building the core (useful for building external plugins)

config-py

argument: no_argument

parser: uwsgi_opt_config_py

flags: UWSGI_OPT_IMMEDIATE

help: dump the uwsgiconfig.py used for building the core (useful for building external plugins)

build-plugin

argument: required_argument

parser: uwsgi_opt_build_plugin

flags: UWSGI_OPT_IMMEDIATE

help: build a uWSGI plugin for the current binary

version

argument: no_argument

parser: uwsgi_opt_print

help: print uWSGI version

plugin: airbrake

plugin: alarm_curl

plugin: alarm_speech

plugin: alarm_xmpp

plugin: asyncio

asyncio

argument: required_argument

parser: uwsgi_opt_setup_asyncio

flags: UWSGI_OPT_THREADS

help: a shortcut enabling asyncio loop engine with the specified number of async cores and optimal parameters

plugin: cache

plugin: carbon

carbon

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: push statistics to the specified carbon server

carbon-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set carbon connection timeout in seconds (default 3)

carbon-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set carbon push frequency in seconds (default 60)

carbon-id

argument: required_argument

parser: uwsgi_opt_set_str

help: set carbon id

carbon-no-workers

argument: no_argument

parser: uwsgi_opt_true

help: disable generation of single worker metrics

carbon-max-retry

argument: required_argument

parser: uwsgi_opt_set_int

help: set maximum number of retries in case of connection errors (default 1)

carbon-retry-delay

argument: required_argument

parser: uwsgi_opt_set_int

help: set connection retry delay in seconds (default 7)

carbon-root

argument: required_argument

parser: uwsgi_opt_set_str

help: set carbon metrics root node (default ‘uwsgi’)

carbon-hostname-dots

argument: required_argument

parser: uwsgi_opt_set_str

help: set char to use as a replacement for dots in hostname (dots are not replaced by default)

carbon-name-resolve

argument: no_argument

parser: uwsgi_opt_true

help: allow using hostname as carbon server address (default disabled)

carbon-resolve-names

argument: no_argument

parser: uwsgi_opt_true

help: allow using hostname as carbon server address (default disabled)

carbon-idle-avg

argument: required_argument

parser: uwsgi_opt_set_str

help: average values source during idle period (no requests), can be “last”, “zero”, “none” (default is last)

carbon-use-metrics

argument: no_argument

parser: uwsgi_opt_true

help: don’t compute all statistics, use metrics subsystem data instead (warning! key names will be different)

plugin: cgi

cgi

argument: required_argument

parser: uwsgi_opt_add_cgi

help: add a cgi mountpoint/directory/script

cgi-map-helper

argument: required_argument

parser: uwsgi_opt_add_cgi_maphelper

help: add a cgi map-helper

cgi-helper

argument: required_argument

parser: uwsgi_opt_add_cgi_maphelper

help: add a cgi map-helper

cgi-from-docroot

argument: no_argument

parser: uwsgi_opt_true

help: blindly enable cgi in DOCUMENT_ROOT

cgi-buffer-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set cgi buffer size

cgi-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set cgi script timeout

cgi-index

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a cgi index file

cgi-allowed-ext

argument: required_argument

parser: uwsgi_opt_add_string_list

help: cgi allowed extension

cgi-unset

argument: required_argument

parser: uwsgi_opt_add_string_list

help: unset specified environment variables

cgi-loadlib

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a cgi shared library/optimizer

cgi-optimize

argument: no_argument

parser: uwsgi_opt_true

help: enable cgi realpath() optimizer

cgi-optimized

argument: no_argument

parser: uwsgi_opt_true

help: enable cgi realpath() optimizer

cgi-path-info

argument: no_argument

parser: uwsgi_opt_true

help: disable PATH_INFO management in cgi scripts

cgi-do-not-kill-on-error

argument: no_argument

parser: uwsgi_opt_true

help: do not send SIGKILL to cgi script on errors

cgi-async-max-attempts

argument: no_argument

parser: uwsgi_opt_set_int

help: max waitpid() attempts in cgi async mode (default 10)

plugin: cheaper_backlog2

plugin: cheaper_busyness

plugin: clock_monotonic

plugin: clock_realtime

plugin: corerouter

plugin: coroae

coroae

argument: required_argument

parser: uwsgi_opt_setup_coroae

help: a shortcut enabling Coro::AnyEvent loop engine with the specified number of async cores and optimal parameters

plugin: cplusplus

plugin: curl_cron

curl-cron

argument: required_argument

parser: uwsgi_opt_add_cron_curl

flags: UWSGI_OPT_MASTER

help: add a cron task invoking the specified url via CURL

cron-curl

argument: required_argument

parser: uwsgi_opt_add_cron_curl

flags: UWSGI_OPT_MASTER

help: add a cron task invoking the specified url via CURL

legion-curl-cron

argument: required_argument

parser: uwsgi_opt_add_legion_cron_curl

flags: UWSGI_OPT_MASTER

help: add a cron task invoking the specified url via CURL runnable only when the instance is a lord of the specified legion

legion-cron-curl

argument: required_argument

parser: uwsgi_opt_add_legion_cron_curl

flags: UWSGI_OPT_MASTER

help: add a cron task invoking the specified url via CURL runnable only when the instance is a lord of the specified legion

curl-cron-legion

argument: required_argument

parser: uwsgi_opt_add_legion_cron_curl

flags: UWSGI_OPT_MASTER

help: add a cron task invoking the specified url via CURL runnable only when the instance is a lord of the specified legion

cron-curl-legion

argument: required_argument

parser: uwsgi_opt_add_legion_cron_curl

flags: UWSGI_OPT_MASTER

help: add a cron task invoking the specified url via CURL runnable only when the instance is a lord of the specified legion

plugin: dumbloop

dumbloop-modifier1

argument: required_argument

parser: uwsgi_opt_set_int

help: set the modifier1 for the code_string

dumbloop-code

argument: required_argument

parser: uwsgi_opt_set_str

help: set the script to load for the code_string

dumbloop-function

argument: required_argument

parser: uwsgi_opt_set_str

help: set the function to run for the code_string

plugin: dummy

plugin: echo

plugin: emperor_amqp

plugin: emperor_mongodb

plugin: emperor_pg

plugin: emperor_zeromq

plugin: example

plugin: exception_log

plugin: fastrouter

fastrouter

argument: required_argument

parser: uwsgi_opt_corerouter

help: run the fastrouter on the specified port

reference: The uWSGI FastRouter

fastrouter-processes

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of fastrouter processes

fastrouter-workers

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of fastrouter processes

fastrouter-zerg

argument: required_argument

parser: uwsgi_opt_corerouter_zerg

help: attach the fastrouter to a zerg server

fastrouter-use-cache

argument: optional_argument

parser: uwsgi_opt_set_str

help: use uWSGI cache as hostname->server mapper for the fastrouter

fastrouter-use-pattern

argument: required_argument

parser: uwsgi_opt_corerouter_use_pattern

help: use a pattern for fastrouter hostname->server mapping

fastrouter-use-base

argument: required_argument

parser: uwsgi_opt_corerouter_use_base

help: use a base dir for fastrouter hostname->server mapping

fastrouter-fallback

argument: required_argument

parser: uwsgi_opt_add_string_list

help: fallback to the specified node in case of error

fastrouter-use-code-string

argument: required_argument

parser: uwsgi_opt_corerouter_cs

help: use code string as hostname->server mapper for the fastrouter

fastrouter-use-socket

argument: optional_argument

parser: uwsgi_opt_corerouter_use_socket

help: forward request to the specified uwsgi socket

fastrouter-to

argument: required_argument

parser: uwsgi_opt_add_string_list

help: forward requests to the specified uwsgi server (you can specify it multiple times for load balancing)

fastrouter-gracetime

argument: required_argument

parser: uwsgi_opt_set_int

help: retry connections to dead static nodes after the specified amount of seconds

fastrouter-events

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of concurrent events

fastrouter-quiet

argument: required_argument

parser: uwsgi_opt_true

help: do not report failed connections to instances

fastrouter-cheap

argument: no_argument

parser: uwsgi_opt_true

help: run the fastrouter in cheap mode

fastrouter-subscription-server

argument: required_argument

parser: uwsgi_opt_corerouter_ss

help: run the fastrouter subscription server on the specified address

fastrouter-subscription-slot

argument: required_argument

parser: uwsgi_opt_deprecated

help: * deprecated *

fastrouter-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set fastrouter timeout

fastrouter-post-buffering

argument: required_argument

parser: uwsgi_opt_set_64bit

help: enable fastrouter post buffering

fastrouter-post-buffering-dir

argument: required_argument

parser: uwsgi_opt_set_str

help: put fastrouter buffered files to the specified directory (noop, use TMPDIR env)

fastrouter-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the fastrouter stats server

fastrouter-stats-server

argument: required_argument

parser: uwsgi_opt_set_str

help: run the fastrouter stats server

fastrouter-ss

argument: required_argument

parser: uwsgi_opt_set_str

help: run the fastrouter stats server

fastrouter-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: enable fastrouter harakiri

fastrouter-uid

argument: required_argument

parser: uwsgi_opt_uid

help: drop fastrouter privileges to the specified uid

fastrouter-gid

argument: required_argument

parser: uwsgi_opt_gid

help: drop fastrouter privileges to the specified gid

fastrouter-resubscribe

argument: required_argument

parser: uwsgi_opt_add_string_list

help: forward subscriptions to the specified subscription server

fastrouter-resubscribe-bind

argument: required_argument

parser: uwsgi_opt_set_str

help: bind to the specified address when re-subscribing

fastrouter-buffer-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set internal buffer size (default: page size)

fastrouter-fallback-on-no-key

argument: no_argument

parser: uwsgi_opt_true

help: move to fallback node even if a subscription key is not found

fastrouter-force-key

argument: required_argument

parser: uwsgi_opt_set_str

help: skip uwsgi parsing and directly set a key

plugin: fiber

fiber

argument: no_argument

parser: uwsgi_opt_true

help: enable ruby fiber as suspend engine

plugin: forkptyrouter

forkptyrouter

argument: required_argument

parser: uwsgi_opt_undeferred_corerouter

help: run the forkptyrouter on the specified address

forkpty-router

argument: required_argument

parser: uwsgi_opt_undeferred_corerouter

help: run the forkptyrouter on the specified address

forkptyurouter

argument: required_argument

parser: uwsgi_opt_forkpty_urouter

help: run the forkptyrouter on the specified address

forkpty-urouter

argument: required_argument

parser: uwsgi_opt_forkpty_urouter

help: run the forkptyrouter on the specified address

forkptyrouter-command

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command on every connection (default: /bin/sh)

forkpty-router-command

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command on every connection (default: /bin/sh)

forkptyrouter-cmd

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command on every connection (default: /bin/sh)

forkpty-router-cmd

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command on every connection (default: /bin/sh)

forkptyrouter-rows

argument: required_argument

parser: uwsgi_opt_set_16bit

help: set forkptyrouter default pty window rows

forkptyrouter-cols

argument: required_argument

parser: uwsgi_opt_set_16bit

help: set forkptyrouter default pty window cols

forkptyrouter-processes

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of forkptyrouter processes

forkptyrouter-workers

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of forkptyrouter processes

forkptyrouter-zerg

argument: required_argument

parser: uwsgi_opt_corerouter_zerg

help: attach the forkptyrouter to a zerg server

forkptyrouter-fallback

argument: required_argument

parser: uwsgi_opt_add_string_list

help: fallback to the specified node in case of error

forkptyrouter-events

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of concufptyent events

forkptyrouter-cheap

argument: no_argument

parser: uwsgi_opt_true

help: run the forkptyrouter in cheap mode

forkptyrouter-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set forkptyrouter timeout

forkptyrouter-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the forkptyrouter stats server

forkptyrouter-stats-server

argument: required_argument

parser: uwsgi_opt_set_str

help: run the forkptyrouter stats server

forkptyrouter-ss

argument: required_argument

parser: uwsgi_opt_set_str

help: run the forkptyrouter stats server

forkptyrouter-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: enable forkptyrouter harakiri

plugin: gccgo

go-load

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a go shared library in the process address space, eventually patching main.main and __go_init_main

gccgo-load

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a go shared library in the process address space, eventually patching main.main and __go_init_main

go-args

argument: required_argument

parser: uwsgi_opt_set_str

help: set go commandline arguments

gccgo-args

argument: required_argument

parser: uwsgi_opt_set_str

help: set go commandline arguments

goroutines

argument: required_argument

parser: uwsgi_opt_setup_goroutines

flags: UWSGI_OPT_THREADS

help: a shortcut setting optimal options for goroutine-based apps, takes the number of max goroutines to spawn as argument

plugin: geoip

geoip-country

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified geoip country database

geoip-city

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified geoip city database

geoip-use-disk

argument: no_argument

parser: uwsgi_opt_true

help: do not cache geoip databases in memory

plugin: gevent

gevent

argument: required_argument

parser: uwsgi_opt_setup_gevent

flags: UWSGI_OPT_THREADS

help: a shortcut enabling gevent loop engine with the specified number of async cores and optimal parameters

gevent-monkey-patch

argument: no_argument

parser: uwsgi_opt_true

help: call gevent.monkey.patch_all() automatically on startup

gevent-early-monkey-patch

argument: no_argument

parser: uwsgi_opt_true

help: call gevent.monkey.patch_all() automatically before app loading

gevent-wait-for-hub

argument: no_argument

parser: uwsgi_opt_true

help: wait for gevent hub’s death instead of the control greenlet

plugin: glusterfs

glusterfs-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: virtual mount the specified glusterfs volume in a uri

glusterfs-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: timeout for glusterfs async mode

plugin: graylog2

plugin: greenlet

greenlet

argument: no_argument

parser: uwsgi_opt_true

help: enable greenlet as suspend engine

plugin: gridfs

gridfs-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: mount a gridfs db on the specified mountpoint

gridfs-debug

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_MIME

help: report gridfs mountpoint and itemname for each request (debug)

plugin: http

http

argument: required_argument

parser: uwsgi_opt_corerouter

help: add an http router/server on the specified address

httprouter

argument: required_argument

parser: uwsgi_opt_corerouter

help: add an http router/server on the specified address

https

argument: required_argument

parser: uwsgi_opt_https

help: add an https router/server on the specified address with specified certificate and key

https2

argument: required_argument

parser: uwsgi_opt_https2

help: add an https/spdy router/server using keyval options

https-export-cert

argument: no_argument

parser: uwsgi_opt_true

help: export uwsgi variable HTTPS_CC containing the raw client certificate

https-session-context

argument: required_argument

parser: uwsgi_opt_set_str

help: set the session id context to the specified value

http-to-https

argument: required_argument

parser: uwsgi_opt_http_to_https

help: add an http router/server on the specified address and redirect all of the requests to https

http-processes

argument: required_argument

parser: uwsgi_opt_set_int

help: set the number of http processes to spawn

http-workers

argument: required_argument

parser: uwsgi_opt_set_int

help: set the number of http processes to spawn

http-var

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a key=value item to the generated uwsgi packet

http-to

argument: required_argument

parser: uwsgi_opt_add_string_list

help: forward requests to the specified node (you can specify it multiple time for lb)

http-zerg

argument: required_argument

parser: uwsgi_opt_corerouter_zerg

help: attach the http router to a zerg server

http-fallback

argument: required_argument

parser: uwsgi_opt_add_string_list

help: fallback to the specified node in case of error

http-modifier1

argument: required_argument

parser: uwsgi_opt_set_int

help: set uwsgi protocol modifier1

http-modifier2

argument: required_argument

parser: uwsgi_opt_set_int

help: set uwsgi protocol modifier2

http-use-cache

argument: optional_argument

parser: uwsgi_opt_set_str

help: use uWSGI cache as key->value virtualhost mapper

http-use-pattern

argument: required_argument

parser: uwsgi_opt_corerouter_use_pattern

help: use the specified pattern for mapping requests to unix sockets

http-use-base

argument: required_argument

parser: uwsgi_opt_corerouter_use_base

help: use the specified base for mapping requests to unix sockets

http-events

argument: required_argument

parser: uwsgi_opt_set_int

help: set the number of concurrent http async events

http-subscription-server

argument: required_argument

parser: uwsgi_opt_corerouter_ss

help: enable the subscription server

http-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set internal http socket timeout

http-manage-expect

argument: optional_argument

parser: uwsgi_opt_set_64bit

help: manage the Expect HTTP request header (optionally checking for Content-Length)

http-keepalive

argument: optional_argument

parser: uwsgi_opt_set_int

help: HTTP 1.1 keepalive support (non-pipelined) requests

http-auto-chunked

argument: no_argument

parser: uwsgi_opt_true

help: automatically transform output to chunked encoding during HTTP 1.1 keepalive (if needed)

http-auto-gzip

argument: no_argument

parser: uwsgi_opt_true

help: automatically gzip content if uWSGI-Encoding header is set to gzip, but content size (Content-Length/Transfer-Encoding) and Content-Encoding are not specified

http-raw-body

argument: no_argument

parser: uwsgi_opt_true

help: blindly send HTTP body to backends (required for WebSockets and Icecast support in backends)

http-websockets

argument: no_argument

parser: uwsgi_opt_true

help: automatically detect websockets connections and put the session in raw mode

http-chunked-input

argument: no_argument

parser: uwsgi_opt_true

help: automatically detect chunked input requests and put the session in raw mode

http-use-code-string

argument: required_argument

parser: uwsgi_opt_corerouter_cs

help: use code string as hostname->server mapper for the http router

http-use-socket

argument: optional_argument

parser: uwsgi_opt_corerouter_use_socket

help: forward request to the specified uwsgi socket

http-gracetime

argument: required_argument

parser: uwsgi_opt_set_int

help: retry connections to dead static nodes after the specified amount of seconds

http-quiet

argument: required_argument

parser: uwsgi_opt_true

help: do not report failed connections to instances

http-cheap

argument: no_argument

parser: uwsgi_opt_true

help: run the http router in cheap mode

http-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the http router stats server

http-stats-server

argument: required_argument

parser: uwsgi_opt_set_str

help: run the http router stats server

http-ss

argument: required_argument

parser: uwsgi_opt_set_str

help: run the http router stats server

http-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: enable http router harakiri

http-stud-prefix

argument: required_argument

parser: uwsgi_opt_add_addr_list

help: expect a stud prefix (1byte family + 4/16 bytes address) on connections from the specified address

http-uid

argument: required_argument

parser: uwsgi_opt_uid

help: drop http router privileges to the specified uid

http-gid

argument: required_argument

parser: uwsgi_opt_gid

help: drop http router privileges to the specified gid

http-resubscribe

argument: required_argument

parser: uwsgi_opt_add_string_list

help: forward subscriptions to the specified subscription server

http-buffer-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set internal buffer size (default: page size)

http-server-name-as-http-host

argument: required_argument

parser: uwsgi_opt_true

help: force SERVER_NAME to HTTP_HOST

http-headers-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set internal http socket timeout for headers

http-connect-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set internal http socket timeout for backend connections

http-manage-source

argument: no_argument

parser: uwsgi_opt_true

help: manage the SOURCE HTTP method placing the session in raw mode

http-enable-proxy-protocol

argument: optional_argument

parser: uwsgi_opt_true

help: manage PROXY protocol requests

http-backend-http

argument: no_argument

parser: uwsgi_opt_true

help: use plain http protocol instead of uwsgi for backend nodes

http-manage-rtsp

argument: no_argument

parser: uwsgi_opt_true

help: manage RTSP sessions

0x1f

argument: 0x8b

shortcut: -Z_DEFLATED

help: 0

plugin: jvm

jvm-main-class

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load the specified class and call its main() function

jvm-opt

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add the specified jvm option

jvm-class

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load the specified class

jvm-classpath

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add the specified directory to the classpath

plugin: jwsgi

jwsgi

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified JWSGI application (syntax class:method)

plugin: ldap

ldap

argument: required_argument

parser: uwsgi_opt_load_ldap

flags: UWSGI_OPT_IMMEDIATE

help: load configuration from ldap server

ldap-schema

argument: no_argument

parser: uwsgi_opt_ldap_dump

flags: UWSGI_OPT_IMMEDIATE

help: dump uWSGI ldap schema

ldap-schema-ldif

argument: no_argument

parser: uwsgi_opt_ldap_dump_ldif

flags: UWSGI_OPT_IMMEDIATE

help: dump uWSGI ldap schema in ldif format

plugin: legion_cache_fetch

plugin: libffi

plugin: libtcc

plugin: logcrypto

plugin: logfile

plugin: logpipe

plugin: logsocket

plugin: logzmq

log-zeromq

argument: required_argument

parser: uwsgi_opt_set_logger

flags: UWSGI_OPT_MASTER | UWSGI_OPT_LOG_MASTER

help: send logs to a zeromq server

plugin: lua

lua

argument: required_argument

parser: uwsgi_opt_set_str

help: load lua wsapi app

lua-load

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a lua file

lua-shell

argument: no_argument

parser: uwsgi_opt_luashell

help: run the lua interactive shell (debug.debug())

luashell

argument: no_argument

parser: uwsgi_opt_luashell

help: run the lua interactive shell (debug.debug())

lua-gc-freq

argument: no_argument

parser: uwsgi_opt_set_int

help: set the lua gc frequency (default: 0, runs after every request)

plugin: matheval

plugin: mongodb

plugin: mongodblog

plugin: mongrel2

zeromq

argument: required_argument

parser: uwsgi_opt_add_lazy_socket

help: create a mongrel2/zeromq pub/sub pair

zmq

argument: required_argument

parser: uwsgi_opt_add_lazy_socket

help: create a mongrel2/zeromq pub/sub pair

zeromq-socket

argument: required_argument

parser: uwsgi_opt_add_lazy_socket

help: create a mongrel2/zeromq pub/sub pair

zmq-socket

argument: required_argument

parser: uwsgi_opt_add_lazy_socket

help: create a mongrel2/zeromq pub/sub pair

mongrel2

argument: required_argument

parser: uwsgi_opt_add_lazy_socket

help: create a mongrel2/zeromq pub/sub pair

plugin: mono

mono-app

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a Mono asp.net app from the specified directory

mono-gc-freq

argument: required_argument

parser: uwsgi_opt_set_64bit

help: run the Mono GC every <n> requests (default: run after every request)

mono-key

argument: required_argument

parser: uwsgi_opt_add_string_list

help: select the ApplicationHost based on the specified CGI var

mono-version

argument: required_argument

parser: uwsgi_opt_set_str

help: set the Mono jit version

mono-config

argument: required_argument

parser: uwsgi_opt_set_str

help: set the Mono config file

mono-assembly

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified main assembly (default: uwsgi.dll)

mono-exec

argument: required_argument

parser: uwsgi_opt_add_string_list

help: exec the specified assembly just before app loading

mono-index

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an asp.net index file

plugin: msgpack

plugin: nagios

nagios

argument: no_argument

parser: uwsgi_opt_true

flags: UWSGI_OPT_NO_INITIAL

help: nagios check

plugin: notfound

notfound-log

argument: no_argument

parser: uwsgi_opt_true

help: log requests to the notfound plugin

plugin: objc_gc

plugin: pam

pam

argument: required_argument

parser: uwsgi_opt_set_str

help: set the pam service name to use

pam-user

argument: required_argument

parser: uwsgi_opt_set_str

help: set a fake user for pam

plugin: php

php-ini

argument: required_argument

parser: uwsgi_opt_php_ini

help: set php.ini path

php-config

argument: required_argument

parser: uwsgi_opt_php_ini

help: set php.ini path

php-ini-append

argument: required_argument

parser: uwsgi_opt_add_string_list

help: set php.ini path (append mode)

php-config-append

argument: required_argument

parser: uwsgi_opt_add_string_list

help: set php.ini path (append mode)

php-set

argument: required_argument

parser: uwsgi_opt_add_string_list

help: set a php config directive

php-index

argument: required_argument

parser: uwsgi_opt_add_string_list

help: list the php index files

php-docroot

argument: required_argument

parser: uwsgi_opt_set_str

help: force php DOCUMENT_ROOT

php-allowed-docroot

argument: required_argument

parser: uwsgi_opt_add_string_list

help: list the allowed document roots

php-allowed-ext

argument: required_argument

parser: uwsgi_opt_add_string_list

help: list the allowed php file extensions

php-allowed-script

argument: required_argument

parser: uwsgi_opt_add_string_list

help: list the allowed php scripts (require absolute path)

php-server-software

argument: required_argument

parser: uwsgi_opt_set_str

help: force php SERVER_SOFTWARE

php-app

argument: required_argument

parser: uwsgi_opt_set_str

help: force the php file to run at each request

php-app-qs

argument: required_argument

parser: uwsgi_opt_set_str

help: when in app mode force QUERY_STRING to the specified value + REQUEST_URI

php-fallback

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified php script when the request one does not exist

php-app-bypass

argument: required_argument

parser: uwsgi_opt_add_regexp_list

help: if the regexp matches the uri the –php-app is bypassed

php-var

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add/overwrite a CGI variable at each request

php-dump-config

argument: no_argument

parser: uwsgi_opt_true

help: dump php config (if modified via –php-set or append options)

php-exec-before

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run specified php code before the requested script

php-exec-begin

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run specified php code before the requested script

php-exec-after

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run specified php code after the requested script

php-exec-end

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run specified php code after the requested script

php-sapi-name

argument: required_argument

parser: uwsgi_opt_set_str

help: hack the sapi name (required for enabling zend opcode cache)

early-php

argument: no_argument

parser: uwsgi_opt_early_php

flags: UWSGI_OPT_IMMEDIATE

help: initialize an early perl interpreter shared by all loaders

early-php-sapi-name

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_IMMEDIATE

help: hack the sapi name (required for enabling zend opcode cache)

plugin: ping

ping

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_NO_INITIAL | UWSGI_OPT_NO_SERVER

help: ping specified uwsgi host

ping-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set ping timeout

plugin: psgi

psgi

argument: required_argument

parser: uwsgi_opt_set_str

help: load a psgi app

psgi-enable-psgix-io

argument: no_argument

parser: uwsgi_opt_true

help: enable psgix.io support

perl-no-die-catch

argument: no_argument

parser: uwsgi_opt_true

help: do not catch $SIG{__DIE__}

perl-local-lib

argument: required_argument

parser: uwsgi_opt_set_str

help: set perl locallib path

perl-version

argument: no_argument

parser: uwsgi_opt_print

flags: UWSGI_OPT_IMMEDIATE

help: print perl version

perl-args

argument: required_argument

parser: uwsgi_opt_set_str

help: add items (space separated) to @ARGV

perl-arg

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an item to @ARGV

perl-exec

argument: required_argument

parser: uwsgi_opt_add_string_list

help: exec the specified perl file before fork()

perl-exec-post-fork

argument: required_argument

parser: uwsgi_opt_add_string_list

help: exec the specified perl file after fork()

perl-auto-reload

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_MASTER

help: enable perl auto-reloader with the specified frequency

perl-auto-reload-ignore

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER

help: ignore the specified files when auto-reload is enabled

plshell

argument: optional_argument

parser: uwsgi_opt_plshell

help: run a perl interactive shell

plshell-oneshot

argument: no_argument

parser: uwsgi_opt_plshell

help: run a perl interactive shell (one shot)

perl-no-plack

argument: no_argument

parser: uwsgi_opt_true

help: force the use of do instead of Plack::Util::load_psgi

early-perl

argument: required_argument

parser: uwsgi_opt_early_perl

flags: UWSGI_OPT_IMMEDIATE

help: initialize an early perl interpreter shared by all loaders

early-psgi

argument: required_argument

parser: uwsgi_opt_early_psgi

flags: UWSGI_OPT_IMMEDIATE

help: load a psgi app soon after uWSGI initialization

early-perl-exec

argument: required_argument

parser: uwsgi_opt_early_exec

flags: UWSGI_OPT_IMMEDIATE

help: load a perl script soon after uWSGI initialization

plugin: pty

pty-socket

argument: required_argument

parser: uwsgi_opt_set_str

help: bind the pty server on the specified address

pty-log

argument: no_argument

parser: uwsgi_opt_true

help: send stdout/stderr to the log engine too

pty-input

argument: no_argument

parser: uwsgi_opt_true

help: read from original stdin in addition to pty

pty-connect

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_NO_INITIAL

help: connect the current terminal to a pty server

pty-uconnect

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_NO_INITIAL

help: connect the current terminal to a pty server (using uwsgi protocol)

pty-no-isig

argument: no_argument

parser: uwsgi_opt_true

help: disable ISIG terminal attribute in client mode

pty-exec

argument: required_argument

parser: uwsgi_opt_set_str

help: run the specified command soon after the pty thread is spawned

plugin: pypy

pypy-lib

argument: required_argument

parser: uwsgi_opt_set_str

help: set the path/name of the pypy library

pypy-setup

argument: required_argument

parser: uwsgi_opt_set_str

help: set the path of the python setup script

pypy-home

argument: required_argument

parser: uwsgi_opt_set_str

help: set the home of pypy library

pypy-wsgi

argument: required_argument

parser: uwsgi_opt_set_str

help: load a WSGI module

pypy-wsgi-file

argument: required_argument

parser: uwsgi_opt_set_str

help: load a WSGI/mod_wsgi file

pypy-ini-paste

argument: required_argument

parser: uwsgi_opt_pypy_ini_paste

flags: UWSGI_OPT_IMMEDIATE

help: load a paste.deploy config file containing uwsgi section

pypy-paste

argument: required_argument

parser: uwsgi_opt_set_str

help: load a paste.deploy config file

pypy-eval

argument: required_argument

parser: uwsgi_opt_add_string_list

help: evaluate pypy code before fork()

pypy-eval-post-fork

argument: required_argument

parser: uwsgi_opt_add_string_list

help: evaluate pypy code soon after fork()

pypy-exec

argument: required_argument

parser: uwsgi_opt_add_string_list

help: execute pypy code from file before fork()

pypy-exec-post-fork

argument: required_argument

parser: uwsgi_opt_add_string_list

help: execute pypy code from file soon after fork()

pypy-pp

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an item to the pythonpath

pypy-python-path

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an item to the pythonpath

pypy-pythonpath

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add an item to the pythonpath

plugin: python

wsgi-file

argument: required_argument

parser: uwsgi_opt_set_str

help: load .wsgi file

file

argument: required_argument

parser: uwsgi_opt_set_str

help: load .wsgi file

eval

argument: required_argument

parser: uwsgi_opt_set_str

help: eval python code

module

argument: required_argument

shortcut: -w

parser: uwsgi_opt_set_str

help: load a WSGI module

wsgi

argument: required_argument

shortcut: -w

parser: uwsgi_opt_set_str

help: load a WSGI module

callable

argument: required_argument

parser: uwsgi_opt_set_str

help: set default WSGI callable name

test

argument: required_argument

shortcut: -J

parser: uwsgi_opt_set_str

help: test a mdule import

home

argument: required_argument

shortcut: -H

parser: uwsgi_opt_set_str

help: set PYTHONHOME/virtualenv

virtualenv

argument: required_argument

shortcut: -H

parser: uwsgi_opt_set_str

help: set PYTHONHOME/virtualenv

venv

argument: required_argument

shortcut: -H

parser: uwsgi_opt_set_str

help: set PYTHONHOME/virtualenv

pyhome

argument: required_argument

shortcut: -H

parser: uwsgi_opt_set_str

help: set PYTHONHOME/virtualenv

py-programname

argument: required_argument

parser: uwsgi_opt_set_str

help: set python program name

py-program-name

argument: required_argument

parser: uwsgi_opt_set_str

help: set python program name

pythonpath

argument: required_argument

parser: uwsgi_opt_pythonpath

help: add directory (or glob) to pythonpath

python-path

argument: required_argument

parser: uwsgi_opt_pythonpath

help: add directory (or glob) to pythonpath

pp

argument: required_argument

parser: uwsgi_opt_pythonpath

help: add directory (or glob) to pythonpath

pymodule-alias

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a python alias module

post-pymodule-alias

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a python module alias after uwsgi module initialization

import

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module

pyimport

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module

py-import

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module

python-import

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module

shared-import

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module in all of the processes

shared-pyimport

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module in all of the processes

shared-py-import

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module in all of the processes

shared-python-import

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import a python module in all of the processes

pyargv

argument: required_argument

parser: uwsgi_opt_set_str

help: manually set sys.argv

optimize

argument: required_argument

shortcut: -O

parser: uwsgi_opt_set_int

help: set python optimization level

pecan

argument: required_argument

parser: uwsgi_opt_set_str

help: load a pecan config file

paste

argument: required_argument

parser: uwsgi_opt_set_str

help: load a paste.deploy config file

paste-logger

argument: no_argument

parser: uwsgi_opt_true

help: enable paste fileConfig logger

web3

argument: required_argument

parser: uwsgi_opt_set_str

help: load a web3 app

pump

argument: required_argument

parser: uwsgi_opt_set_str

help: load a pump app

wsgi-lite

argument: required_argument

parser: uwsgi_opt_set_str

help: load a wsgi-lite app

ini-paste

argument: required_argument

parser: uwsgi_opt_ini_paste

flags: UWSGI_OPT_IMMEDIATE

help: load a paste.deploy config file containing uwsgi section

ini-paste-logged

argument: required_argument

parser: uwsgi_opt_ini_paste

flags: UWSGI_OPT_IMMEDIATE

help: load a paste.deploy config file containing uwsgi section (load loggers too)

reload-os-env

argument: no_argument

parser: uwsgi_opt_true

help: force reload of os.environ at each request

no-site

argument: no_argument

parser: uwsgi_opt_true

help: do not import site module

pyshell

argument: optional_argument

parser: uwsgi_opt_pyshell

help: run an interactive python shell in the uWSGI environment

pyshell-oneshot

argument: optional_argument

parser: uwsgi_opt_pyshell

help: run an interactive python shell in the uWSGI environment (one-shot variant)

python

argument: required_argument

parser: uwsgi_opt_pyrun

help: run a python script in the uWSGI environment

py

argument: required_argument

parser: uwsgi_opt_pyrun

help: run a python script in the uWSGI environment

pyrun

argument: required_argument

parser: uwsgi_opt_pyrun

help: run a python script in the uWSGI environment

py-tracebacker

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_THREADS|UWSGI_OPT_MASTER

help: enable the uWSGI python tracebacker

py-auto-reload

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS|UWSGI_OPT_MASTER

help: monitor python modules mtime to trigger reload (use only in development)

py-autoreload

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS|UWSGI_OPT_MASTER

help: monitor python modules mtime to trigger reload (use only in development)

python-auto-reload

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS|UWSGI_OPT_MASTER

help: monitor python modules mtime to trigger reload (use only in development)

python-autoreload

argument: required_argument

parser: uwsgi_opt_set_int

flags: UWSGI_OPT_THREADS|UWSGI_OPT_MASTER

help: monitor python modules mtime to trigger reload (use only in development)

py-auto-reload-ignore

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_THREADS|UWSGI_OPT_MASTER

help: ignore the specified module during auto-reload scan (can be specified multiple times)

wsgi-env-behaviour

argument: required_argument

parser: uwsgi_opt_set_str

help: set the strategy for allocating/deallocating the WSGI env

wsgi-env-behavior

argument: required_argument

parser: uwsgi_opt_set_str

help: set the strategy for allocating/deallocating the WSGI env

start_response-nodelay

argument: no_argument

parser: uwsgi_opt_true

help: send WSGI http headers as soon as possible (PEP violation)

wsgi-strict

argument: no_argument

parser: uwsgi_opt_true

help: try to be fully PEP compliant disabling optimizations

wsgi-accept-buffer

argument: no_argument

parser: uwsgi_opt_true

help: accept CPython buffer-compliant objects as WSGI response in addition to string/bytes

wsgi-accept-buffers

argument: no_argument

parser: uwsgi_opt_true

help: accept CPython buffer-compliant objects as WSGI response in addition to string/bytes

python-version

argument: no_argument

parser: uwsgi_opt_pyver

flags: UWSGI_OPT_IMMEDIATE

help: report python version

python-raw

argument: required_argument

parser: uwsgi_opt_set_str

help: load a python file for managing raw requests

py-sharedarea

argument: required_argument

parser: uwsgi_opt_add_string_list

help: create a sharedarea from a python bytearray object of the specified size

py-call-osafterfork

argument: no_argument

parser: uwsgi_opt_true

help: enable child processes running cpython to trap OS signals

early-python

argument: no_argument

parser: uwsgi_early_python

flags: UWSGI_OPT_IMMEDIATE

help: load the python VM as soon as possible (useful for the fork server)

early-pyimport

argument: required_argument

parser: uwsgi_early_python_import

flags: UWSGI_OPT_IMMEDIATE

help: import a python module in the early phase

early-python-import

argument: required_argument

parser: uwsgi_early_python_import

flags: UWSGI_OPT_IMMEDIATE

help: import a python module in the early phase

early-pythonpath

argument: required_argument

parser: uwsgi_opt_pythonpath

flags: UWSGI_OPT_IMMEDIATE

help: add directory (or glob) to pythonpath (immediate version)

early-python-path

argument: required_argument

parser: uwsgi_opt_pythonpath

flags: UWSGI_OPT_IMMEDIATE

help: add directory (or glob) to pythonpath (immediate version)

plugin: pyuwsgi

plugin: rack

rails

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_POST_BUFFERING

help: load a rails <= 2.x app

rack

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_POST_BUFFERING

help: load a rack app

ruby-gc-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set ruby GC frequency

rb-gc-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set ruby GC frequency

rb-lib

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a directory to the ruby libdir search path

ruby-lib

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a directory to the ruby libdir search path

rb-require

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script

ruby-require

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script

rbrequire

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script

rubyrequire

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script

require

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script

shared-rb-require

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script (shared)

shared-ruby-require

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script (shared)

shared-rbrequire

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script (shared)

shared-rubyrequire

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script (shared)

shared-require

argument: required_argument

parser: uwsgi_opt_add_string_list

help: import/require a ruby module/script (shared)

gemset

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified gemset (rvm)

rvm

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified gemset (rvm)

rvm-path

argument: required_argument

parser: uwsgi_opt_add_string_list

help: search for rvm in the specified directory

rbshell

argument: optional_argument

parser: uwsgi_opt_rbshell

help: run a ruby/irb shell

rbshell-oneshot

argument: no_argument

parser: uwsgi_opt_rbshell

help: set ruby/irb shell (one shot)

plugin: rados

rados-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: virtual mount the specified rados volume in a uri

rados-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: timeout for async operations

plugin: rawrouter

rawrouter

argument: required_argument

parser: uwsgi_opt_undeferred_corerouter

help: run the rawrouter on the specified port

rawrouter-processes

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of rawrouter processes

rawrouter-workers

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of rawrouter processes

rawrouter-zerg

argument: required_argument

parser: uwsgi_opt_corerouter_zerg

help: attach the rawrouter to a zerg server

rawrouter-use-cache

argument: optional_argument

parser: uwsgi_opt_set_str

help: use uWSGI cache as hostname->server mapper for the rawrouter

rawrouter-use-pattern

argument: required_argument

parser: uwsgi_opt_corerouter_use_pattern

help: use a pattern for rawrouter hostname->server mapping

rawrouter-use-base

argument: required_argument

parser: uwsgi_opt_corerouter_use_base

help: use a base dir for rawrouter hostname->server mapping

rawrouter-fallback

argument: required_argument

parser: uwsgi_opt_add_string_list

help: fallback to the specified node in case of error

rawrouter-use-code-string

argument: required_argument

parser: uwsgi_opt_corerouter_cs

help: use code string as hostname->server mapper for the rawrouter

rawrouter-use-socket

argument: optional_argument

parser: uwsgi_opt_corerouter_use_socket

help: forward request to the specified uwsgi socket

rawrouter-to

argument: required_argument

parser: uwsgi_opt_add_string_list

help: forward requests to the specified uwsgi server (you can specify it multiple times for load balancing)

rawrouter-gracetime

argument: required_argument

parser: uwsgi_opt_set_int

help: retry connections to dead static nodes after the specified amount of seconds

rawrouter-events

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of concurrent events

rawrouter-max-retries

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of retries/fallbacks to other nodes

rawrouter-quiet

argument: required_argument

parser: uwsgi_opt_true

help: do not report failed connections to instances

rawrouter-cheap

argument: no_argument

parser: uwsgi_opt_true

help: run the rawrouter in cheap mode

rawrouter-subscription-server

argument: required_argument

parser: uwsgi_opt_corerouter_ss

help: run the rawrouter subscription server on the spcified address

rawrouter-subscription-slot

argument: required_argument

parser: uwsgi_opt_deprecated

help: * deprecated *

rawrouter-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set rawrouter timeout

rawrouter-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the rawrouter stats server

rawrouter-stats-server

argument: required_argument

parser: uwsgi_opt_set_str

help: run the rawrouter stats server

rawrouter-ss

argument: required_argument

parser: uwsgi_opt_set_str

help: run the rawrouter stats server

rawrouter-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: enable rawrouter harakiri

rawrouter-xclient

argument: no_argument

parser: uwsgi_opt_true

help: use the xclient protocol to pass the client addres

rawrouter-buffer-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set internal buffer size (default: page size)

plugin: rbthreads

rbthreads

argument: no_argument

parser: uwsgi_opt_true

help: enable ruby native threads

rb-threads

argument: no_argument

parser: uwsgi_opt_true

help: enable ruby native threads

rbthread

argument: no_argument

parser: uwsgi_opt_true

help: enable ruby native threads

rb-thread

argument: no_argument

parser: uwsgi_opt_true

help: enable ruby native threads

plugin: redislog

plugin: ring

ring-load

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load the specified clojure script

clojure-load

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load the specified clojure script

ring-app

argument: required_argument

parser: uwsgi_opt_set_str

help: map the specified ring application (syntax namespace:function)

plugin: router_access

plugin: router_basicauth

plugin: router_cache

plugin: router_expires

plugin: router_hash

plugin: router_http

plugin: router_memcached

plugin: router_metrics

plugin: router_radius

plugin: router_redirect

plugin: router_redis

plugin: router_rewrite

plugin: router_spnego

plugin: router_static

plugin: router_uwsgi

plugin: router_xmldir

plugin: rpc

plugin: rrdtool

rrdtool

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MASTER|UWSGI_OPT_METRICS

help: store rrd files in the specified directory

rrdtool-freq

argument: required_argument

parser: uwsgi_opt_set_int

help: set collect frequency

rrdtool-lib

argument: required_argument

parser: uwsgi_opt_set_str

help: set the name of rrd library (default: librrd.so)

plugin: rsyslog

rsyslog-packet-size

argument: required_argument

parser: uwsgi_opt_set_int

help: set maximum packet size for syslog messages (default 1024) WARNING! using packets > 1024 breaks RFC 3164 (#4.1)

rsyslog-split-messages

argument: no_argument

parser: uwsgi_opt_true

help: split big messages into multiple chunks if they are bigger than allowed packet size (default is false)

plugin: ruby19

plugin: servlet

plugin: signal

plugin: spooler

plugin: sqlite3

sqlite3

argument: required_argument

parser: uwsgi_opt_load_sqlite3

flags: UWSGI_OPT_IMMEDIATE

help: load config from sqlite3 db

sqlite

argument: required_argument

parser: uwsgi_opt_load_sqlite3

flags: UWSGI_OPT_IMMEDIATE

help: load config from sqlite3 db

plugin: ssi

plugin: sslrouter

sslrouter

argument: required_argument

parser: uwsgi_opt_sslrouter

help: run the sslrouter on the specified port

sslrouter2

argument: required_argument

parser: uwsgi_opt_sslrouter2

help: run the sslrouter on the specified port (key-value based)

sslrouter-session-context

argument: required_argument

parser: uwsgi_opt_set_str

help: set the session id context to the specified value

sslrouter-processes

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of sslrouter processes

sslrouter-workers

argument: required_argument

parser: uwsgi_opt_set_int

help: prefork the specified number of sslrouter processes

sslrouter-zerg

argument: required_argument

parser: uwsgi_opt_corerouter_zerg

help: attach the sslrouter to a zerg server

sslrouter-use-cache

argument: optional_argument

parser: uwsgi_opt_set_str

help: use uWSGI cache as hostname->server mapper for the sslrouter

sslrouter-use-pattern

argument: required_argument

parser: uwsgi_opt_corerouter_use_pattern

help: use a pattern for sslrouter hostname->server mapping

sslrouter-use-base

argument: required_argument

parser: uwsgi_opt_corerouter_use_base

help: use a base dir for sslrouter hostname->server mapping

sslrouter-fallback

argument: required_argument

parser: uwsgi_opt_add_string_list

help: fallback to the specified node in case of error

sslrouter-use-code-string

argument: required_argument

parser: uwsgi_opt_corerouter_cs

help: use code string as hostname->server mapper for the sslrouter

sslrouter-use-socket

argument: optional_argument

parser: uwsgi_opt_corerouter_use_socket

help: forward request to the specified uwsgi socket

sslrouter-to

argument: required_argument

parser: uwsgi_opt_add_string_list

help: forward requests to the specified uwsgi server (you can specify it multiple times for load balancing)

sslrouter-gracetime

argument: required_argument

parser: uwsgi_opt_set_int

help: retry connections to dead static nodes after the specified amount of seconds

sslrouter-events

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of concurrent events

sslrouter-max-retries

argument: required_argument

parser: uwsgi_opt_set_int

help: set the maximum number of retries/fallbacks to other nodes

sslrouter-quiet

argument: required_argument

parser: uwsgi_opt_true

help: do not report failed connections to instances

sslrouter-cheap

argument: no_argument

parser: uwsgi_opt_true

help: run the sslrouter in cheap mode

sslrouter-subscription-server

argument: required_argument

parser: uwsgi_opt_corerouter_ss

help: run the sslrouter subscription server on the spcified address

sslrouter-timeout

argument: required_argument

parser: uwsgi_opt_set_int

help: set sslrouter timeout

sslrouter-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the sslrouter stats server

sslrouter-stats-server

argument: required_argument

parser: uwsgi_opt_set_str

help: run the sslrouter stats server

sslrouter-ss

argument: required_argument

parser: uwsgi_opt_set_str

help: run the sslrouter stats server

sslrouter-harakiri

argument: required_argument

parser: uwsgi_opt_set_int

help: enable sslrouter harakiri

sslrouter-sni

argument: no_argument

parser: uwsgi_opt_true

help: use SNI to route requests

sslrouter-buffer-size

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set internal buffer size (default: page size)

plugin: stackless

stackless

argument: no_argument

parser: uwsgi_opt_true

help: use stackless as suspend engine

plugin: stats_pusher_file

plugin: stats_pusher_mongodb

plugin: stats_pusher_socket

plugin: stats_pusher_statsd

plugin: symcall

symcall

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load the specified C symbol as the symcall request handler (supports <mountpoint=func> too)

symcall-use-next

argument: no_argument

parser: uwsgi_opt_true

help: use RTLD_NEXT when searching for symbols

symcall-register-rpc

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load the specified C symbol as an RPC function (syntax: name function)

symcall-post-fork

argument: required_argument

parser: uwsgi_opt_add_string_list

help: call the specified C symbol after each fork()

plugin: syslog

plugin: systemd_logger

plugin: tornado

tornado

argument: required_argument

parser: uwsgi_opt_setup_tornado

flags: UWSGI_OPT_THREADS

help: a shortcut enabling tornado loop engine with the specified number of async cores and optimal parameters

plugin: transformation_chunked

plugin: transformation_gzip

plugin: transformation_offload

plugin: transformation_template

plugin: transformation_tofile

plugin: transformation_toupper

plugin: tuntap

tuntap-router

argument: required_argument

parser: uwsgi_opt_add_string_list

help: run the tuntap router (syntax: <device> <socket> [stats] [gateway])

tuntap-device

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a tuntap device to the instance (syntax: <device>[<socket>])

tuntap-use-credentials

argument: optional_argument

parser: uwsgi_opt_set_str

help: enable check of SCM_CREDENTIALS for tuntap client/server

tuntap-router-firewall-in

argument: required_argument

parser: uwsgi_tuntap_opt_firewall

help: add a firewall rule to the tuntap router (syntax: <action> <src/mask> <dst/mask>)

tuntap-router-firewall-out

argument: required_argument

parser: uwsgi_tuntap_opt_firewall

help: add a firewall rule to the tuntap router (syntax: <action> <src/mask> <dst/mask>)

tuntap-router-route

argument: required_argument

parser: uwsgi_tuntap_opt_route

help: add a routing rule to the tuntap router (syntax: <src/mask> <dst/mask> <gateway>)

tuntap-router-stats

argument: required_argument

parser: uwsgi_opt_set_str

help: run the tuntap router stats server

tuntap-device-rule

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a tuntap device rule (syntax: <direction> <src/mask> <dst/mask> <action> [target])

plugin: ugreen

ugreen

argument: no_argument

parser: uwsgi_opt_true

help: enable ugreen coroutine subsystem

ugreen-stacksize

argument: required_argument

parser: uwsgi_opt_set_int

help: set ugreen stack size in pages

plugin: v8

v8-load

argument: required_argument

parser: uwsgi_opt_add_string_list

help: load a javascript file

v8-preemptive

argument: required_argument

parser: uwsgi_opt_set_int

help: put v8 in preemptive move (single isolate) with the specified frequency

v8-gc-freq

argument: required_argument

parser: uwsgi_opt_set_64bit

help: set the v8 garbage collection frequency

v8-module-path

argument: required_argument

parser: uwsgi_opt_add_string_list

help: set the v8 modules search path

v8-jsgi

argument: required_argument

parser: uwsgi_opt_set_str

help: load the specified JSGI 3.0 application

plugin: webdav

webdav-mount

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: map a filesystem directory as a webdav store

webdav-css

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a css url for automatic webdav directory listing

webdav-javascript

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a javascript url for automatic webdav directory listing

webdav-js

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a javascript url for automatic webdav directory listing

webdav-class-directory

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MIME

help: set the css directory class for automatic webdav directory listing

webdav-div

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MIME

help: set the div id for automatic webdav directory listing

webdav-lock-cache

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MIME

help: set the cache to use for webdav locking

webdav-principal-base

argument: required_argument

parser: uwsgi_opt_set_str

flags: UWSGI_OPT_MIME

help: enable WebDAV Current Principal Extension using the specified base

webdav-add-option

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV standard to the OPTIONS response

webdav-add-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all resources

webdav-add-collection-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all collections

webdav-add-object-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all objects

webdav-add-prop-href

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all resources (href value)

webdav-add-collection-prop-href

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all collections (href value)

webdav-add-object-prop-href

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all objects (href value)

webdav-add-prop-comp

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all resources (xml value)

webdav-add-collection-prop-comp

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all collections (xml value)

webdav-add-object-prop-comp

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV property to all objects (xml value)

webdav-add-rtype-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV resourcetype property to all resources

webdav-add-rtype-collection-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV resourcetype property to all collections

webdav-add-rtype-object-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: add a WebDAV resourcetype property to all objects

webdav-skip-prop

argument: required_argument

parser: uwsgi_opt_add_string_list

flags: UWSGI_OPT_MIME

help: do not add the specified prop if available in resource xattr

plugin: xattr

plugin: xslt

xslt-docroot

argument: required_argument

parser: uwsgi_opt_add_string_list

help: add a document_root for xslt processing

xslt-ext

argument: required_argument

parser: uwsgi_opt_add_string_list

help: search for xslt stylesheets with the specified extension

xslt-var

argument: required_argument

parser: uwsgi_opt_add_string_list

help: get the xslt stylesheet path from the specified request var

xslt-stylesheet

argument: required_argument

parser: uwsgi_opt_add_string_list

help: if no xslt stylesheet file can be found, use the specified one

xslt-content-type

argument: required_argument

parser: uwsgi_opt_set_str

help: set the content-type for the xslt rsult (default: text/html)

plugin: zabbix

zabbix-template

argument: optional_argument

parser: uwsgi_opt_zabbix_template

flags: UWSGI_OPT_METRICS

help: print (or store to a file) the zabbix template for the current metrics setup

plugin: zergpool

zergpool

argument: required_argument

parser: uwsgi_opt_add_string_list

help: start a zergpool on specified address for specified address

zerg-pool

argument: required_argument

parser: uwsgi_opt_add_string_list

help: start a zergpool on specified address for specified address

 SharedArea – share memory pages between uWSGI components

SharedArea – share memory pages between uWSGI components

警告

SharedArea is a very low-level mechanism.
For an easier-to-use alternative, see the Caching and Queue frameworks.

警告

This page refers to “new generation” sharedarea introduced in uWSGI 1.9.21, the older API is no longer supported.

The sharedarea subsystem allows you to share pages of memory between your uWSGI components (workers, spoolers, mules, etc.)
in a very fast (and safe) way.

Contrary to the higher-level caching framework, sharedarea operations are way faster (a single copy instead of the double, as required by caching) and offers
various optimizations for specific needs.

Each sharedarea (yes, you can have multiple areas) has a size (generally specified in the number of pages), so if you need an 8 KiB shared area on a system with 4 KiB pages, you would use sharedarea=2.

The sharedarea subsystem is fully thread-safe.

Simple option VS keyval

The sharedarea subsystem exposes (for now) a single option: --sharedarea.

It takes two kinds of arguments: the number of pages (simple approach) or a keyval arg (for advanced tuning).

The following keyval keys are available:

	pages – set the number of pages

	file – create the sharedarea from a file that will be mmaped

	fd – create the sharedarea from a file descriptor that will be mmaped

	size – mainly useful with the fd and ptr keys to specify the size of the map (can be used as a shortcut to avoid calculation of the pages value too)

	ptr – directly map the area to the specified memory pointer.

The API

The API is pretty big, the sharedarea will be the de-facto toy for writing highly optimized web apps (especially for embedded systems).

Most of the documented uses make sense on systems with slow CPUs or very small amounts of memory.

	sharedarea_read(id, pos[, len])

	Read len bytes from the specified sharedarea starting at offset pos. If len is not specified, the memory will be read til the end (starting from pos).

	sharedarea_write(id, pos, string)

	Write the specified string (it is language-dependent, obviously) to the specified sharedarea at offset pos.

	sharedarea_read8|16|32|64(id, pos)

	Read a signed integer (8, 16, 32 or 64 bit) from the specified position.

	sharedarea_write8|16|32|64(id, pos)

	Write a signed integer (8, 16, 32 or 64 bit) to the specified position.

	sharedarea_inc8|16|32|64(id, pos)

	Increment the signed integer (8, 16, 32 or 64 bit) at the specified position.

	sharedarea_dec8|16|32|64(id, pos)

	Decrement the signed integer (8, 16, 32 or 64 bit) at the specified position.

	sharedarea_wait(id[, freq, timeout])

	Wait for modifications of the specified sharedarea (see below).

	sharedarea_rlock(id)

	lock a shared area for read (use only if you know what you are doing, generally the sharedarea api functions implement locking by themselves)

	sharedarea_wlock(id)

	lock a shared area for write (use only if you know what you are doing, generally the sharedarea api functions implement locking by themselves)

	sharedarea_unlock(id)

	unlock a shared area (use only if you know what you are doing, generally the sharedarea api functions implement locking by themselves)

Waiting for updates

One of the most powerful features of sharedareas (compared to caching) is “waiting for updates”. Your worker/thread/async_core can be suspended
until a sharedarea is modified.

Technically, a millisecond-resolution timer is triggered, constantly checking for updates (the operation is very fast, as the sharedarea object has an update counter, so we only need to check that value for changes).

Optional API

The following functions require specific features from the language, so not all of the language plugins are able to support them.

	sharedarea_readfast(id, pos, object, [, len])

	Read len bytes from the specified sharedarea starting at offset pos to the specified object. If len is not specified, the memory will be read til the end (starting from pos).
Currently is implemented only for Perl.

	sharedarea_memoryview(id)

	returns python memoryview object you can directly manipulate (works only on CPython)

	sharedarea_object(id)

	some plugin exposes an alternative way to create sharedareas from internal objects. This functions returns the original object (currently implemented only on CPython on top of bytearrays using --py-sharedarea <size> option)

Websockets integration API

This is currently supported only in the psgi/perl plugin:

	websocket_send_from_sharedarea(id, pos)

	send a websocket message directly from the specified sharedarea

	websocket_send_binary_from_sharedarea(id, pos)

	send a websocket binary message directly from the specified sharedarea

Advanced usage (from C)

Work in progress.

Check https://github.com/unbit/uwsgi-capture for an example of sharedarea managed from C

 Formatting uWSGI requests logs

Formatting uWSGI requests logs

uWSGI has a --logformat option for building custom request loglines. The
syntax is simple:

[uwsgi]
logformat = i am a logline reporting "%(method) %(uri) %(proto)" returning with status %(status)

All of the variables marked with %() are substituted using specific rules.
Three kinds of logvars are defined (“offsetof”, functions, and user-defined).

offsetof

These are taken blindly from the internal wsgi_request structure of the current request.

	%(uri) -> REQUEST_URI

	%(method) -> REQUEST_METHOD

	%(user) -> REMOTE_USER

	%(addr) -> REMOTE_ADDR

	%(host) -> HTTP_HOST

	%(proto) -> SERVER_PROTOCOL

	%(uagent) -> HTTP_USER_AGENT (starting from 1.4.5)

	%(referer) -> HTTP_REFERER (starting from 1.4.5)

functions

These are simple functions called for generating the logvar value:

	%(status) -> HTTP response status code

	%(micros) -> response time in microseconds

	%(msecs) -> response time in milliseconds

	%(time) -> timestamp of the start of the request

	%(ctime) -> ctime of the start of the request

	%(epoch) -> the current time in Unix format

	%(size) -> response body size + response headers size (since 1.4.5)

	%(ltime) -> human-formatted (Apache style) request time (since 1.4.5)

	%(hsize) -> response headers size (since 1.4.5)

	%(rsize) -> response body size (since 1.4.5)

	%(cl) -> request content body size (since 1.4.5)

	%(pid) -> pid of the worker handling the request (since 1.4.6)

	%(wid) -> id of the worker handling the request (since 1.4.6)

	%(switches) -> number of async switches (since 1.4.6)

	%(vars) -> number of CGI vars in the request (since 1.4.6)

	%(headers) -> number of generated response headers (since 1.4.6)

	%(core) -> the core running the request (since 1.4.6)

	%(vsz) -> address space/virtual memory usage (in bytes) (since 1.4.6)

	%(rss) -> RSS memory usage (in bytes) (since 1.4.6)

	%(vszM) -> address space/virtual memory usage (in megabytes) (since 1.4.6)

	%(rssM) -> RSS memory usage (in megabytes) (since 1.4.6)

	%(pktsize) -> size of the internal request uwsgi packet (since 1.4.6)

	%(modifier1) -> modifier1 of the request (since 1.4.6)

	%(modifier2) -> modifier2 of the request (since 1.4.6)

	%(metric.XXX) -> access the XXX metric value (see The Metrics subsystem)

	%(rerr) -> number of read errors for the request (since 1.9.21)

	%(werr) -> number of write errors for the request (since 1.9.21)

	%(ioerr) -> number of write and read errors for the request (since 1.9.21)

	%(tmsecs) -> timestamp of the start of the request in milliseconds since the epoch (since 1.9.21)

	%(tmicros) -> timestamp of the start of the request in microseconds since the epoch (since 1.9.21)

	%(var.XXX) -> the content of request variable XXX (like var.PATH_INFO, available from 1.9.21)

User-defined logvars

You can define logvars within your request handler. These variables live only
per-request.

import uwsgi
def application(env, start_response):
 uwsgi.set_logvar('foo', 'bar')
 # returns 'bar'
 print uwsgi.get_logvar('foo')
 uwsgi.set_logvar('worker_id', str(uwsgi.worker_id()))
 ...

With the following log format you will be able to access code-defined logvars:

uwsgi --logformat 'worker id = %(worker_id) for request "%(method) %(uri) %(proto)" test = %(foo)'

Apache-style combined request logging

To generate Apache-compatible logs:

[uwsgi]
...
log-format = %(addr) - %(user) [%(ltime)] "%(method) %(uri) %(proto)" %(status) %(size) "%(referer)" "%(uagent)"
...

Hacking logformat

(Updated to 1.9.21)

You can register new “logchunk” (the function to call for each logformat symbol) with

struct uwsgi_logchunk *uwsgi_register_logchunk(char *name, ssize_t (*func)(struct wsgi_request *, char **), int need_free);

	name – the name of the symbol

	need_free – if 1, means the pointer set by func must be free()d

	func – the function to call in the log handler

static ssize_t uwsgi_lf_foobar(struct wsgi_request *wsgi_req, char **buf) {
 *buf = uwsgi_num2str(wsgi_req->status);
 return strlen(*buf);
}

static void register_logchunks() {
 uwsgi_register_logchunk("foobar", uwsgi_lf_foobar, 1);
}

struct uwsgi_plugin foobar_plugin = {
 .name = "foobar",
 .on_load = register_logchunks,
};

Now if you load the foobar plugin, you will be able to use the %(foobar) request logging variable (that would report the request status).

 The uWSGI caching framework

The uWSGI caching framework

注解

This page is about “new-generation” cache introduced in uWSGI 1.9.
For old-style cache (now simply named “web caching”) check WebCaching framework

uWSGI includes a very fast, all-in-memory, zero-IPC, SMP-safe,
constantly-optimizing, highly-tunable, key-value store simply called “the
caching framework”. A single uWSGI instance can create an unlimited number of
“caches” each one with different setup and purpose.

Creating a “cache”

To create a cache you use the --cache2 option. It takes a dictionary of
arguments specifying the cache configuration. To have a valid cache you need
to specify its name and the maximum number of items it can contains.

uwsgi --cache2 name=mycache,items=100 --socket :3031

this will create a cache named “mycache” with a maximum of 100 items. Each item can be at most 64k.

A sad/weird/strange/bad note about “the maximum number of items”

If you start with a 100 item cache you will suddenly note that the true maximum number of items you can use is indeed 99.

This is because the first item of the cache is always internally used as “NULL/None/undef” item.

Remember this when you start planning your cache configuration.

Configuring the cache (how it works)

The uWSGI cache works like a file system. You have an area for storing keys
(metadata) followed by a series of fixed size blocks in which to store the
content of each key. Another memory area, the hash table is allocated for fast
search of keys. When you request a key, it is first hashed over the hash
table. Each hash points to a key in the metadata area. Keys can be linked to
manage hash collisions. Each key has a reference to the block containing its
value.

Single block (faster) vs. bitmaps (slower)

警告

Bitmap mode is considered production ready only from uWSGI 2.0.2! (That is, it was buggy before that.)

In the standard (“single block”) configuration a key can only map to a single
block. Thus if you have a cache block size of 64k your items can be at most
65,535 bytes long. Conversely items smaller than that will still consume 64k of
memory. The advantage of this approach is its simplicity and speed. The system
does not need to scan the memory for free blocks every time you insert an
object in the cache.

If you need a more versatile (but relatively slower) approach, you can enable
the “bitmap” mode. Another memory area will be created containing a map of all
of the used and free blocks of the cache. When you insert an item the bitmap is
scanned for contiguous free blocks. Blocks must be contiguous, this could lead
to a bit of fragmentation but it is not as big a problem as with disk storage,
and you can always tune the block size to reduce fragmentation.

Persistent storage

You can store cache data in a backing store file to implement persistence. As
this is managed by mmap() it is almost transparent to the user. You should
not rely on this for data safety (disk syncing is managed asynchronously); use
it only for performance purposes.

Network access

All of your caches can be accessed over the network. A request plugin named
“cache” (modifier1 111) manages requests from external nodes. On a standard
monolithic build of uWSGI the cache plugin is always enabled. The cache plugin
works in a fully non-blocking way, and it is greenthreads/coroutine friendly so
you can use technologies like gevent or Coro::AnyEvent with it safely.

UDP sync

This technique has been inspired by the STUD project, which uses something like
this for SSL session scaling (and coincidentally the same approach can be used
with uWSGI SSL/HTTPS routers). Basically whenever you set/update/delete an
item from the cache, the operation is propagated to remote nodes via simple UDP
packets. There are no built-in guarantees with UDP syncing so use it only for
very specific purposes, like Scaling SSL connections (uWSGI 1.9).

–cache2 options

This is the list of all of the options (and their aliases) of --cache2.

name

Set the name of the cache. Must be unique in an instance.

max-items || maxitems || items

Set the maximum number of cache items.

blocksize

Set the size (in bytes) of a single block.

blocks

Set the number of blocks in the cache. Useful only in bitmap mode, otherwise
the number of blocks is equal to the maximum number of items.

hash

Set the hash algorithm used in the hash table. Currentl options are “djb33x”
(default) and “murmur2”.

hashsize || hash_size

this is the size of the hash table in bytes. Generally 65536 (the default) is a
good value. Change it only if you know what you are doing or if you have a lot
of collisions in your cache.

keysize || key_size

Set the maximum size of a key, in bytes (default 2048)

store

Set the filename for the persistent storage. If it doesn’t exist, the system
assumes an empty cache and the file will be created.

store_sync || storesync

Set the number of seconds after which msync() is called to flush memory cache
on disk when in persistent mode. By default it is disabled leaving the
decision-making to the kernel.

store_delete || storedelete

uWSGI, by default, will not start if a cache file exists and the store file does not match the configured items/blocksize.
Setting this option will make uWSGI delete the existing file upon mismatch and create a new one.

node || nodes

A semicolon separated list of UDP servers which will receive UDP cache updates.

sync

A semicolon separated list of uwsgi addresses which the cache subsystem will
connect to for getting a full dump of the cache. It can be used for initial
cache synchronization. The first node sending a valid dump will stop the
procedure.

udp || udp_servers || udp_server || udpserver

A semicolon separated list of UDP addresses on which to bind the cache to wait for UDP updates.

bitmap

Set to 1 to enable bitmap mode.

lastmod

Setting lastmod to 1 will update last_modified_at timestamp of each cache on
every cache item modification. Enable it if you want to track this value or if
other features depend on it. This value will then be accessible via the stats
socket.

ignore_full

By default uWSGI will print warning message on every cache set operation if the cache is full. To disable this warning set this option. Available since 2.0.4

purge_lru

This option allows the caching framework to evict Least Recently Used (LRU)
item when you try to add new item to cache storage that is full. The expires
argument described below will be ignored. An item is considered used when
it’s accessed, added and updated by cache_get(), cache_set() and
cache_update(); whereas the existence check by cache_exists() is not.

Accessing the cache from your applications using the cache api

You can access the various cache in your instance or on remote instances by
using the cache API. Currently the following functions are exposed (each
language might name them a bit differently from the standard):

	cache_get(key[,cache])

	cache_set(key,value[,expires,cache])

	cache_update(key,value[,expires,cache])

	cache_exists(key[,cache])

	cache_del(key[,cache])

	cache_clear([cache])

If the language/platform calling the cache API differentiates between strings
and bytes (like Python 3 and Java) you have to assume that keys are strings and
values are bytes (or bytearray in the java way). Otherwise keys and values are
both strings in no specific encoding, as internally the cache values and keys
are simple binary blobs.

The expires argument (default to 0 for disabled) is the number of seconds
after the object is no more valid (and will be removed by the cache sweeper
when purge_lru is not set, see below)

The cache argument is the so called “magic identifier”. Its syntax is
cache[@node].

To operate on the local cache “mycache” you set it as “mycache”, while to
operate on “yourcache” on the uWSGI server at 192.168.173.22 port 4040 the
value will be yourcache@192.168.173.22:4040.

An empty cache value means the default cache which is generally the first
initialized. The default value is empty.

All of the network operations are transparent, fully non-blocking, and
threads/greenthreads friendly.

The Cache sweeper thread

When at least one cache is configured without purge_lru and the master
is enabled a thread named “the cache sweeper” is started. Its main purpose
is deleting expired keys from the cache. So, if you want auto-expiring you
need to enable the master.

Web caching

In its first incarnation the uWSGI caching framework was meant only for caching
of web pages. The old system has been rebuilt. It is now named
WebCaching framework. Enabling the old-style --cache option will create a
cache named “default”.

Monitoring caches

The stats server exposes cache information. An ncurses based tool (https://pypi.python.org/pypi/uwsgicachetop) exists that uses that information for real-time monitoring.

 Logging

Logging

参见

Formatting uWSGI requests logs

Basic logging

The most basic form of logging in uWSGI is writing requests, errors, and
informational messages to stdout/stderr. This happens in the default
configuration. The most basic form of log redirection is the --logto /
--logto2 / --daemonize options which allow you to redirect logs to
files.

Basic logging to files

To log to files instead of stdout/stderr, use --logto, or to simultaneously
daemonize uWSGI, --daemonize.

./uwsgi -s :3031 -w simple_app --daemonize /tmp/mylog.log
./uwsgi -s :3031 -w simple_app --logto /tmp/mylog.log
logto2 only opens the log file after privileges have been dropped to the specified uid/gid.
./uwsgi -s :3031 -w simple_app --uid 1001 --gid 1002 --logto2 /tmp/mylog.log

Basic logging (connected UDP mode)

With UDP logging you can centralize cluster logging or redirect the persistence
of logs to another machine to offload disk I/O. UDP logging works in both
daemonized and interactive modes. UDP logging operaties in connected-socket
mode, so the UDP server must be available before uWSGI starts. For a more raw
approach (working in unconnected mode) see the section on socket logging.

To enable conencted UDP mode pass the address of a UDP server to the
--daemonize/--logto option:

./uwsgi -s :3031 -w simple_app --daemonize 192.168.0.100:1717
./uwsgi -s :3031 -w simple_app --logto 192.168.0.100:1717

This will redirect all the stdout/stderr data to the UDP socket on
192.168.0.100, port 1717. Now you need an UDP server that will manage your UDP
messages. You could use netcat, or even uWSGI:

nc -u -p 1717 -s 192.168.0.100 -l
./uwsgi --udp 192.168.0.100:1717

The second way is a bit more useful as it will print the source (ip:port) of
every message. In case of multiple uWSGI server logging on the same UDP server
it will allow you to recognize one server from another. Naturally you can
write your own apps to manage/filter/save the logs received via udp.

Pluggable loggers

uWSGI also supports pluggable loggers, which allow you more flexibility on
where and what to log. Depending on the configuration of your uWSGI build,
some loggers may or may not be available. Some may require to be loaded as
plugins. To find out what plugins are available in your build, invoke uWSGI
with --logger-list. To set up a pluggable logger, use the --logger or
--req-logger options. --logger will set up a logger for every message
while --req-logger will set up a logger for request information messages.

This is the syntax:

--logger <plugin>[:options]
--logger "<name> <plugin>[:options]" # The quotes are only required on the command line -- config files don't use them

You may set up as many loggers as you like. Named plugins are used for log
routing. A very simple example of split request/error logging using plain text
files follows.

[uwsgi]
req-logger = file:/tmp/reqlog
logger = file:/tmp/errlog

Log routing

By default all log lines are sent to all declared loggers. If this is not what
you want, you can use --log-route (and --log-req-route for request
loggers) to specify a regular expression to route certain log messages to
different destinations.

For instance:

[uwsgi]
logger = mylogger1 syslog
logger = theredisone redislog:127.0.0.1:6269
logger = theredistwo redislog:127.0.0.1:6270
logger = file:/tmp/foobar # This logger will log everything else, as it's not named
logger = internalservererror file:/tmp/errors
...
log-route = internalservererror (HTTP/1.\d 500)
log-route = mylogger1 uWSGI listen queue of socket .* full

This will log each 500 level error to /tmp/errors, while listen queue full errors
will end up in /tmp/foobar. This is somewhat similar to the
The uWSGI alarm subsystem (from 1.3), though alarms are usually heavier and should only be
used for critical situations.

Logging to files

logfile plugin – embedded by default.

Logging to sockets

logsocket plugin – embedded by default.

You can log to an unconnected UNIX or UDP socket using --logger socket:...
(or --log-socket ...).

uwsgi --socket :3031 --logger socket:/tmp/uwsgi.logsock

will send log entries to the Unix socket /tmp/uwsgi.logsock.

uwsgi --socket :3031 --logger socket:192.168.173.19:5050

will send log datagrams to the UDP address 192.168.173.19 on port 5050. You
may also multicast logs to multiple log servers by passing the multicast
address:

uwsgi --socket :3031 --logger socket:225.1.1.1:1717

Logging to syslog

logsyslog plugin – embedded by default

The logsyslog plugin routes logs to Unix standard syslog. You may pass an
optional ID to send and the “facility” for the log entry.

uwsgi --socket :3031 --logger syslog:uwsgi1234

or

uwsgi --socket :3031 --logger syslog:uwsgi1234,local6

to send to the local6 facility

Logging to remote syslog

logrsyslog plugin – embedded by default

The logrsyslog plugin routes logs to Unix standard syslog residing on a
remote server. In addtition to the address+port of the remote syslog server,
you may pass an optional ID to send as the “facility” parameter for the log
entry.

uwsgi --socket :3031 --logger rsyslog:12.34.56.78:12345,uwsgi1234

Redis logger

redislog plugin – embedded by default.

By default the redislog plugin will ‘publish’ each logline to a redis
pub/sub queue. The logger plugin syntax is:

--logger redislog[:<host>,<command>,<prefix>]

By default host is mapped to 127.0.0.1:6379, command is mapped to
“publish uwsgi” and prefix is empty. To publish to a queue called foobar,
use redislog:127.0.0.1:6379,publish foobar. Redis logging is not limited
to pub/sub. You could for instance push items into a list, as in the next
example.

--logger redislog:/tmp/redis.sock,rpush foo,example.com

As error situations could cause the master to block while writing a log line to
a remote server, it’s a good idea to use --threaded-logger to offload log
writes to a secondary thread.

MongoDB logger

mongodblog plugin – embedded by default.

The logger syntax for MongoDB logging (mongodblog) is

--logger mongodblog[:<host>,<collection>,<node>]

Where host is the address of the MongoDB instance (default
127.0.0.1:27017), collection names the collection to write log lines
into (default uwsgi.logs) and node is an identification string for the
instance sending logs (default: server hostname).

--logger mongodblog

Will run the logger with default values, while

--logger mongodblog:127.0.0.1:9090,foo.bar

Will write logs to the mongodb server 127.0.0.1:9090 in the collection
foo.bar using the default node name. As with the Redis logger, offloading
log writes to a dedicated thread is a good choice.

[uwsgi]
threaded-logger = true
logger = mongodblog:127.0.0.1:27017,uwsgi.logs_of_foobar
As usual, you could have multiple loggers:
logger = mongodblog:192.168.173.22:27017,uwsgi.logs_of_foobar
socket = :3031

ZeroMQ logging

As with UDP logging you can centralize/distribute logging via ZeroMQ. Build
your logger daemon using a ZMQ_PULL socket:

import zmq

ctx = zmq.Context()

puller = ctx.socket(zmq.PULL)
puller.bind("tcp://192.168.173.18:9191")

while True:
 message = puller.recv()
 print message,

Now run your uWSGI server:

uwsgi --logger zeromq:tcp://192.168.173.18:9191 --socket :3031 --module werkzeug.testapp:test_app

(--log-zeromq is an alias for this logger.)

Crypto logger (plugin)

If you host your applications on cloud services without persistent storage you
may want to send your logs to external systems. However logs often contain
sensitive information that should not be transferred in clear. The
logcrypto plugin logger attempts to solve this issue by encrypting each log
packet before sending it over UDP to a server able to decrypt it. The next
example will send each log packet to a UDP server available at
192.168.173.22:1717 encrypting the text with the secret key ciaociao with
Blowfish in CBC mode.

uwsgi --plugin logcrypto --logger crypto:addr=192.168.173.22:1717,algo=bf-cbc,secret=ciaociao -M -p 4 -s :3031

An example server is available at
https://github.com/unbit/uwsgi/blob/master/contrib/cryptologger.rb

Graylog2 logger (plugin)

graylog2 plugin – not compiled by default.

This plugin will send logs to a Graylog2 server in Graylog2’s native GELF format.

uwsgi --plugin graylog2 --logger graylog2:127.0.0.1:1234,dsfargeg

Systemd logger (plugin)

systemd_logger plugin – not compiled by default.

This plugin will write log entries into the Systemd journal.

uwsgi --plugin systemd_logger --logger systemd

Writing your own logger plugins

This plugin, foolog.c will write your messages in the file specified with
–logto/–daemonize with a simple prefix using vector IO.

#include <uwsgi.h>

ssize_t uwsgi_foolog_logger(struct uwsgi_logger *ul, char *message, size_t len) {

 struct iovec iov[2];

 iov[0].iov_base = "[foo] ";
 iov[0].iov_len = 6;

 iov[1].iov_base = message;
 iov[1].iov_len = len;

 return writev(uwsgi.original_log_fd, iov, 2);
}

void uwsgi_foolog_register() {
 uwsgi_register_logger("syslog", uwsgi_syslog_logger);
}

struct uwsgi_plugin foolog_plugin = {
 .name = "foolog",
 .on_load = uwsgi_foolog_register,
};

 Supported Platforms/Systems

Supported Platforms/Systems

This is the list of officially supported operating systems and platforms.

	Linux 2.6/3.x

	FreeBSD >= 7

	NetBSD

	OpenBSD

	DragonFlyBSD

	Windows Cygwin

	Mac OSX

	Solaris >= 10

	NexentaOS

	SmartOS

	OpenSolaris

	OpenIndiana

	OmniOS

	Debian/kFreeBSD

	GNU/Hurd

 The uWSGI project

The uWSGI project

uWSGI 项目致力于为构建一个全栈式的托管服务。

应用服务器（多种编程语言和协议），代理，进程管理器和监视器
全部都以通用 api 和通用配置风格实现了。

得益于它的可插式架构，它可以被拓展到其他更多的平台和语言。

目前你可以使用 C，C++ 和 Objective-C 来写插件。

名字中的 ”WSGI“ 部分是对 Python 标准中的同名一个东西的致敬，因为它
是这个项目的第一个开发的插件。

多功能，高性能，占用资源少和可靠性是这个项目的优势（也是唯一遵循的规则）。

包含的组件（更新到了最新的稳定发行版）

核心 Core （实现了配置，进程管理，创建 socket，监控，日志，共享内存，进程间通信，
集群成员和 uWSGI Subscription Server ）

请求插件 Request plugins （实现了多种语言和平台的应用服务器接口： WSGI，PSGI，Rack，Lua WSAPI，CGI，PHP，Go ...）

网关 Gateways （实现了负载均衡，代理和路由器）

The Emperor （实现了对大量实例的管理和监控）

循环引擎 Loop engines （实现了事件和并发，组件可以以 preforking，threaded，asynchronous/evented 和
green thread/coroutine 模式运行。支持包括 uGreen，Greenlet，Stackless 多种技术，
Gevent , Coro::AnyEvent, Tornado, Goroutines 和 Fibers）

注解

uWSGI 是一个发布周期非常快的活跃项目。所以代码和文档并不总是同步的。
我们尽最大的努力来保证文档的质量，但这很难。请原谅。
如果你遇到了麻烦，邮件列表是解决与 uWSGI 有关问题的最佳地方。
欢迎为文档（以及代码）贡献。

快速入门

	Python/WSGI 应用快速入门

	perl/PSGI 应用快速入门

	ruby/Rack 应用快速入门

	代码片段

目录表

	The Master FIFO

	Systemd

	Running uWSGI instances with Circus

教程

	The uWSGI Caching Cookbook

	Setting up Django and your web server with uWSGI and nginx

	Running uWSGI on Dreamhost shared hosting

	Running python webapps on Heroku with uWSGI

	Running Ruby/Rack webapps on Heroku with uWSGI

	Reliably use FUSE filesystems for uWSGI vassals (with Linux)

	Build a dynamic proxy using RPC and internal routing

	Setting up Graphite on Ubuntu using the Metrics subsystem

Articles

	Serializing accept(), AKA Thundering Herd, AKA the Zeeg Problem

	The Art of Graceful Reloading

	Fun with Perl, Eyetoy and RaspberryPi

	Offloading Websockets and Server-Sent Events AKA “Combine them with Django safely”

uWSGI 子系统

	The uWSGI Legion subsystem

	uWSGI Mules

	The uWSGI Spooler

	SNI - Server Name Identification (virtual hosting for SSL nodes)

	The GeoIP plugin

	uWSGI Transformations

	WebSocket support

	The Metrics subsystem

	The Chunked input API

Scaling with uWSGI

	The uWSGI cheaper subsystem – adaptive process spawning

	The uWSGI Emperor – multi-app deployment

	Auto-scaling with Broodlord mode

	Zerg mode

	Adding applications dynamically

	Scaling SSL connections (uWSGI 1.9)

让 uWSGI 更安全

	Setting POSIX Capabilities

	Running uWSGI in a Linux CGroup

	Using Linux KSM in uWSGI

	Jailing your apps using Linux Namespaces

	The old way: the –namespace option

	FreeBSD Jails

	The Forkpty Router

	The TunTap Router

盯着你的应用(Keeping an eye on your apps)

	Monitoring uWSGI with Nagios

	The embedded SNMP server

	Pushing statistics (from 1.4)

	Integration with Graphite/Carbon

	The uWSGI Stats Server

	The Metrics subsystem

异步和循环引擎 (Async and loop engines)

	uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9)

	The Gevent loop engine

	The Tornado loop engine

	uGreen – uWSGI Green Threads

	The asyncio loop engine (CPython >= 3.4, uWSGI >= 2.0.4)

支持的 Web 服务器

	Apache support

	Cherokee support

	Native HTTP support

	HTTPS support (from 1.3)

	The SPDY router (uWSGI 1.9)

	Lighttpd support

	Attaching uWSGI to Mongrel2

	Nginx support

语言支持

	Python support
	The uwsgi Python module

	uWSGI API - Python decorators

	Pump support

	Python Tracebacker

	Aliasing Python modules

	Application dictionary

	Virtualenv support

	Python 3

	Paste support

	Pecan support

	Using the uwsgi_admin Django app

	The PyPy plugin
	Introduction

	Install uWSGI with PyPy support

	The PyPy home

	The PyPy setup file

	WSGI support

	RPC support

	IPython trick

	uWSGI API status

	Options

	Notes

	Running PHP scripts in uWSGI
	Building

	Running PHP apps with nginx

	Advanced configuration

	Run PHP apps without a frontend server

	uWSGI API support

	Sessions over uWSGI caches (uWSGI >=2.0.4)

	Zend Opcode Cache (uWSGI >= 2.0.6)

	ForkServer (uWSGI >= 2.1)

	uWSGI Perl support (PSGI)
	Compiling the PSGI plugin

	Usage

	Tested PSGI frameworks/applications

	Multi-app support

	The auto reloader (from uWSGI 1.9.18)

	Notes

	Real world example, HTML::Mason

	Ruby support
	Ruby API support

	Building uWSGI for Ruby support

	A note regarding memory consumption

	A note regarding threads and fibers

	Running Rack applications on uWSGI

	Running Ruby on Rails applications on uWSGI

	Using Lua/WSAPI with uWSGI
	Building the plugin

	Why Lua ?

	Your first WSAPI application

	Concurrency

	Abusing coroutines

	Threading example

	A note on memory

	RPC and signals

	The Lua shell

	Using Lua as ‘configurator’

	uWSGI api status

	JVM in the uWSGI server (updated to 1.9)
	The JWSGI interface

	The Clojure/Ring JVM request handler

	Introduction

	Building the JVM support

	Exposing functions via the RPC subsystem

	Registering signal handlers

	The fork() problem and multithreading

	How does it work?

	Passing options to the JVM

	Loading classes (without main method)

	Request handlers

	Notes

	The Mono ASP.NET plugin
	Building uWSGI + Mono

	Starting the server

	Under the hood: the mono key

	Concurrency and fork() unfriendliness

	API access

	Tricks

	Running CGI scripts on uWSGI
	Enabling the plugin

	Configuring CGI mode

	Notes

	Examples

	The GCCGO plugin
	How it works

	Why not use plain Go?

	Building the plugin

	The first app

	uwsgi.gox

	Shared libraries VS monolithic binaries

	Goroutines

	Options

	uWSGI API

	Notes

	The Symcall plugin
	Step 1: preparing the environment

	Step 2: our first request handler:

	Step 3: building our code as a shared library

	Final step: map the symcall plugin to the mysym_function symbol

	Hooks and symcall unleashed: a TCL handler

	Considerations

	The XSLT plugin
	The request handler

	The routing instruction

	SSI (Server Side Includes) plugin
	Using it as a request handler

	Using SSI as a routing action

	Supported SSI commands

	Status

	uWSGI V8 support
	Building

	RPC

	Signal handlers

	Multitheading and multiprocess

	Mules

	The uWSGI API

	JSGI 3.0

	CommonJS

	The GridFS plugin
	Requirements and install

	Standalone quickstart

	The initial slash problem

	Multiple mountpoints (and servers)

	Replica sets

	Prefixes

	MIME types and filenames

	Timeouts

	MD5 and ETag headers

	Multithreading

	Combining with Nginx

	The ‘gridfs’ internal routing action

	Notes

	The GlusterFS plugin
	Step1: glusterfs installation

	Step2: the first cluster

	Step3: uWSGI

	High availability

	Multiple mountpoints

	Multiprocess VS multithread

	Internal routing

	Using capabilities (on Linux)

	Notes:

	The RADOS plugin
	Step1: Ceph cluster and content

	Step2: uWSGI

	High availability

	Multiple mountpoints

	HTTP methods

	Features

	Caching example

	Security note

	Notes

其他插件

	The Pty plugin

	SPNEGO authentication

	Configuring uWSGI with LDAP

弃用(Broken/deprecated)特性

	Integrating uWSGI with Erlang

	Management Flags

	uWSGI Go support (1.4 only)

发布说明

稳定版

	uWSGI 2.0.9

	uWSGI 2.0.8

	uWSGI 2.0.7

	uWSGI 2.0.6

	uWSGI 2.0.5

	uWSGI 2.0.4

	uWSGI 2.0.3

	uWSGI 2.0.2

	uWSGI 2.0.1

	uWSGI 2.0

	uWSGI 1.9.21

	uWSGI 1.9.20

	uWSGI 1.9.19

	uWSGI 1.9.18

	uWSGI 1.9.17

	uWSGI 1.9.16

	uWSGI 1.9.15

	uWSGI 1.9.14

	uWSGI 1.9.13

	uWSGI 1.9.12

	uWSGI 1.9.11

	uWSGI 1.9.10

	uWSGI 1.9.9

	uWSGI 1.9.8

	uWSGI 1.9.7

	uWSGI 1.9.6

	uWSGI 1.9.5

	uWSGI 1.9.4

	uWSGI 1.9.3

	uWSGI 1.9.2

	uWSGI 1.9.1

	uWSGI 1.9

长期支持版(LTS)

	uWSGI 1.4.10 (LTS)

联系信息

	Mailing list
	http://lists.unbit.it/cgi-bin/mailman/listinfo/uwsgi

	Gmane mirror
	http://dir.gmane.org/gmane.comp.python.wsgi.uwsgi.general

	IRC
	#uwsgi @ irc.freenode.org. The owner of the channel is unbit.

	Twitter
	http://twitter.com/unbit

	Commercial support
	http://unbit.com/

.

商业支持

你可以从 http://unbit.com 购买商业支持

捐助

uWSGI 的开发由意大利互联网服务提供商 Unbit [http://unbit.it/] 以及它的客户
支持。你可以购买商业支持和许可。如果你不是 Unbit 的客户或者你不想购买一个商业的
uWSGI 许可，你可以考虑捐助。显然你可以在你的捐助中随意询问想要的新特性。

我们将会把支持开发新特性的人加到 credit 里。

请看 old uWSGI site [http://projects.unbit.it/uwsgi/#Donateifyouwant] 来获取捐助链接。
你可以通过 GitTip [https://www.gittip.com/unbit/] 捐助。

索引和查询

	索引

	模块索引

	搜索页面

 Running uWSGI via Upstart

Running uWSGI via Upstart

Upstart is the init system of Ubuntu-like distributions.

It is based on declarative configuration files – not shell scripts of yore – that are put in the /etc/init directory.

A simple script (/etc/init/uwsgi.conf)

simple uWSGI script

description "uwsgi tiny instance"
start on runlevel [2345]
stop on runlevel [06]

exec uwsgi --master --processes 4 --die-on-term --socket :3031 --wsgi-file /var/www/myapp.wsgi

Using the Emperor

参见

The uWSGI Emperor – multi-app deployment

A better approach than init files for each app would be to only start an Emperor via Upstart and let it deal with the rest.

Emperor uWSGI script

description "uWSGI Emperor"
start on runlevel [2345]
stop on runlevel [06]

exec uwsgi --emperor /etc/uwsgi

If you want to run the Emperor under the master process (for accessing advanced features) remember to add –die-on-term

Emperor uWSGI script

description "uWSGI Emperor"
start on runlevel [2345]
stop on runlevel [06]

exec uwsgi --master --die-on-term --emperor /etc/uwsgi

What is –die-on-term?

By default uWSGI maps the SIGTERM signal to “a brutal reload procedure”.

However, Upstart uses SIGTERM to completely shutdown processes. die-on-term inverts the meanings of SIGTERM and SIGQUIT to uWSGI.

The first will shutdown the whole stack, the second one will brutally reload it.

Socket activation (from Ubuntu 12.04)

Newer Upstart releases have an Inetd-like feature that lets processes start when connections are made to specific sockets.

You can use this feature to start uWSGI only when a client (or the webserver) first connects to it.

The ‘start on socket’ directive will trigger the behaviour.

You do not need to specify the socket in uWSGI as it will be passed to it by Upstart itself.

simple uWSGI script

description "uwsgi tiny instance"
start on socket PROTO=inet PORT=3031
stop on runlevel [06]

exec uwsgi --master --processes 4 --die-on-term --wsgi-file /var/www/myapp.wsgi

 The uWSGI C api

The uWSGI C api

the wsgi_request struct

the uwsgi_server struct

Headers and response

buffers

strings

non-blocking I/O

Offloading

Request body

Cookies

Caches

Signals

Locking

Zlib

Alarms

Websockets

Exec

 WebCaching framework

WebCaching framework

注解

This is a port of the old caching subsystem to the new uWSGI caching API documented here The uWSGI caching framework.
Using the options here will create a new-style cache named “default”.

To enable web caching, allocate slots for your items using the cache option. The following command line would create a cache that can contain at most 1000 items.

./uwsgi --socket 127.0.0.1:3031 --module mysimpleapp --master --processes 4 --cache 1000

To use the cache in your application,

uwsgi.cache_set("foo_key", "foo_value") # set a key
value = uwsgi.cache_get("foo_key") # get a key.

Persistent storage

You can store cache data in a backing store file to implement persistence. Simply add the cache-store <filename> option.
Every kernel will commit data to the disk at a different rate. You can set if/when to force this with cache-store-sync <n>, where n is the number of master cycles to wait before each disk sync.

Cache sweeper

Since uWSGI 1.2, cache item expiration is managed by a thread in the master process, to reduce the risk of deadlock. This thread can be disabled (making item expiry a no-op) with the cache-no-expire option.

The frequency of the cache sweeper thread can be set with cache-expire-freq <seconds>. You can make the sweeper log the number of freed items with cache-report-freed-items.

Directly accessing the cache from your web server

location / {
 uwsgi_pass 127.0.0.1:3031;
 uwsgi_modifier1 111;
 uwsgi_modifier2 3;
 uwsgi_param key $request_uri;
}

That’s it! Nginx would now get HTTP responses from a remote uwsgi protocol compliant server. Although honestly this is not very useful, as if you get a cache miss, you will see a blank page.

A better system, that will fallback to a real uwsgi request would be

location / {
 uwsgi_pass 192.168.173.3:3032;
 uwsgi_modifier1 111;
 uwsgi_modifier2 3;
 uwsgi_param key $request_uri;
 uwsgi_pass_request_headers off;
 error_page 502 504 = @real;
}

location @real {
 uwsgi_pass 192.168.173.3:3032;
 uwsgi_modifier1 0;
 uwsgi_modifier2 0;
 include uwsgi_params;
}

Django cache backend

If you are running Django, there’s a ready-to-use application called django-uwsgi-cache. It is maintained by Ionel Cristian Mărieș at https://github.com/ionelmc/django-uwsgi-cache and availabe on pypi.

 Embedding an application in uWSGI

Embedding an application in uWSGI

Starting from uWSGI 0.9.8.2, you can embed files in the server binary. These
can be any file type, including configuration files. You can embed directories
too, so by hooking the Python module loader you can transparently import
packages, too. In this example we’ll be embedding a full Flask project.

Step 1: creating the build profile

We’re assuming you have your uWSGI source at the ready.

In the buildconf directory, define your profile – let’s call it flask.ini:

[uwsgi]
inherit = default
bin_name = myapp
embed_files = bootstrap.py,myapp.py

myapp.py is a simple flask app.

from flask import Flask
app = Flask(__name__)
app.debug = True

@app.route('/')
def index():
 return "Hello World"

bootstrap.py is included in the source distribution. It will extend the python import subsystem to use files embedded in uWSGI.

Now compile your app-inclusive server. Files will be embedded as symbols in the
executable. Dots and dashes, etc. in filenames are thus transformed to
underscores.

python uwsgiconfig.py --build flask

As bin_name was myapp, you can now run

./myapp --socket :3031 --import sym://bootstrap_py --module myapp:app

The sym:// pseudoprotocol enables uWSGI to access the binary’s embedded
symbols and data, in this case importing bootstrap.py directly from the binary
image.

Step 2: embedding the config file

We want our binary to automatically load our Flask app without having to pass a long command line.

Let’s create the configuration – flaskconfig.ini:

[uwsgi]
socket = 127.0.0.1:3031
import = sym://bootstrap_py
module = myapp:app

And add it to the build profile as a config file.

[uwsgi]
inherit = default
bin_name = myapp
embed_files = bootstrap.py,myapp.py
embed_config = flaskconfig.ini

Then, after you rebuild the server

python uwsgiconfig.py --build flask

you can now simply launch

./myapp
Remember that this new binary continues to be able to take parameters and config files:
./myapp --master --processes 4

Step 3: embedding flask itself

Now, we are ready to kick asses with uWSGI ninja awesomeness. We want a single
binary embedding all of the Flask modules, including Werkzeug and Jinja2,
Flask’s dependencies. We need to have these packages’ directories and then
specify them in the build profile.

[uwsgi]
inherit = default
bin_name = myapp
embed_files = bootstrap.py,myapp.py,werkzeug=site-packages/werkzeug,jinja2=site-packages/jinja2,flask=site-packages/flask
embed_config = flaskconfig.ini

注解

This time we have used the form “name=directory” to force symbols to
a specific names to avoid ending up with a clusterfuck like
site_packages_flask___init___py.

Rebuild and re-run. We’re adding –no-site when running to show you that the
embedded modules are being loaded.

python uwsgiconfig.py --build flask
./myapp --no-site --master --processes 4

Step 4: adding templates

Still not satisfied? WELL YOU SHOULDN’T BE.

[uwsgi]
inherit = default
bin_name = myapp
embed_files = bootstrap.py,myapp.py,werkzeug=site-packages/werkzeug,jinja2=site-packages/jinja2,flask=site-packages/flask,templates
embed_config = flaskconfig.ini

Templates will be added to the binary... but we’ll need to instruct Flask on
how to load templates from the binary image by creating a custom Jinja2
template loader.

from flask import Flask, render_template
from flask.templating import DispatchingJinjaLoader

class SymTemplateLoader(DispatchingJinjaLoader):

 def symbolize(self, name):
 return name.replace('.','_').replace('/', '_').replace('-','_')

 def get_source(self, environment, template):
 try:
 import uwsgi
 source = uwsgi.embedded_data("templates_%s" % self.symbolize(template))
 return source, None, lambda: True
 except:
 pass
 return super(SymTemplateLoader, self).get_source(environment, template)

app = Flask(__name__)
app.debug = True

app.jinja_env.loader = SymTemplateLoader(app)

@app.route('/')
def index():
 return render_template('hello.html')

@app.route('/foo')
def foo():
 return render_template('bar/foo.html')

POW! BIFF! NINJA AWESOMENESS.

 Glossary

Glossary

	harakiri

	A feature of uWSGI that aborts workers that are serving requests for an
excessively long time. Configured using the harakiri family of
options. Every request that will take longer than the seconds specified
in the harakiri timeout will be dropped and the corresponding worker
recycled.

	master

	uWSGI’s built-in prefork+threading multi-worker management mode,
activated by flicking the master switch on. For all practical serving
deployments it’s not really a good idea not to use master mode.

 Frequently Asked Questions (FAQ)

Frequently Asked Questions (FAQ)

Why should I choose uWSGI?

Because you can! :) uWSGI wants to be a complete web application deployment
solution with batteries included:

	ProcessManagement

	Management of long-running tasks

	uWSGI RPC Stack

	Clustering

	LoadBalancing

	Monitoring

	ResourceLimiting

... and many other annoying everyday tasks that you’d have to delegate to
external scripts and manual sysadmin tasks.

If you are searching for a simple server for your WSGI, PSGI or Rack app, uWSGI
may not be for you. Though, if you are building an app which needs to be rock
solid, fast, and easy to distribute and optimize for various loads, you will
most likely find yourself needing uWSGI.

The best definition for uWSGI is “Swiss Army Knife for your network applications”.

What about the protocol?

The uwsgi (all lowercase) protocol is derived from SCGI but with binary string
length representations and a 4-byte header that includes the size of the var
block (16 bit length) and a couple of general-purpose bytes. We are not
reinventing the wheel. Binary management is much easier and cheaper than string
parsing, and every single bit of power is required for our projects. If you
need proof, look at the official protocol documentation and
you will understand why a new protocol was needed. Obviously, you are free to
use the other supported protocols. Remember, if you cannot use uWSGI in some
scenario, it is a uWSGI bug.

Can I use it in cluster environments?

Yes, this is one of the main features of the uWSGI stack. You can have
multiple instances bound on different servers, and using the load balancing
facilities of your webserver/proxy/router you can distribute your load.
Systems like uWSGI RPC Stack allows you to fast call functions on remote nodes, and
The uWSGI Legion subsystem allows you to elect a master in a multi-node setup.

So, why all those timeout configuration flags?

Choosing sane timeouts is the key to high availability. Do not trust network
applications that do not permit you to choose a timeout.

I need help! What do I do?

Post a message on the uWSGI mailing list including your

	Operating system version

	CPU architecture

	Webserver used (if any)

	uWSGI version

	uWSGI command line or config files

You should add the –show-config option and post the output in the message.
It will be very useful for finding out just what’s wrong with your uWSGI. You
can also rebuild uWSGI with debug symbols and run it under a
debugger like gdb.

uWSGI is an enormous project with hundreds of options. You should be prepared
that not everything will go right at the first shot. Ask for help, ask for help
and ask for help. If you are frustrated, do not waste time blaming and ranting
- instead simply join the list and ask for help. This is open source, if you
only rant you are doing nothing useful.

I am not a sysadmin, nor a UNIX guru. Can I use uWSGI?

That’s a good question :) But sadly there is no simple answer. uWSGI has not
been developed with simplicity in mind, but with versatility. You can try it
by starting with one of the quickstarts and if you have problems, simply ask
for help in the list or on the IRC channel.

How can I buy commercial support for my company?

Send an email to info at unbit.it with the word “uWSGI” in the subject. The
email you send should include your company information and your specific
request. We will reply as soon as possible.

Will this allow me to run my awesome apps on my ancient close-minded ISP?

Probably not. The uWSGI server requires a modern platform/environment.

Where are the benchmarks?

Sorry, we only do “official” benchmarks for regression testing. If benchmarks
are very important to you, you can search on the mailing list, make your own
benchmarks or search on Google. uWSGI gives precedence to machine health, so
do not expect your ab test with an unrealistic number of concurrent
connections to be managed flawlessly without tuning. Some socket and
networking knowledge is required if you want to make a valid benchmark (and
avoid geek rage in your blog comments ;). Also remember that uWSGI can be
run in various modes, so avoid comparing it configured in preforking mode
with another server in non-blocking/async mode if you do not want to look
ridiculous.

注解

If you see your tests failing at higher concurrency rates you are probably
hitting your OS socket backlog queue limit (maximum of 128 slots on Linux,
tunable via /proc/sys/net/somaxconn and
/proc/sys/net/ipv4/tcp_max_syn_backlog for TCP sockets).

You can set this value in uWSGI with the listen configuration option.

Ha! Server XXX is faster than uWSGI! Take that!

As already stated uWSGI is not a silver bullet, it is not meant to be liked by
the whole world and it is obviously not the fastest server out there. It is a
piece of software following an “approach” to problems you may not like or that
you may conversely love. The approach taken will work better for certain cases
than others, and each application should be analyzed on it’s own merits using
appropriate and accruate real-world benchmarks.

What is ‘Harakiri mode’?

At Unbit we host hundreds of unreliable web apps on our servers. All of them
run on hardly constrained (at kernel level) environments where having processes
block due to an implementation error will result in taking down an entire site.
The harakiri mode has two operational modes:

	one that we define as “raw and a bit unreliable” (used for simple setup without a process manager)

	and another one that we define as “reliable” that depends on the presence of the uWSGI process manager (see ProcessManagement).

The first one sets a simple alarm at the start of every request. If the process
gets a SIGALRM signal, it terminates itself. We call this unreliable, because
your app or some module you use could overwrite or simply cancel the alarm with
a simple call to alarm().

The second one uses a master process shared memory area (via mmap) that
maintains statistics on every worker in the pool. At the start of every
request, the worker sets a timestamp representing the time after which the process
will be killed in its dedicated area. This timestamp is zeroed after every
successful request. If the master process finds a worker with a timestamp in
the past it will mercilessly kill it.

Will my app run faster with uWSGI?

It’s unlikely. The biggest bottleneck in web app deployment is the application
itself. If you want a faster environment, optimize your code or use techniques
such as clustering or caching. We say that uWSGI is fast because it introduces
a very little overhead in the deployment structure.

What are the most important options for performance and robustness in the uWSGI environment?

By default, uWSGI is configured with sane “almost-good-for-all” values. But if
and when things start going wild, tuning is a must.

	Increasing (or decreasing) timeout is important, as is modifying the socket listen queue size.

	Think about threading. If you do not need threads, do not enable them.

	If you are running only a single application you can disable multiple interpreters.

	Always remember to enable the master process in production environments. See ProcessManagement.

	Adding workers does not mean “increasing performance”, so choose a good value
for the workers option based on the nature of your app (IO bound, CPU bound,
IO waiting...)

Why not simply use HTTP as the protocol?

A good question with a simple answer: HTTP parsing is slow, really slow. Why
should we do a complex task twice? The web server has already parsed the
request! The uwsgi protocol is very simple to parse for a
machine, while HTTP is very easy to parse for a human. As soon as humans are
being used as servers, we will abandon the uwsgi protocol in favor of the HTTP
protocol. All this said, you can use uWSGI via Native HTTP support, FastCGI,
ZeroMQ and other protocols as well.

Why do you support multiple methods of configuration?

System administration is all about skills and taste. uWSGI tries to give
sysadmins as many choices as possible for integration with whatever
infrastructure is already available. Having multiple methods of configuration is
just one way we achieve this.

What is the best webserver handler?

See Web server integration.

 The uWSGI FastRouter

The uWSGI FastRouter

For advanced setups uWSGI includes the “fastrouter” plugin, a
proxy/load-balancer/router speaking the uwsgi protocol. It is built in by
default. You can put it between your webserver and real uWSGI instances to
have more control over the routing of HTTP requests to your application
servers.

Getting started

First of all you have to run the fastrouter, binding it to a specific address.
Multiple addresses are supported as well.

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter /tmp/uwsgi.sock --fastrouter @foobar

注解

This is the most useless Fastrouter setup in the world.

Congratulations! You have just run the most useless Fastrouter setup in the
world. Simply binding the fastrouter to a couple of addresses will not instruct
it on how to route requests. To give it intelligence you have to tell it how to
route requests.

Way 1: –fastrouter-use-base

This option will tell the fastrouter to connect to a UNIX socket with the same
name of the requested host in a specified directory.

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter-use-base /tmp/sockets/

If you receive a request for example.com the fastrouter will forward the
request to /tmp/sockets/example.com.

Way 2: –fastrouter-use-pattern

Same as the previous setup but you will be able to use a pattern, with %s
mapping to the requested key/hostname.

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter-use-base /tmp/sockets/%s/uwsgi.sock

Requests for example.com will be mapped to
/tmp/sockets/example.com/uwsgi.sock.

Way 3: –fastrouter-use-cache

You can store the key/value mappings in the uWSGI cache.
Choose a way to fill the cache, for instance a Python script like this...

import uwsgi
Requests for example.com on port 8000 will go to 127.0.0.1:4040
uwsgi.cache_set("example.com:8000", "127.0.0.1:4040")
Requests for unbit.it will go to 127.0.0.1:4040 with the modifier1 set to 5 (perl/PSGI)
uwsgi.cache_set("unbit.it", "127.0.0.1:4040,5")

Then run your Fastrouter-enabled server, telling it to run the script first.

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter-use-cache --cache 100 --file foobar.py

Way 4: –fastrouter-subscription-server

This is probably one of the best way for massive auto-scaling hosting. It uses
the subscription server to allow instances to
announce themselves and subscribe to the fastrouter.

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter-subscription-server 192.168.0.100:7000

This will spawn a subscription server on address 192.168.0.100 port 7000

Now you can spawn your instances subscribing to the fastrouter:

uwsgi --socket :3031 -M --subscribe-to 192.168.0.100:7000:example.com
uwsgi --socket :3032 -M --subscribe-to 192.168.0.100:7000:unbit.it,5 --subscribe-to 192.168.0.100:7000:uwsgi.it

As you probably noted, you can subscribe to multiple fastrouters, with multiple
keys. Multiple instances subscribing to the same fastrouter with the same key
will automatically get load balanced and monitored. Handy, isn’t it? Like with
the caching key/value store, modifier1 can be set with a comma. (,5
above) Another feature of the subscription system is avoiding to choose ports.
You can bind instances to random port and the subscription system will send the
real value to the subscription server.

uwsgi --socket 192.168.0.100:0 -M --subscribe-to 192.168.0.100:7000:example.com

Mapping files

If you need to specify a massive amount of keys, you can use a mapping file
instead.

mappings.txt
unbit.it
unbit.it:8000,5
uwsgi.it
projects.unbit.it

uwsgi --socket :3031 -M --subscribe-to 192.168.0.100:7000:@mappings.txt

Way 5: –fastrouter-use-code-string

If Darth Vader wears a t-shirt with your face (and in some other corner cases
too), you can customize the fastrouter with code-driven mappings. Choose a
uWSGI-supported language (like Python or Lua) and define your mapping function.

def get(key):
 return '127.0.0.1:3031'

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter-use-code-string 0:mapper.py:get

This will instruct the fastrouter to load the script mapper.py using plugin
(modifier1) 0 and call the ‘get’ global, passing it the key. In the previous
example you will always route requests to 127.0.0.1:3031. Let’s create
a more advanced system, for fun!

domains = {}
domains['example.com'] = {'nodes': ('127.0.0.1:3031', '192.168.0.100:3032'), 'node': 0}
domains['unbit.it'] = {'nodes': ('127.0.0.1:3035,5', '192.168.0.100:3035,5'), 'node': 0}

DEFAULT_NODE = '192.168.0.1:1717'

def get(key):
 if key not in domains:
 return DEFAULT_NODE

 # get the node to forward requests to
 nodes = domains[key]['nodes']
 current_node = domains[key]['node']
 value = nodes[current_node]

 # round robin :P
 next_node = current_node + 1
 if next_node >= len(nodes):
 next_node = 0

 domains[key]['node'] = next_node

 return value

uwsgi --fastrouter 127.0.0.1:3017 --fastrouter-use-code-string 0:megamapper.py:get

With only few lines we have implemented round-robin load-balancing with a
fallback node. Pow! You could add some form of node monitoring, starting
threads in the script, or other insane things. (Be sure to add them to the
docs!)

注意

Remember to not put blocking code in your functions. The
fastrouter is totally non-blocking, do not ruin it!

Cheap mode and shared sockets

A common setup is having a webserver/proxy connected to a fastrouter and a
series of uWSGI instances subscribed to it. Normally you’d use the webserver
node as a uWSGI instance node. This node will subscribe to the local
fastrouter. Well... don’t waste cycles on that! Shared sockets are a way to
share sockets among various uWSGI components. Let’s use that to share a socket
between the fastrouter and uWSGI instance.

[uwsgi]
;create a shared socket (the webserver will connect to it)
shared-socket = 127.0.0.1:3031

; bind the fastrouter to the shared socket
fastrouter = =0
; bind an instance to the same socket
socket = =0

; having a master is always a good thing...
master = true
; our subscription server
fastrouter-subscription-server = 192.168.0.100:4040
; our app
wsgi-file = /var/www/myheavyapp.wsgi
; a bunch of processes
processes = 4
; and put the fastrouter in cheap mode
fastrouter-cheap = true

With this setup your requests will go directly to your app (no proxy overhead)
or to the fastrouter (to pass requests to remote nodes). When the fastrouter
is in cheap mode, it will not respond to requests until a node is available.
This means that when there are no nodes subscribed, only your local app will
respond. When all of the nodes go down, the fastrouter will return in cheap
mode. Seeing a pattern? Another step to awesome autoscaling.

Post-buffering mode (uWSGI >= 2.0.9)

The fastrouter is (by default) a streaming proxy. This means that as soon as the uwsgi packet (read: the request headers) is parsed, it is forwarded to the backend/backends.

Now, if your web-proxy is a streaming-one too (like apache, or the uWSGI http router), your app could be blocked for ages in case of a request with a body. To be more clear:

	the client starts the request sending http headers

	the web proxy receives it and send to the fastrouter

	the fastrouter receives it and send to the backend

	the client starts sending chunks of the request body (like a file upload)

	the web proxy receives them and forward to the fastrouter

	the fastrouter receives them and forward to the backend and so on

now, immagine 10 concurrent clients doing this thing and you will end with 10 application server workers (or threads) busy for un undefined amount of time. (note: this problem is amplified by the fact that generally the number of threads/process is very limited, even in async modes you have a limited of concurrent requests but it is generally so high that the problem is not so relevant)

Web-proxies like nginx are “buffered”, so they wait til the whole request (and its body) has been read, and then it sends it to the backends.

You can instruct the fastrouter to behave like nginx with the --fastrouter-post-buffering <n> option, where <n> is the size of the request body after which the body will be stored to disk (as a temporary file) instead of memory:

[uwsgi]
fastrouter = 127.0.0.1:3031
fastrouter-to = /var/run/app.socket
fastrouter-post-buffering = 8192

will put the fastrouter in buffered mode, storing on a temp file every body bigger than 8192 bytes, and on memory everything lower (or equal)

Remember that post-buffering, is not a good-for-all solution (otherwise it would be the default), enabling it breaks websockets, chunked input, upload progress, iceast streaming and so on. Enable it only when needed.

Notes

	The fastrouter uses the following vars (in order of precedence) to choose a key to use:
	UWSGI_FASTROUTER_KEY - the most versatile, as it doesn’t depend on the request in any way

	HTTP_HOST

	SERVER_NAME

	You can increase the number of async events the fastrouter can manage (by
default it is system-dependent) using –fastrouter-events

You can change the default timeout with –fastrouter-timeout By default the
fastrouter will set fd socket passing when used over unix sockets. If you do
not want it add –no-fd-passing

 Getting uWSGI

Getting uWSGI

These are the current versions of uWSGI.

	Release
	Date
	Link

	Unstable/Development
	-
	https://github.com/unbit/uwsgi/

	Stable/LTS
	2014-12-30
	http://projects.unbit.it/downloads/uwsgi-2.0.9.tar.gz

	Old/LTS
	2013-08-23
	http://projects.unbit.it/downloads/uwsgi-1.4.10.tar.gz

	DOCS
	-
	https://github.com/unbit/uwsgi-docs/

uWSGI is also available as a package in several OS/distributions.

uWSGI has a really fast development cycle, so packages may not be up to date. Building it requires less than 30 seconds
and very few dependencies (only Python interpreter, a C compiler/linker and the libs/headers for your language of choice)

 Managing the uWSGI server

Managing the uWSGI server

参见

If you are managing multiple apps or a high volume site, take a look at

	The uWSGI Emperor – multi-app deployment

	Zerg mode

	uWSGI Subscription Server

Starting the server

Starting an uWSGI server is the role of the system administrator, like starting the Web server. It should not be the role of the Web server to start the uWSGI server – though you can also do that if it fits your architecture.

How to best start uWSGI services at boot depends on the operating system you use.

On modern systems the following should hold true. On “classic” operating systems you can use init.d/rc.d scripts, or tools such as Supervisor, Daemontools or inetd/xinetd.

	System
	Method

	Ubuntu
	Running uWSGI via Upstart (the official uwsgi package, available since Ubuntu 12.04 provides an init.d based solution. Read the README.)

	Debian
	Running uWSGI via Upstart

	Arch Linux
	Systemd

	Fedora
	Systemd

	OSX
	launchd

	Solaris
	SMF

Signals for controlling uWSGI

You can instruct uWSGI to write the master process PID to a file with the pidfile option.

The uWSGI server responds to the following signals.

	Signal
	Description
	Convenience command

	SIGHUP
	gracefully reload all the workers and the master process
	–reload

	SIGTERM
	brutally reload all the workers and the master process
	(use –die-on-term to respect the convention of shutting down the instance)

	SIGINT
	immediately kill the entire uWSGI stack
	–stop

	SIGQUIT
	immediately kill the entire uWSGI stack
	

	SIGUSR1
	print statistics
	

	SIGUSR2
	print worker status or wakeup the spooler
	

	SIGURG
	restore a snapshot
	

	SIGTSTP
	pause/suspend/resume an instance
	

	SIGWINCH
	wakeup a worker blocked in a syscall (internal use)
	

	SIGFPE
	generate C traceback
	

	SIGSEGV
	generate C traceback
	

Note: there are better ways to manage your instances than signals, as an example the master-fifo is way more robust.

Reloading the server

When running with the master process mode, the uWSGI server can be gracefully restarted without closing the main sockets.

This functionality allows you patch/upgrade the uWSGI server without closing the connection with the web server and losing a single request.

When you send the SIGHUP to the master process it will try to gracefully stop all the workers, waiting for the completion of any currently running requests.

Then it closes all the eventually opened file descriptors not related to uWSGI.

Lastly, it binary patches (using execve()) the uWSGI process image with a new one, inheriting all of the previous file descriptors.

The server will know that it is a reloaded instance and will skip all the sockets initialization, reusing the previous ones.

注解

Sending the SIGTERM signal will obtain the same result reload-wise but will not wait for the completion of running requests.

There are several ways to make uWSGI gracefully restart.

using kill to send the signal
kill -HUP `cat /tmp/project-master.pid`
or the convenience option --reload
uwsgi --reload /tmp/project-master.pid
or if uwsgi was started with touch-reload=/tmp/somefile
touch /tmp/somefile

Or from your application, in Python:

uwsgi.reload()

Or in Ruby,

UWSGI.reload

Stopping the server

If you have the uWSGI process running in the foreground for some reason, you can just hit CTRL+C to kill it off.

When dealing with background processes, you’ll need to use the master pidfile again. The SIGINT signal will kill uWSGI.

kill -INT `cat /tmp/project-master.pid`
or for convenience...
uwsgi --stop /tmp/project-master.pid

The Master FIFO

Starting from uWSGI 1.9.17, a new management system has been added using unix named pipes (fifo): The Master FIFO

 Serving static files with uWSGI (updated to 1.9)

Serving static files with uWSGI (updated to 1.9)

Unfortunately you cannot live without serving static files via some protocol (HTTP, SPDY or something else).

Fortunately uWSGI has a wide series of options and micro-optimizations for serving static files.

Generally your webserver of choice (Nginx, Mongrel2, etc. will serve static files efficiently and quickly and will simply forward dynamic requests to uWSGI backend nodes.

The uWSGI project has ISPs and PaaS (that is, the hosting market) as the main target, where generally you would want to avoid
generating disk I/O on a central server and have each user-dedicated area handle (and account for) that itself. More importantly still, you want to allow customers to customize the way they serve static assets without bothering your system administrator(s).

Mode 1: Check for a static resource before passing the request to your app

This a fairly common way of managing static files in web apps. Frameworks like Ruby on Rails and many PHP apps have used this method for ages.

Suppose your static assets are under /customers/foobar/app001/public. You want to check each request has a corresponding file in that directory before passing the request to your dynamic app. The --check-static option is for you:

--check-static /customers/foobar/app001/public

If uWSGI receives a request for /foo.png will first check for the existence of /customers/foobar/app001/public/foo.png and if it is not found it will invoke your app.

You can specify --check-static multiple times to specify multiple possible root paths.

--check-static /customers/foobar/app001/public --check-static /customers/foobar/app001/static

uWSGI will first check for /customers/foobar/app001/public/foo.png; if it does not find it it will try /customers/foobar/app001/static/foo.png before finally delegating the request to your app.

Mode 2: trust frontend’s DOCUMENT_ROOT

If your frontend (a webserver, a uWSGI corerouters...) set the DOCUMENT_ROOT value, you can instruct uWSGI to trust it as a valid directory for checking for static files with the --check-static-docroot option.

Mode 3: using static file mount points

A more general approach is “mapping” specific request prefixes to physical directories on your file system.

The --static-map mountpoint=path is the option for you.

--static-map /images=/var/www/img

If you get a request for /images/logo.png and /var/www/img/logo.png exists, it will be served. Otherwise your app will manage the request.

You can specify multiple --static-map options, even for the same mountpoint.

--static-map /images=/var/www/img --static-map /images=/var/www/img2 --static-map /images=/var/www/img3

The file will be searched in each directory until it’s found, or if it’s not, the request will be managed by your app.

In some specific cases you may want to build the internal path in a different way, retaining the original path portion of the request. The --static-map2 option will do this.

--static-map2 /images=/var/www/img

A request for /images/logo.png will be looked for as /var/www/img/images/logo.png.

You can map (or map2) both directories and files.

--static-map /images/logo.gif=/tmp/oldlogo.gif
(psst: put favicons here)

Mode 4: using advanced internal routing

When mappings are not enough, advanced internal routing (available from 1.9) will be your last resort.

Thanks to the power of regular expressions you will be able to build very complex mappings.

[uwsgi]
route = /static/(.*)\.png static:/var/www/images/pngs/$1/highres.png
route = *\.jpg static:/var/www/always_the_same_photo.jpg

Setting the index page

By default, requests for a “directory” (like / or /foo) are bypassed (if advanced internal routing is not in place).

If you want to map specific files to a “directory” request (like the venerable index.html) just use the --static-index option.

--static-index index.html --static-index index.htm --static-index home.html

As with the other options, the first one matching will stop the chain.

MIME types

Your HTTP/SPDY/whateveryouwant responses for static files should always return the correct mime type for the specific file to let user agents handle them correctly.

By default uWSGI builds its list of MIME types from the /etc/mime.types file. You can load additional files with the --mime-file
option.

--mime-file /etc/alternatives.types --mime-file /etc/apache2/mime.types

All of the files will be combined into a single auto-optimizing linked list.

Skipping specific extensions

Some platforms/languages, most-notably CGI based ones, like PHP are deployed in a very simple manner.

You simply drop them in the document root and they are executed whenever you call them.

This approach, when combined with static file serving, requires a bit of attention for avoiding your CGI/PHP/whatever to be served like static files.

The --static-skip-ext will do the trick.

A very common pattern on CGI and PHP deployment is this:

--static-skip-ext .php --static-skip-ext .cgi --static-skip-ext .php4

Setting the Expires headers

When serving static files, abusing client browser caching is the path to wisdom. By default uWSGI will add a Last-Modified
header to all static responses, and will honor the If-Modified-Since request header.

This might be not enough for high traffic sites. You can add automatic Expires headers using one of the following options:

	--static-expires-type will set the Expires header to the specified number of seconds for the specified MIME type.

	--static-expires-type-mtime is similar, but based on file modification time, not the current time.

	--static-expires (and -mtime) will set Expires header for all of the filenames (after finishing mapping to the filesystem) matching the specified regexp.

	--static-expires-uri (and -mtime) match regexps against REQUEST_URI

	--static-expires-path-info (and -mtime) match regexps against PATH_INFO

Expire an hour from now
--static-expires-type text/html=3600
Expire an hour from the file's modification time
--static-expires-type-mtime text/html=3600
Same as static-expires-type, but based on a regexp:
--static-expires /var/www/static/foo*\.jpg 3600

Transfer modes

If you have developed an asynchronous/nonblocking application, serving static files directly from uWSGI is not a big problem.

All of the transfers are managed in the async way, so your app will not block during them.

In multi-process/multi-threaded modes, your processes (or threads) will be blocked during the whole transfer of the file.

For smaller files this is not a problem, but for the bigger one it’s a great idea to offload their transfer to something else.

You have various ways to do this:

X-Sendfile

If your web server supports the X-Sendfile header and has access to the file you want to send (for example it is on the same machine
of your application or can access it via NFS) you can avoid the transfer of the file from your app with the --file-serve-mode x-sendfile option.

With this, uWSGI will only generate response headers and the web server will be delegated to transferring the physical file.

X-Accel-Redirect

This is currently (January 2013) supported only on Nginx. Works in the same way as X-Sendfile, the only difference
is in the option argument.

--file-serve-mode x-accel-redirect

Offloading

This is the best approach if your frontend server has no access to the static files.
It uses the The uWSGI offloading subsystem to delegate the file transfer to a pool of non-blocking threads.

Each one of these threads can manage thousands of file transfers concurrently.

To enable file transfer offloading just use the option --offload-threads specifying the number of threads to spawn (try to set it to the number of CPU cores to take advantage of SMP).

GZIP (uWSGI 1.9)

uWSGI 1.9 can check for a *.gz variant of a static file.

Many users/sysadmins underestimate the CPU impact of on-the-fly Gzip encoding.

Compressing files every time (unless your webservers is caching them in some way) will use CPU
and you will not be able to use advanced (zero-copy) techniques like sendfile(). For a very loaded site (or network) this could
be a problem (especially when gzip encoding is a need for a better, more responsive user experience).

Although uWSGI is able to compress contents on the fly (this is used in the HTTP/HTTPS/SPDY router for example), the best approach
for serving gzipped static files is generating them “manually” (but please use a script, not an intern to do this), and let uWSGI
choose if it is best to serve the uncompressed or the compressed one every time.

In this way serving gzip content will be no different from serving standard static files (sendfile, offloading...)

To trigger this behavior you have various options:

	static-gzip <regexp> checks for .gz variant for all of the requested files matching the specified regexp (the regexp is applied to the full filesystem path of the file)

	static-gzip-dir <dir>/static-gzip-prefix <prefix> checks for .gz variant for all of the files under the specified directory

	static-gzip-ext <ext>/static-gzip-suffix <suffix> check for .gz variant for all of the files with the specified extension/suffix

	static-gzip-all check for .gz variant for all requested static files

So basically if you have /var/www/uwsgi.c and /var/www/uwsgi.c.gz, clients accepting gzip as their Content-Encoding will be transparently served the gzipped version instead.

Security

Every static mapping is fully translated to the “real” path (so symbolic links are translated too).

If the resulting path is not under the one specified in the option, a security error will be triggered and the request refused.

If you trust your UNIX skills and know what you are doing, you can add a list of “safe” paths. If a translated path
is not under a configured directory but it is under a safe one, it will be served nevertheless.

Example:

--static-map /foo=/var/www/

/var/www/test.png is a symlink to /tmp/foo.png

After the translation of /foo/test.png, uWSGI will raise a security error as /tmp/foo.png is not under /var/www/.

Using

--static-map /foo=/var/www/ --static-safe /tmp

will bypass that limit.

You can specify multiple --static-safe options.

Caching paths mappings/resolutions

One of the bottlenecks in static file serving is the constant massive amount of stat() syscalls.

You can use the uWSGI caching subsystem to store mappings from URI to filesystem paths.

--static-cache-paths 30

will cache each static file translation for 30 seconds in the uWSGI cache.

From uWSGI 1.9 an updated caching subsystem has been added, allowing you to create multiple caches. If you want to store translations in a specific cache you can use --static-cache-paths-name <cachename>.

Bonus trick: storing static files in the cache

You can directly store a static file in the uWSGI cache during startup using the option --load-file-in-cache <filename> (you can specify it multiple times). The content of the file will be stored under the key <filename>.

So please pay attention – load-file-in-cache ./foo.png will store the item as ./foo.png, not its full path.

Notes

	The static file serving subsystem automatically honours the If-Modified-Since HTTP request header

 uwsgi protocol magic variables

uwsgi protocol magic variables

You can dynamically tune or configure various aspects of the uWSGI server using special variables passed by the web server (or in general by a uwsgi compliant client).

	For Nginx, the uwsgi_param <name> <value>; directive is used.

	For Apache, the SetEnv <name> <value> directive is used.

UWSGI_SCHEME

Set the URL scheme when it cannot be reliably determined. This may be used to force HTTPS (with the value https), for instance.

UWSGI_SCRIPT

Load the specified script as a new application mapped to SCRIPT_NAME. The app will obviously only be loaded once, not on each request.

uwsgi_param UWSGI_SCRIPT werkzeug.testapp:test_app;
uwsgi_param SCRIPT_NAME /testapp;

UWSGI_MODULE and UWSGI_CALLABLE

Load a new app (defined as module:callable) mapped into SCRIPT_NAME.

uwsgi_param UWSGI_MODULE werkzeug.testapp;
uwsgi_param UWSGI_CALLABLE test_app;
uwsgi_param SCRIPT_NAME /testapp;

UWSGI_PYHOME

Dynamically set the Python Virtualenv support for a dynamic application.

参见

DynamicVirtualenv

UWSGI_CHDIR

chdir() to the specified directory before managing the request.

UWSGI_FILE

Load the specified file as a new dynamic app.

UWSGI_TOUCH_RELOAD

Reload the uWSGI stack when the specified file’s modification time has changed since the last request.

location / {
 include uwsgi_params;
 uwsgi_param UWSGI_TOUCH_RELOAD /tmp/touchme.foo;
 uwsgi_pass /tmp/uwsgi.sock;
}

UWSGI_CACHE_GET

参见

The uWSGI caching framework

Check the uWSGI cache for a specified key. If the value is found, it will be returned as raw HTTP output instead of the usual processing of the request.

location / {
 include uwsgi_params;
 uwsgi_param UWSGI_CACHE_GET $request_uri;
 uwsgi_pass 127.0.0.1:3031;
}

UWSGI_SETENV

Set the specified environment variable for a new dynamic app.

注解

To allow this in Python applications you need to enable the reload-os-env uWSGI option.

Dynamically load a Django app without using a WSGI file/module:

location / {
 include uwsgi_params;
 uwsgi_param UWSGI_SCRIPT django.core.handlers.wsgi:WSGIHandler();
 uwsgi_param UWSGI_CHDIR /mydjangoapp_path;
 uwsgi_param UWSGI_SETENV DJANGO_SETTINGS_MODULE=myapp.settings;
}

UWSGI_APPID

注解

Available since 0.9.9.

Bypass SCRIPT_NAME and VirtualHosting to let the user choose the mountpoint without limitations (or headaches).

The concept is very generic: UWSGI_APPID is the identifier of an application. If it is not found in the internal list of apps, it will be loaded.

server {
 server_name server001;
 location / {
 include uwsgi_params;
 uwsgi_param UWSGI_APPID myfunnyapp;
 uwsgi_param UWSGI_FILE /var/www/app1.py
 }
}

server {
 server_name server002;
 location / {
 include uwsgi_params;
 uwsgi_param UWSGI_APPID myamazingapp;
 uwsgi_param UWSGI_FILE /var/www/app2.py
 }
}

 uWSGI Subscription Server

uWSGI Subscription Server

Some components of the uWSGI stack require a key-value mapping system.

For example the The uWSGI FastRouter needs to know which server to contact for a specific request.

In big networks with a lot of nodes manually managing this configuration could be a real hell.
uWSGI implements a subscription system where the node itself announces its presence to Subscription Servers, which will in turn populate their internal dictionaries.

uwsgi --fastrouter :1717 --fastrouter-subscription-server 192.168.0.100:2626

This will run an uWSGI fastrouter on port 1717 and create an empty dictionary where the hostname is the key and the uwsgi address is the value.

To populate this dictionary you can contact 192.168.0.100:2626, the address of the subscription server.

For every key multiple addresses can exist, enabling load balancing (various algorithms are available).

A node can announce its presence to a Subscription Server using the subscribe-to or subscribe2 options.

uwsgi --socket 192.168.0.10:3031 --wsgi myapp -M --subscribe-to 192.168.0.100:2626:uwsgi.it

The FastRouter will map every request for uwsgi.it to 192.168.0.10:3031.

To now add a second node for uwsgi.it simply run it and subscribe:

uwsgi --socket 192.168.0.11:3031 --wsgi myapp --master --subscribe-to 192.168.0.100:2626:uwsgi.it

Dead nodes are automatically removed from the pool.

The syntax for subscribe2 is similar but it allows far more control since it allows to specify additional options like the address to which all requests should be forwarded. Its value syntax is a string with “key=value” pairs, each separated by a comma.

uwsgi -s 192.168.0.10:3031 --wsgi myapp --master --subscribe2 server=192.168.0.100:2626,key=uwsgi.it,addr=192.168.0.10:3031

For a list of the available subscribe2 keys, see below.

The subscription system is currently available for cluster joining (when multicast/broadcast is not available), the Fastrouter, the HTTP/HTTPS/SPDY router, the rawrouter and the sslrouter.

That said, you can create an evented/fast_as_hell HTTP load balancer in no time.

uwsgi --http :80 --http-subscription-server 192.168.0.100:2626 --master

Now simply subscribe your nodes to the HTTP subscription server.

Securing the Subscription System

The subscription system is meant for “trusted” networks. All of the nodes in your network can potentially make a total mess with it.

If you are building an infrastructure for untrusted users or you simply need more control over who can subscribe to a Subscription Server you can use openssl rsa public/private key pairs for “signing” you subscription requests.

First, create the private key for the subscriber. DO NOT SET A PASSPHRASE FOR THIS KEY.
openssl genrsa -out private.pem
Generate the public key for the subscription server:
openssl rsa -pubout -out test.uwsgi.it_8000.pem -in private.pem

The keys must be named after the domain/key we are subscribing to serve, plus the .pem extension.

注解

If you’re subscribing to a pool for an application listening on a specified port you need to use the domain_port.pem scheme for your key files. Generally all of the DNS-allowed chars are supported, all of the others are mapped to an underscore.

An example of an RSA protected server looks like this:

[uwsgi]
master = 1
http = :8000
http-subscription-server = 127.0.0.1:2626
subscriptions-sign-check = SHA1:/etc/uwsgi/keys

The last line tells uWSGI that public key files will be stored in /etc/uwsgi/keys.

At each subscription request the server will check for the availability of the public key file and use it, if available, to verify the signature of the packet. Packets that do not correctly verify are rejected.

On the client side you need to pass your private key along with other subscribe-to options. Here’s an example:

[uwsgi]
socket = 127.0.0.1:8080
subscribe-to = 127.0.0.1:2626:test.uwsgi.it:8000,5,SHA1:/home/foobar/private.pem
psgi = test.psgi

Let’s analyze the subscribe-to usage:

	127.0.0.1:2626 is the subscription server we want to subscribe to.

	test.uwsgi.it:8000 is the subscription key.

	5 is the modifier1 value for our psgi app

	SHA1:/home/private/test.uwsgi.it_8000.pem is the <digest>:<rsa> couple for authenticating to the server (the <rsa> field is the private key path).

注解

Please make sure you’re using the same digest method (SHA1 in the examples above) both on the server and on the client.

To avoid replay attacks, each subscription packet has an increasing number (normally the unix time) avoiding the allowance of duplicated packets.
Even if an attacker manages to sniff a subscription packet it will be unusable as it is already processed previously.
Obviously if someone manages to steal your private key he will be able to build forged packets.

Using SSH keys

SSH-formatted keys are generally loved by developers (well, more than classic PEM files).

Both –subscribe-to and –subscribe2 (see below) support SSH private keys, while for the server part you have the encode the public key in pkcs8:

ssh-keygen -f chiavessh001.pub -e -m pkcs8

–subscribe2

This is the keyval version of –subscribe-to. It supports more tricks and a (generally) more readable syntax:

uwsgi --socket 127.*:0 --subscribe2 server=127.0.0.1:7171,key=ubuntu64.local:9090,sign=SHA1:chiavessh001

Supported fields are:

	server the address of the subscription server

	key the key to subscribe (generally the domain name)

	addr the address to subscribe (the value of the item)

	socket the socket number (zero-based), this is like ‘addr’ by take the uWSGI internal socket number

	weight the load balancing value

	modifier1 and modifier2

	sign <algo>:<file> the signature for the secured system

	check it takes a file as argument. If it exists the packet is sent, otherwise it is skipped

	sni_key set the keyfile to use for SNI proxy management

	sni_crt set the crt file to use for SNI proxy management

	sni_ca set the ca file to use for SNI proxy management

	algo (uWSGI 2.1) set the load balancing algorithm to use (they are pluggable, included are wrr, lrc, wlrc and iphash)

	proto (uWSGI 2.1) the protocol to use, by default it is ‘uwsgi’

	backup (uWSGI 2.1) set the backup level (change meaning based on algo)

Notifications

When you subscribe to a server, you can ask it to “acknowledge” the acceptance of your request.

Just add --subscription-notify-socket <addr> pointing to a datagram (Unix or UDP) address, on which your instance will bind and the subscription server will send acknowledgements to.

Mountpoints (uWSGI 2.1)

Generally you subscribe your apps to specific domains.

Thanks to the mountpoint support introduced in uWSGI 2.1, you can now subscribe each node to a specific directory (though only one level after the domain name is allowed):

First of all you need to tell the subscription server to accept (and manage) mountpoint requests:

uwsgi --master --http :8080 --http-subscription-server 127.0.0.1:4040 --subscription-mountpoints

Then you can start subscribing to mountpoints.

uwsgi --socket 127.0.0.1:0 --subscribe2 server=127.0.0.1:4040,key=mydomain.it/foo
uwsgi --socket 127.0.0.1:0 --subscribe2 server=127.0.0.1:4040,key=mydomain.it/bar
uwsgi --socket 127.0.0.1:0 --subscribe2 server=127.0.0.1:4040,key=mydomain.it/foo
uwsgi --socket 127.0.0.1:0 --subscribe2 server=127.0.0.1:4040,key=mydomain.it

The first and the third instance will answer to all of the requests for /foo, the second will answer for /bar and the last one will manage all of the others.

For the secured subscription system, you only need to use the domain key (you do not need to generate a certificate for each mountpoint).

 Writing uWSGI plugins

Writing uWSGI plugins

This tutorial will introduce you to uWSGI hacking. A bit of C knowledge and UNIX theory is required.

The simplified (and safe) build system used in the tutorial has been added in uWSGI 1.9.21, on older versions you need the raw
procedure (described at the end of the tutorial)

What is an uWSGI plugin?

uWSGI plugins are a standard shared libraries (with the classic .so extension) exposing a specific C structure named “uwsgi_plugin”.

This structure exposes a bunch of handy information (like the name of the plugin) and “hooks”.

Hooks are simple functions registered to be run at specific server phases.

The minimal plugin you can write it is something like this (the ‘foobar’ plugin):

#include <uwsgi.h>

struct uwsgi_plugin foobar_plugin = {
 .name ="foobar",
};

It announces itself as ‘foobar’ and exposes no hooks (yes, it is the most useless plugin out there, except for adding a teensy bit of memory use to uWSGI).

Plugins are not required to define hooks – they can simply expose functions that can be called using uWSGI advanced facilities (read: Hooks).

Why (and when) plugins?

Even if uWSGI is able to directly load shared libraries (with --dlopen) and call their functions as hooks, sometimes you want to interface with
uWSGI’s internal structures.

The first plugin

Our first plugin will be a simple “Hello world” one:

#include <uwsgi.h>

static int foo_init() {
 uwsgi_log("Hello World\n");
 return 0;
}

struct uwsgi_plugin foobar_plugin = {
 .name = "foobar",
 .init = foo_init,
};

Save it as foobar.c.

Build it:

uwsgi --build-plugin foobar.c

You will end up with a foobar_plugin.so that you can load in your uWSGI binary.

uwsgi --plugin ./foobar_plugin.so

If all goes well, you should see “Hello World” on your terminal before uWSGI exiting with an error (as no socket is defined).

The uwsgiplugin.py file

How does the magic happen?

As you have seen, the uwsgi binary by itself is able to build plugins without forcing the user/developer to care about build profiles, #ifdef or platform-specific configurations.

This is possible because the uwsgi binary itself contains the raw ‘uwsgi.h’ file as well as the ‘uwsgiconfig.py’ script.

In addition to this the CFLAGS used when building the binary are stored too.

With these 3 components you have all you need to safely build a uWSGI plugin tuned for your uwsgi binary.

General plugins VS request plugins

The wsgi_request struct

Headers, body and sendfile

Offloading

Available hooks

Defining options

Using C++

Using Objective-C

socket I/O

Whenever you make I/O operations on a socket you have to be sure to not-block the currently running thread/core/worker.

The uwsgi API exposes some functions to ensure safety when dealing with I/O. They would be documented here, but aren’t, yet.

 <no title>

 Configuring FastRouter using a C++ plugin

Configuring FastRouter using a C++ plugin

Intro

This tutorial assumes that you are familiar with the usage and purpose of the uwsgi fastrouter and you are facing an edge-case (like “Darth Vader wearing a t-shirt with your face”) so you have to use some kind of code-driven “configuration”. The fastrouter documentation page recommends the –fastrouter-use-code-string commandline argument of uwsgi [http://uwsgi-docs.readthedocs.org/en/latest/Fastrouter.html#way-5-fastrouter-use-code-string] to solve such terribly complicated routing problems by executing your own code/logic for each request to decide which gateway to send it to. The official documentation (at the previous link) shows an example where a python script provides the routing logic and the doc states that you can use any uwsgi-supported language to configure the fastrouter (although my uwsgi-2.0.3 seems to have the code_string feature only in its python and ruby plugins if I’m right...). This tutorial shows you how to write and compile a C++ plugin that contains the routing logic for the fastrouter. This document can also serve a partial/basic C++ plugin tutorial.

To make things a bit more complicated I will do the development of this plugin on windows using a cygwin environment. In case of such a simple plugin this involves only 1-2 extra steps compared to building on linux, I will comment the differences. For production I’m using “original” Debian and Ubuntu distros so my examples work there for sure.

Prerequisites

	A ready-made uwsgi-2.0.3 executable or uwsgi-2.0.3 sources to build from. In case of older uwsgi releases the uwsgi binary-only solution may not be an option as uwsgi doesn’t have the –build-plugin commandline argument in older releases.

	gcc and g++ (I use version 4.8.2, and also used 4.6 in a recent project release)

	If you are on windows you need cygwin of course

Plugin sources and build configs

Create a directory for your plugin somewhere in your filesystem. Note that this directory doesn’t have to be inside the extracted uwsgi source directory, put it anywhere. I will refer to this directory as $PLUGIN_DIR in this tutorial. The plugin directory will contain the following things:

	The source code of the plugin.

	An uwsgiplugin.py file that must be located exactly in the $PLUGIN_DIR and its name must be exactly uwsgiplugin.py because the uwsgiconfig.py script looks after this file in this directory with this name (its hardcoded). The code in uwsgiplugin.py is executed by uwsgiconfig.py when you build your plugin, you can do fancy configuration things here (like code generation) but often this script just gives some compile flags and source file lists to uwsgiconfig.py.

	Build ini file(s) to feed to uwsgiconfig.py when building our minimal uwsgi executable that is good almost only to run as a fastrouter. Of course you don’t need these ini files if you are working with a pre-built uwsgi binary. Note that you can put these ini files anywhere but we need the relative/absolute path of these files when building uwsgi. I put them into the $PLUGIN_DIR just because... After building uwsgi we will use it to build and load our plugin that provides the routing logic of our fastrouter. On cygwin we have 2 ini files because we need an extra ini file to build libuwsgi.a (that isn’t needed in case of linux builds).

Here is the structure and contents of my $PLUGIN_DIR:

$PLUGIN_DIR
 my_router_config.cc
 uwsgiplugin.py
 my_uwsgi.ini
 my_uwsgi_lib.ini (needed only on cygwin)

my_router_config.cc: The extension is .cc because uwsgiconfig.py doesn’t recognise the .cpp extension. In case of .cpp ext (and other unhandled extensions) uwsgiconfig.py appends an additional (default) .c extension and tries to compile the source as C (but it fails as it doesn’t find the my_router_config.cc.c source file).

#include "uwsgi.h"
#include <stdlib.h>
#include <stdio.h>

struct SOptions
{
 char* config_file;
} options;

struct uwsgi_option options_cfg[] =
{
 {(char*)"my-router-cfg-file", required_argument, 0, (char*)"config file for my fastrouter logic", uwsgi_opt_set_str, &options.config_file, 0},
 { 0 }
};

void Deinit()
{
 uwsgi_log("+++++ %s\n", __FUNCTION__);
 // TODO: Put your cleanup code here.
}

int Init()
{
 uwsgi_log("+++++ %s config_file=%s\n", __FUNCTION__, options.config_file);
 if (!options.config_file)
 {
 uwsgi_log("The --my-router-cfg-file commandline argument is mandatory!\n");
 exit(1);
 }
 FILE* f = fopen(options.config_file, "r");
 if (!f)
 {
 uwsgi_log("Error opening config file: %s\n", options.config_file);
 exit(1);
 }
 // TODO: parse options
 fclose(f);
 // TODO: init you plugin
 atexit(Deinit);
 return UWSGI_OK;
}

char* CodeString(char *id, char *code, char *function, char *key, uint16_t keylen)
{
 uwsgi_log("+++++ %s id=%s code=%s function=%s key=%.*s\n", __FUNCTION__, id, code, function, keylen, key);
 // TODO: Return a pointer to the gateway address string.
 // The pointer must be valid until the next call to this function.
 static char addr[] = "127.0.0.1:8001";
 return addr;
}

int Request(struct wsgi_request *wsgi_req)
{
 // This dummy function should never be called in the fastrouter...
 uwsgi_log("+++++ %s\n", __FUNCTION__);
 return -1;
}

struct SPluginConfig : public uwsgi_plugin
{
 SPluginConfig()
 {
 memset(this, 0, sizeof(*this));
 name = "my_router_config";
 modifier1 = 251;
 init = Init;
 code_string = CodeString;
 // Plugins with a request function pointer are "request handler plugins" while
 // the rest of the plugins are "generic plugins". We install a dummy request
 // handler function just to force uwsgi to put this plugin into the request
 // handler plugin table because the --fastrouter-use-code-string commandline
 // argument that we exploit searches among the request handler plugins.
 // Again, this request handler function is just a dummy function that should
 // never be called in the fastrouter...
 request = Request;
 // Optional, set this only if you want commandline arguments from uwsgi.
 options = options_cfg;
 }
};

// Note that the name of this exported symbol must be the name of your plugin
// postfixed with "_plugin" otherwise it doesn't work. If you build this
// as an external plugin then the name of the shared object must also be
// the same (with .so extension) but when you load the external plugin with
// uwsgi you have to specify only the name of the plugin without the "_plugin"
// postfix for the --plugin commandline parameter.
//
// - plugin name: "my_router_config"
// - name of the exported symbol that points to the plugin config: "my_router_config_plugin"
// - name of the shared object file in case of external plugin: "my_router_config_plugin.so"
// - uwsgi cmdline parameter when loading the external plugin: --plugin my_router_config
SPluginConfig my_router_config_plugin __attribute__((visibility("default")));

uwsgiplugin.py:

NAME='my_router_config'

CFLAGS = []
LDFLAGS = []
LIBS = ['-lstdc++']
GCC_LIST = ['my_router_config.cc']

my_uwsgi.ini:

[uwsgi]
inherit = minimal
main_plugin = corerouter, fastrouter

my_uwsgi_lib.ini: (needed only on cygwin)

[uwsgi]
inherit = minimal
main_plugin = corerouter, fastrouter
as_shared_library = true

The my_uwsgi_lib.ini file is needed only on cygwin and it is a copy of my_uwsgi.ini with an extra line appended: as_shared_library = true. You need neither my_uwsgi.ini nor my_uwsgi_lib.ini if you are working with a pre-built new uwsgi binary that supports the –build-plugin commandline parameter but only uwsgi version ~2 and newer have it.

Building uwsgi (or uwsgi.exe and libuwsgi.a on cygwin)

Of course you can skip this step if you are working with a new uwsgi binary. Otherwise download the uwsgi source (uwsgi-2.0.3.tar.gz in my case) and extract it, then enter the extracted source folder.

~$ wget http://projects.unbit.it/downloads/uwsgi-2.0.3.tar.gz
~$ tar xvf uwsgi-2.0.3.tar.gz
~$ cd uwsgi-2.0.3
~/uwsgi-2.0.3$

The “build system” of uwsgi is a python script called uwsgiconfig.py and when you run it your shell’s current directory must be the extracted uwsgi source dir (where the uwsgiconfig.py is located). From now all commands will be executed in this source directory.

It is possible to build uwsgi with different configurations and its plugins can be built as either embedded plugins or external shared objects. Building external plugins for newer uwsgi releases can be done anytime and you need only an uwsgi binary and the compilers, there is no need for the uwsgi sources. (On cygwin you also need a libuwsgi.a lib file that can be built with a trick). On cygwin we first build libuwsgi.a but on linux you simply skip this step. Then we have to build the uwsgi binary (uwsgi on linux, uwsgi.exe on cygwin).

The uwsgiconfig.py script builds uwsgi on multiple threads. For some reason on my cygwin this multithreaded building fails (terminates without any error messages) and I worked this around by setting the CPUCOUNT env var to 1. You may, or may not need this workaround on cygwin... On linux multithreading build works fine. Now let’s build the cygwin specific libuwsgi.a library:

~/uwsgi-2.0.3$ export CPUCOUNT=1
~/uwsgi-2.0.3$ python uwsgiconfig.py --build $PLUGIN_DIR/my_uwsgi_lib.ini
~/uwsgi-2.0.3$ mv uwsgi.exe libuwsgi.a

Note that these steps are needed only on cygwin. Now let’s build uwsgi:

~/uwsgi-2.0.3$ python uwsgiconfig.py --build $PLUGIN_DIR/my_uwsgi.ini

The above command produces uwsgi on linux and uwsgi.exe on cygwin. We have used custom ini files to build a minimal uwsgi that serves only as a fastrouter that loads our fastrouter logic plugin. The use of this ini file results in an uwsgi that doesn’t have dependencies on libs like ssl, pcre and it includes only the bare minimum set of uwsgi plugins needed for the fastrouter. From now you don’t need the uwsgi sources (you can even delete them if you want). The only things we have to keep is the uwsgi binary (and libuwsgi.a on cygwin) because building an external uwsgi plugin can be done by running uwsgi with the –build-plugin parameter and the uwsgi binary has an embedded copies of the uwsgiconfig.py and uwsgi.h files needed for a plugin build.

Building our plugin:

~/uwsgi-2.0.3$./uwsgi --build-plugin $PLUGIN_DIR

Now if you are lucky you have both the uwsgi binary and the my_router_config_plugin.so plugin in the current directory. Building the plugin by executing the uwsgi binary is very useful because this way it automatically uses the same uwsgiconfig.py and uwsgi.h files and the same CFLAGS that were used to build the uwsgi binary itself. Unfortunately older uwsgi releases don’t have the –build-plugin commandline parameter and in that case you have to build the plugin with the uwsgiconfig.py script:

~/uwsgi-2.0.3$ python uwsgiconfig.py --plugin $PLUGIN_DIR

If you have a newer uwsgi that supports the –build-plugin option then I recommend using that to build your plugin.

Using the newly built uwsgi and the plugin as a fastrouter

I assume that you more or less know about the usage/purpose of uwsgi fastrouter so I only show you how to start and parametrize uwsgi with our newly built plugin:

~/uwsgi-2.0.3$./uwsgi --master --fastrouter 127.0.0.1:9000 --fastrouter-use-code-string 251:: --plugin my_router_config --my-router-cfg-file my_config.cfg

The above command starts the fastrouter that listens on loopback 9000 for incoming requests and the –fastrouter-use-code-string commandline parameter instructs the fastrouter to ask plugin modifer=251 (our plugin) for the target gateway for each incoming request. I think the –plugin and –my-router-cfg-file commandline arguments speak for themselves...

The extra argument of the –fastrouter-use-code-string is “251::”. This is basically 3 strings separated by two ‘:’ characters but our plugin doesn’t need (ignores) the second and third string so I provided there empty strings. If you take a look at the linked Darth Vader example it solves the problem using the python plugin that actually utilizes these strings: the –fastrouter-use-code-string commandline argument of uwsgi [http://uwsgi-docs.readthedocs.org/en/latest/Fastrouter.html#way-5-fastrouter-use-code-string]

Note that I’ve chosen 251 as the modifier of my plugin because based on my research modifier 1 has a lot to do with The uwsgi Protocol [http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html] and moreover if you take a look at the plugins/example or plugins/cplusplus example plugins in the uwsgi source dir then you will see that those are using modifier1=250 and 251 seems to be a free id. Note that I’ve also tried 0 as the modifier1 that is the default modifier1 used by uwsgi and its very first plugin: the python plugin. This seems to work and it seems that this registers our plugin with modifier1=0 by “overriding the python plugin” but I wanted to be polite so I’ve chosen modifier=251.

Programming the routing logic in our plugin

We started the fastrouter with the “–fastrouter 127.0.0.1:9000 –fastrouter-use-code-string 251::” commandline arguments so it will be listening on loopback port 9000 for incoming requests and it will ask plugin modifier1=251 (our plugin) for the route for each request. I will use nginx to bomb requests on port 9000 of the fastrouter. Here is the location block from my nginx config:

location /test {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:9000;
 uwsgi_param UWSGI_FASTROUTER_KEY $request_uri;
}

So nginx will route all requests coming to url path /test to the fastrouter by setting UWSGI_FASTROUTER_KEY (basically a “cgi variable”) to a user defined string. UWSGI_FASTROUTER_KEY can be anything, you have put something into it that you can use in your plugin to decide where (which gateway) to send the request. In this case I’ve decided to send the $request_uri to my plugin but you can really put there anything you want. If you don’t specify the UWSGI_FASTROUTER_KEY in the nginx config then the fastrouter will use something else instead of it as the fastrouter key (but I think specifiying the UWSGI_FASTROUTER_KEY is highly recommended), more on that in the Notes section of the fastrouter docs [http://uwsgi-docs.readthedocs.org/en/latest/Fastrouter.html#notes].

With the above fastrouter + nginx config when the fastrouter receives a request from nginx it calls the CodeString() function of our plugin to ask for the gateway address to use for that request.

char* CodeString(char *id, char *code, char *function, char *key, uint16_t keylen);

When the fastrouter calls your CodeString() function the values of the function parameters are the following:

	id: “uwsgi_fastrouter”

	code, function: We used the –fastrouter-use-code-string commandline parameter to pass 3 strings to uwsgi: “251”, “”, and “” with the “251::” argument. The code and function parameters are set to the second and third (empty) strings. You can of course specify something else instead of “251::” to pass something else as the code and function parameters.

	key, keylen: Here you receive the value of the UWSGI_FASTROUTER_KEY you specify in nginx. This is basically the useful stuff on which you can base your routing decisions.

The function must return with a pointer to a string that contains the gateway address, for example: “127.0.0.1:8001”. On that gateway there must be another uwsgi instance listening on an uwsgi protocolled socket. The pointed string must be valid until the next call to the CodeString function. This is usually critical only if you are using extra threads in your plugin because otherwise the fastrouter itself is single threaded async stuff.

Victory!!!

We have reached the end of the tutorial. Now you know how to handle in C/C++ a complex routing problem where Darth Vader wears a t-shirt with your face and you have also learnt how to build a C++ plugin using the uwsgi build system.

 Fork Server with CPython

Fork Server with CPython

Our “base” app (myforkbase.py in /var/www):

you should see this message only in the base instance
print "I AM THE MODULE"

def application(e, sr):
 sr('200 OK',[('Content-Type','text/plain')])
 return ['Hello World']

The base vassal (in /etc/forkvassals/base.ini)

[uwsgi]
; add /var/www to the PYTHONPATH (asap)
early-python-path = /var/www
; import myforkbase.py (asap)
early-pyimport = myforkbase
; spawn the fork server and suspend the vassal
fork-server = /run/forkme

and now two vassals inheriting from the base

[emperor]
; vassal's attribute
myfork-base = /run/forkme

[uwsgi]
http-socket = :9090
processes = 4
; the python VM will find myappfork already loaded
wsgi = myappfork

[emperor]
; vassal's attribute
myfork-base = /run/forkme

[uwsgi]
http-socket = :9091
processes = 8
threads = 2
; the python VM will find myappfork already loaded
wsgi = myappfork

And finally run the Emperor

uwsgi --emperor /etc/forkvassals --emperor-collect-attr myfork-base --emperor-fork-server-attr myfork-base

the –emperor-collect-attr option tells the Emperor to search for a ‘myfork-base’ attribute in the [emperor] section, while –emperor-fork-server-attr
instruct it to use the parameter as the fork-server to connect to.

TODO

The –emperor-collect-attr could be implicited by emperor-fork-server-attr

 <no title>

 Massive “secure” Hosting with the Emperor and Linux Namespaces, AKA “Improving unbit.it and pythonanywhere.com”

Massive “secure” Hosting with the Emperor and Linux Namespaces, AKA “Improving unbit.it and pythonanywhere.com”

Author: Roberto De Ioris

* WORK IN PROGRESS *

Disclaimer

In the following intro i will mention two companies: Unbit and pythonanywhere.com. I work with both (effectively i own the first one :P).

If you think i am making advertising to both, well you are right.

Intro

Since 2005 i work as chief sysadmin in the italian ISP Unbit (http://unbit.it) and as a consultant for various hosting company worldwide.

Unbit is a developer-oriented service, we allow hosting basically anything you want without forcing you to a VPS, simply abusing Linux kernel facilities (it is very similar to what currently Heroku
does but about 5 years before Heroku existed ;)

In 2009 we started the uWSGI project, initially as a WSGI server, then we slowly realized that its paradigms could be applied to all our infrastructure, so now it is becoming
a sort of “hosting platform” for various languages. We plan to use only uWSGI for the whole Unbit hosting stack by 2014.

Before you get excited, Unbit accepts only Italian customers (we are not racists, it is a policy for avoiding legal problems with the other hosting companies we work with) and our prices
are quite high as we do not make any kind of over-selling (and more important we do not give free-accounts ;)

In more than 8 years me and my co-workers experienced thousands of problems (yes, if you want to enter the internet services market be prepared to invest the vast majority of your time
solving problems created by users without the minimal respect for you as a person ;) so, what you see in the whole uWSGI project is the result of this years
of headaches and non-sleeping nights (and insults by customers)

During summer 2013 i worked a bit with the pythonanywhere.com guys (mainly with Harry Percival).

They heavily use uWSGI features for their service, so they helped popping-up new ideas and solutions in my mind.

In uWSGI 1.9.15 lot of new patches for advanced Linux namespaces usage have been merged, thanks to the collaboration with pythonanywhere.com guys.

Based on the experiences of the two companies, this article will show one of the approaches you can follow to build your service for hosting unreliable webapps (yes, even if you have the largest collection of pacifist customers, they have to be considered ‘unreliable’ and ‘evil’, otherwise you are not a good sysadmin).

It is not a step-by-step tutorial, but some kind of cookbook to give you some basis for improving and adapting the concepts for your needs.

What we want to allow to our users

	deploy WSGI,PSGI and RACK applications (no CGI and php, albeit technically possible, if you think you can make any kind of money with php hosting you should start finding a second job)

	run cron scripts

	run private services (redis, beanstalkd, memcached...)

	applications can connect to the internet

	multiple domain names can map to the same instance

...and what we want to forbid

	users cannot see the processes of the other accounts in the machine. Their init process has to be the uWSGI master

	users cannot see the files of the other accounts in the machine

	users cannot connect to private services (memcached, redis...) of the other accounts in the machine

	users cannot read/write ipc semaphores, shared memory and message queues of the other accounts in the machine

	users cannot allocate more memory than the amount they payed for

	users cannot use more cpu power than the amount they payed for

The Operating System

The Webserver

As we do not need to worry about php and the abuse of .htaccess files, we can choose any server we want.

We prefer nginx (even if we [Unbit] are slowly moving to the uWSGI http/https/spdy router as we only need a minimal proxy with dynamic routing, but for anything more complex nginx is the way to go), but you can use whatever you like.

The “control panel”

This is the thing you need to develop, the more your panel is usable and powerful the more your users will be happy.

Your control panel is probably the thing will make your hosting company successfull.

The objective of your control panel is generating “vassal files” (see below). Vassal files can be .ini, xml, yaml and json (unless you have particular reasons to use other formats).

The vassal file contains the whole structure of a customer micro-system. As soon as a vassal file is created it will be deployed (and when it is changed it will be reloaded)

uWSGI ‘language’ plugins

We want to support multiple kind of applications. The better approach will be having a single uWSGI binary and a series of ‘language plugins’ (one for each language you want to support).

You can support multiple versions of the same language. Just build the corresponding plugin.

In Unbit we make an extremely modular uWSGi distribution (basically all is a plugin). This is required as we account any MB of memory
so we allow users to enable only the required features to gain much memory as possible.

If you are still not a black-belt in uWSGI mastering, i suggest you to start with the included ‘nolang’ build profile.

It will build a standard uwsgi binary without any language builtin.

...

Lazy apps VS prefork

One of the controversial design choices of uWSGI is “preforking by default”.

It means your app is loaded on startup and then fork() is called for each worker.

While this is the common approach in the UNIX world and it is an expected behaviour for a Perl developer
(that is historically more near to the UNIX world) it is totally unknown and unexpected by a Python (and maybe Ruby) one.

So one of the choices you need to make when building a uWSGI-based service is how to manage the fork() behaviour.

If you are unsure let me tell you one thing: with preforking behaviour you will make some user very happy, and lot of users
completely lost. With –lazy-apps you will have all of your users totally unconcerned. Trust me, few happy users cannot make you happy too when you have angry customers too.

So, uWSGI default fork() behaviour is generally wrong for massive hosting, so add –lazy-apps and eventually give the advanced users the freedom to change it when needed.

The filesystem layout

Distro upgrades are always a bloodbath. It is a pretty optimistic analysis. trust me.

But “tempus fugit” so sooner or later one of your customer will start asking for a more recent packages set...

You can upgrade, but you will automatically place the vast majority of your customers in berserk mode, as very probably their apps
will no more work.

A solution for making everyone happy is having different distribution in your system (yes, it sounds silly, but please continue reading).

Debbotstrap is a great tool. Let’s create under the /distros directory our set of distributions:

debootstrap lucid /distros/lucid
debootstrap etch /distros/etch
debootstrap precise /distros/precise
debootstrap saucy /distros/saucy
...

Each user will be able to choose (and change) its distro, as thanks to our setup (see below) its root filesystem will be a readonly mount
of one of the available distros.

The final layout will be:

	/ (rootfs, mapped readonly to one of the dir in /distros)

	/proc (needed for showing processes and getting system informations)

	/tmp (each user should have a dedicated /tmp)

	/dev (should contain at least zero and null, but can be a bind mount to the system /dev too)

	/dev/pts (required for pseudoterminals, shared by all vassals [til linux pts namespace will be released])

	/var/run (all of the sockets will be bound here, and symlinked by the main rootfs for nginx and ssh access)

	/opt (this could be a bind mount shared by all of the users containing distribution independent files)

Linux namespaces

This is the first step to limit users.

For this setup we will use 5 namespaces: filesystem, sysv ipc, uts, networking and pid

filesystem (fs)

this allows changing the filesystems layout (mountpoints).

Instead of chroot() in each vassal, we will use the –pivot-root option (it is linux specific) that combined with
mount namespace allows fine-grained configuration of the filesystem layout

sysv ipc (ipc)

sysv ipc exposes 3 primitives: semaphores, shared memory and message queues.

unsharing it creates a dedicated set of this 3 features

uts (uts)

this namespace allows you to have a dedicated hostname

networking (net)

when you unshare for the main network namespace, you will lose access to interface addresses. A new loopback will be allocated.

processes (pid)

this namespace allows you to hide the user the processes not being part of the user namspace itself.

The uWSGI master process will be the pid 1 for the user.

Namespacing the Emperor

The –emperor-use-clone option allows the Emperor to directly spawn vassals in a new namespace.

Our config will be something like:

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-user-clone = fs,ipc,uts,net,pid

while each vassal will be

[uwsgi]
; set the hostname
exec-as-root = hostname foobar
; bring up loopback
exec-as-root = ifconfig lo up

Linux cgroups

uWSGI Emperor and vassals

Networking

This is probably the most complex part. The “ortodox” way to give networking to a jailed setup is using veth or macvlan.

The first one is a “network pipe” composed by two virtual interfaces. After the namespace is created you can move one of the end of the pipe to the namespace.

Macvlan, instead works by assigning an additional mac address to the physical interface.

Both solutions are great for VPS-like setups, but here we need networking only to connect to external services (inbound connections are managed by the http proxy).

Both veth and macvlan approaches are hard to manage correctly, and while in 1.9.15 we introduced lot of features to simplify the required steps, in 1.9.16 we decided
to create an ad-hoc solution based on tuntap devices.

Basically for each vassal we create a tun device (it is a virtuale network interface manageable via user space) connected (via unix sockets) to another tun device in the main namespace.

The tuntap-router is a software-based ip router, it mainly get packets fro ma tuntap device and forward them to a unix socket (and the opposite).

This approach simplify the whole setup extremely, and, as a killer feature an ultra simpel firewall is embedded in the process to configure internal rules.

The tuntap router should run in the Emperor (it is a uWSGI gateway so this time we need the master process):

[uwsgi]
emperor = /etc/uwsgi/vassals
emperor-user-clone = fs,ipc,uts,net,pid
master = true
; create the tun interface 'emperor0' reachable by /var/run/tuntap.socket
tuntap-router = emperor0 /var/run/tuntap.socket
; give an internal ip address to 'emperor0'
exec-as-root = ifconfig emperor0 192.168.0.1 netmask 255.255.255.0
; configure NAT for vassals
exec-as-root = iptables -t nat -F
exec-as-root = iptables -t nat -A POSTROUTING -o eth0 -s 192.168.0.0/24 -j MASQUERADE
exec-as-root = echo 1 > /proc/sys/net/ipv4/ip_forward

; configure the internal firewall to disallow communication between vassals
tuntap-router-firewall-out = allow 192.168.0.0/24 192.168.0.1
tuntap-router-firewall-out = deny 192.168.0.0/24 192.168.0.0/24
tuntap-router-firewall-out = allow 192.168.0.0/24 0.0.0.0
; we need this rule as default policy is 'allow'
tuntap-router-firewall-out = deny
tuntap-router-firewall-in = allow 192.168.0.1 192.168.0.0/24
tuntap-router-firewall-in = deny 192.168.0.0/24 192.168.0.0/24
tuntap-router-firewall-in = allow 0.0.0.0 192.168.0.0/24
; we need this rule as default policy is 'allow'
tuntap-router-firewall-in = deny

and a vassal

[uwsgi]
master = true
; set the hostname
exec-as-root = hostname foobar
; bring up loopback
exec-as-root = ifconfig lo up
; bring up the tuntap device and connect to the emperor
tuntap-device = uwsgi0 /var/run/tuntap.socket
; configure the 'uwsgi0' interface
exec-as-root = ifconfig uwsgi0 192.168.0.2 netmask 255.255.255.0
; use the tuntap router as default gw
exec-as-root = route add default gw 192.168.0.1
...

Cron

Cron tasks are added to the vassal file, the syntax is a bit different from classic crontabs as intead of * and the , we only use numbers
(yes it is a bit less versatile than classic cron, but uWSGI config files allows for cycle and other constructs)

[uwsgi]
; run at 23:59 every day
cron = 59 23 -1 -1 -1 myscript arg1
; run every five minutes on saturday
cron = -5 -1 -1 -1 6

Static file serving

Additional daemons

SSH

Managing ssh could be really tricky with namespace setups. The Linux syscall “setns” allows “attaching” to an already running namespace.

It generally works, but i will now tell you a technical reason why i do not want to use it for my services: i do not like it. period.

We have already seen unix sockets works very well as a communication channel between namespaces, why not use them to “enter” an already running namespace ?

If you work as a unix sysadmin, you cannot ignore pseudoterminals (or terminals in general). It is one of the oldest (and rawest) api of the unix world, by the work by ages. And they works great.

The uWSGI distribution come with 2 pty-related plugin: pty and forkptyrouter.

The first one simply attach a single pseudoterminal to your workers and bind to a network address. Connecting to this address give access
to the pseudoterminal. This trick allows for advanced techniques like shared debugging. The pty plugin exposes the client part too, so you can use the uwsgi binary itself to connect to this pty.

How this can be useful for our ssh access ? It is not.

What we need now is the forkptyrouter (or forkpty-router for better readability). It works very similar to the pty server with the difference
it generate a new pty for each connection. Exacly like ssh does.

The forkpty-router run into the namespace, so any process attached to it will effectively run in the namespace itself.

You should now see the point: our customers login via ssh as non-namespaced account but instead giving them the default shell we force them to connect
to the pty-router.

The “downside” of this approach is that we need two pty for each ssh peer (one for client -> ssh and the other for ssh -> namespace).

To force the ssh server to run a specific command, use the ForceCommand directive in the sshd_config

Bonus: KSM

What is missing

	Accounting network usage

	Scaling to multiple machines

 <no title>

_static/down-pressed.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-close.png

_static/plus.png

nav.xhtml

 Table of Contents

 		The uWSGI project

 		Python/WSGI 应用快速入门

 		安装带 Python 支持的 uWSGI

 		第一个 WSGI 应用

 		把它部署到 HTTP 端口 9090

 		添加并发和监控

 		放到一个完整的 web 服务器后

 		开机自启动 uWSGI

 		部署 Django

 		部署 Flask

 		部署 web2py

 		Python 线程小贴士

 		Virtualenvs

 		安全和可用性

 		Offloading

 		Bonus: 多版本 Python 使用同一个 uWSGI 二进制文件

 		那么现在...

 		perl/PSGI 应用快速入门

 		安装带 Perl 支持的 uWSGI

 		使用发行版包需要注意的地方

 		你的第一个 PSGI 应用

 		'–http-modifier1 5' 是什么鬼？？？

 		使用一个完整的 web 服务器：nginx

 		添加并发

 		增加鲁棒性：主进程

 		使用配置文件

 		自动启动 uWSGI

 		安全和可用性

 		Offloading

 		那么现在...

 		ruby/Rack 应用快速入门

 		安装带 Ruby 支持的 uWSGI

 		Note for distro packages

 		你的第一个 Rack 应用

 		‘–http-modifier1 7’ 是什么鬼？

 		使用完整的 web 服务器: nginx

 		添加并发

 		增加鲁棒性：主进程

 		使用配置文件

 		当你使用多进程时的 fork() 问题

 		部署 Sinatra

 		部署 RubyOnRails >= 3

 		部署旧版的 RubyOnRails

 		Bundler 和 RVM

 		自动启动

 		安全和可用性

 		内存使用

 		Offloading

 		那么现在...

 		代码片段

 		X-Sendfile emulation

 		强制 HTTPS

 		Python 自动重新加载(Python auto-reloading)(仅限于在开发中使用！)

 		Full-Stack CGI setup

 		在不同的 url 路径下使用多个 flask 应用

 		在 OSX 上使用 rbenv (也应该能在其他的平台上工作)

 		The Master FIFO

 		Available commands

 		FIFO slots

 		Notes

 		Systemd

 		Adding the Emperor to systemd

 		Logging

 		Putting sockets in /run/

 		Socket activation

 		Running uWSGI instances with Circus

 		Socket activation

 		(Better) Socket activation

 		The uWSGI Caching Cookbook

 		Let's start

 		The first recipe

 		Cache them all !!!

 		Multiple caches

 		Being more aggressive, the Expires HTTP header

 		Monitoring Caches

 		Storing GZIP variant of an object

 		Storing static files in the cache for fast serving

 		Caching for authenticated users

 		Caching to files

 		Setting up Django and your web server with uWSGI and nginx

 		Some notes about this tutorial

 		Concept

 		Before you start setting up uWSGI

 		virtualenv

 		Django

 		About the domain and port

 		Basic uWSGI installation and configuration

 		Install uWSGI into your virtualenv

 		Basic test

 		Test your Django project

 		Basic nginx

 		Install nginx

 		Configure nginx for your site

 		Deploying static files

 		Basic nginx test

 		nginx and uWSGI and test.py

 		Using Unix sockets instead of ports

 		If that doesn't work

 		Running the Django application with uwsgi and nginx

 		Configuring uWSGI to run with a .ini file

 		Install uWSGI system-wide

 		Emperor mode

 		Make uWSGI startup when the system boots

 		Further configuration

 		nginx

 		uWSGI

 		Running uWSGI on Dreamhost shared hosting

 		Preparing the environment

 		Preparing the python virtualenv

 		The .htaccess

 		Ready

 		The flock trick

 		Statistics

 		Running Perl/PSGI apps (requires uWSGI >= 1.9)

 		Running Ruby/Rack apps (requires uWSGI >= 1.9)

 		Serving static files

 		Running python webapps on Heroku with uWSGI

 		Preparing the environment

 		Creating the uWSGI config file

 		Preparing for the first commit/push

 		Checking your app

 		Using another version of python

 		Multiprocess or Multithread ?

 		Async/Greethreads/Coroutine ?

 		Harakiri

 		Static files

 		Adaptive process spawning

 		Logging

 		Alarms

 		The Spooler

 		Mules

 		Signals (timers, filemonitors, crons...)

 		External daemons

 		Monitoring your app (advanced/hacky)

 		Running Ruby/Rack webapps on Heroku with uWSGI

 		Preparing the environment (a Sinatra application)

 		Creating the uWSGI config file

 		Deploying to heroku

 		fork() for dummies

 		The ruby GC

 		Concurrency

 		Harakiri

 		Static files

 		Adaptive process spawning

 		Logging

 		Alarms

 		The Spooler

 		Mules

 		Signals (timers, filemonitors, crons...)

 		External daemons

 		Reliably use FUSE filesystems for uWSGI vassals (with Linux)

 		A Zip filesystem

 		The Emperor

 		A Vassal

 		Monitoring mount points

 		Going Heavy Metal: A CoW rootfs (unionfs-fuse)

 		The Emperor

 		A Vassal

 		Notes

 		Build a dynamic proxy using RPC and internal routing

 		step 1: build your mapping function

 		step 2: building a routing table

 		Setting up Graphite on Ubuntu using the Metrics subsystem

 		Installing Graphite and the others needed packages

 		Initializing Graphite

 		Building and Installing uWSGI

 		Setting up the uWSGI Emperor

 		Spawning the Graphite web interface

 		Spawning vassals sending metrics to Graphite

 		Using Graphiti (Ruby/Sinatra based) as alternative frontend

 		Notes

 		Serializing accept(), AKA Thundering Herd, AKA the Zeeg Problem

 		select()/poll()/kqueue()/epoll()/...

 		Application Servers VS WebServers

 		How application server developers solved it

 		No-problem ??? So, again, what we are talking about ?

 		The Zeeg problem: Multiple processes with multiple threads

 		How David solved it ?

 		uWSGI docs sucks: –thunder-lock

 		SysV IPC semaphores are bad how you solved it ?

 		uWSGI developers are fu*!ing cowards

 		When SysV IPC semaphores are a better choice

 		What about other portable lock engines ?

 		Conclusions

 		Bonus chapter: using the Zeeg approach in a uWSGI friendly way

 		Bonus chapter 2: securing SysV IPC semaphores

 		Credits:

 		The Art of Graceful Reloading

 		What is a “graceful reload”?

 		Things go wrong

 		The listen queue

 		Proxy timeouts

 		Waiting instead of errors is good, no errors and no waiting is even better

 		Preforking VS lazy-apps VS lazy

 		Standard (default/boring) graceful reload (aka SIGHUP)

 		Workers reloading in lazy-apps mode

 		Chain reloading (lazy apps)

 		Zerg mode

 		The Zerg Dance: Pausing instances

 		SO_REUSEPORT (Linux >= 3.9 and BSDs)

 		The Black Art (for rich and brave people): master forking

 		Subscription system

 		Inconsistent states

 		Fighting inconsistent states with the Emperor

 		Dealing with ultra-lazy apps (like Django)

 		Finally: Do not blindly copy & paste!

 		References

 		Fun with Perl, Eyetoy and RaspberryPi

 		Intro

 		uWSGI subsystems and plugins

 		What we want to accomplish

 		Technical background

 		Let's start: the uwsgi-capture plugin

 		Step 2: the PSGI app

 		Step 3: HTML5

 		Ready to watch

 		Concurrency

 		Zero-copy all the things

 		Alternative approaches

 		Other languages

 		More hacking

 		Offloading Websockets and Server-Sent Events AKA “Combine them with Django safely”

 		Disclaimer

 		uWSGI offloading

 		Our SSE app

 		The (boring) HTML/Javascript

 		The Django view

 		Let's offload the SSE transaction

 		Simplifying things using the uwsgi api (>= uWSGI 2.0.3)

 		What about Websockets ?

 		Using redis or uWSGI caching framework

 		Common pitfalls

 		The uWSGI Legion subsystem

 		IP takeover

 		The Quorum

 		Choosing the Lord

 		Split brain

 		Actions

 		cmd:<command>

 		signal:<num>

 		log:<msg>

 		Multicast, broadcast and unicast

 		Multiple Legions

 		Security

 		Tuning and Clock Skew

 		Lord scroll (coming soon)

 		Legion API

 		Stats

 		The old clustering subsystem

 		uWSGI Mules

 		Basic usage

 		Giving a brain to mules

 		The uWSGI Spooler

 		Spool files

 		Setting the spooler function/callable

 		Enqueueing requests to a spooler

 		External spoolers

 		Networked spoolers

 		Priorities

 		Options

 		Tips and tricks

 		SNI - Server Name Identification (virtual hosting for SSL nodes)

 		Adding SNI objects

 		Adding complex SNI objects

 		Massive SNI hosting

 		Subscription system and SNI

 		The GeoIP plugin

 		Enabling geoip lookup

 		An example

 		Memory usage

 		uWSGI Transformations

 		Streaming vs. buffering

 		Flushing magic

 		Available transformations (last update 20130504)

 		Working on

 		WebSocket support

 		An echo server

 		Handshaking

 		Sending

 		Receiving

 		PING/PONG

 		Available proxies

 		Language support

 		Supported concurrency models

 		wss:// (websockets over https)

 		Websockets over SPDY

 		Routing

 		Api

 		The Metrics subsystem

 		Metric names and oids

 		Metric types

 		COUNTER (type 0)

 		GAUGE (type 1)

 		ABSOLUTE (type 2)

 		ALIAS (type 3)

 		Metric collectors

 		Custom metrics

 		The metrics directory

 		Restoring metrics (persistent metrics)

 		API

 		Stats pushers

 		rrdtool

 		statsd

 		carbon

 		zabbix

 		mongodb

 		file

 		socket

 		Alarms/Thresholds

 		SNMP integration

 		Internal Routing integration

 		Request logging

 		Officially Registered Metrics

 		OID assigment for plugins

 		External tools

 		The Chunked input API

 		Reading chunks

 		Tuning the chunks buffer

 		Integration with proxies

 		Options

 		Notes

 		The uWSGI cheaper subsystem – adaptive process spawning

 		Usage

 		Setting memory limits

 		spare cheaper algorithm

 		backlog cheaper algorithm

 		busyness cheaper algorithm

 		cheaper-overload

 		cheaper-step

 		cheaper-initial

 		cheaper-busyness-max

 		cheaper-busyness-min

 		cheaper-busyness-multiplier

 		cheaper-busyness-penalty

 		cheaper-busyness-verbose

 		cheaper-busyness-backlog-alert

 		cheaper-busyness-backlog-multiplier

 		cheaper-busyness-backlog-step

 		cheaper-busyness-backlog-nonzero

 		Notes regarding Busyness

 		The uWSGI Emperor – multi-app deployment

 		Imperial monitors

 		dir:// – scan a directory for uWSGI config files

 		glob:// – monitor a shell pattern

 		pg:// – scan a PostgreSQL table for configuration

 		mongodb:// – Scan MongoDB collections for configuration

 		amqp:// – Use an AMQP compliant message queue to announce events

 		zmq:// – ZeroMQ

 		zoo:// – Zookeeper

 		ldap:// – LDAP

 		The Emperor protocol

 		The protocol

 		Special configuration variables

 		Passing configuration parameters to all vassals

 		Tyrant mode (secure multi-user hosting)

 		Tyrant mode for paranoid sysadmins (Linux only)

 		On demand vassals (socket activation)

 		Loyalty

 		Throttling

 		Blacklist system

 		Heartbeat system

 		Using Linux namespaces for vassals

 		The Imperial Bureau of Statistics

 		Running non-uWSGI apps or using alternative uWSGIs as vassals

 		Integrating the Emperor with the FastRouter

 		Notes

 		Todo

 		Auto-scaling with Broodlord mode

 		A 'simple' example

 		–vassal-sos

 		Manually asking for reinforcement

 		Under the hood (or: hacking broodlord mode)

 		Zerg mode

 		Enabling the zerg server

 		Attaching zergs to the zerg server

 		Fallback if a zerg server is not available

 		Using Zerg as testers

 		Zerg Pools

 		Adding applications dynamically

 		Defining VirtualEnv with dynamic apps

 		Scaling SSL connections (uWSGI 1.9)

 		Setup 1: using the uWSGI cache for storing SSL sessions

 		Setup 2: synchronize caches of different HTTPS routers

 		Using named caches

 		Notes

 		Setting POSIX Capabilities

 		Available capabilities

 		Running uWSGI in a Linux CGroup

 		Enabling cgroups

 		A real world example: Scheduling QoS for your customers

 		Using Linux KSM in uWSGI

 		Enabling the KSM daemon

 		Enabling KSM support in uWSGI

 		Performance impact

 		Check if KSM is working well

 		KSM statistics with collectd

 		Jailing your apps using Linux Namespaces

 		What are namespaces?

 		clone() vs unshare()

 		Supported namespaces

 		setns()

 		pivot_root

 		Why not lxc?

 		The old way: the –namespace option

 		Reloading uWSGI

 		How secure is this sort of jailing?

 		Additional filesystems

 		FreeBSD Jails

 		Why managing jails with uWSGI ?

 		Old-style jails (FreeBSD < 8)

 		New style jails (FreeBSD >= 8)

 		Note for FreeBSD >= 8.4 but < 9.0

 		DevFS

 		Reloading

 		The jidfile

 		Attaching to a jail

 		Debian/kFreeBSD

 		Jails with Forkpty Router

 		Notes

 		The Forkpty Router

 		uwsgi mode VS raw mode

 		Running the forkpty router

 		Changing the default command

 		The TunTap Router

 		The first config

 		The embedded firewall

 		Security

 		The Future

 		Monitoring uWSGI with Nagios

 		Setting warning messages

 		The embedded SNMP server

 		Exporting custom values

 		Pushing statistics (from 1.4)

 		The 'file' stats pusher

 		The 'mongodb' stats pusher

 		Notes

 		Integration with Graphite/Carbon

 		Quickstart

 		The uWSGI Stats Server

 		uwsgitop

 		The Metrics subsystem

 		Metric names and oids

 		Metric types

 		COUNTER (type 0)

 		GAUGE (type 1)

 		ABSOLUTE (type 2)

 		ALIAS (type 3)

 		Metric collectors

 		Custom metrics

 		The metrics directory

 		Restoring metrics (persistent metrics)

 		API

 		Stats pushers

 		rrdtool

 		statsd

 		carbon

 		zabbix

 		mongodb

 		file

 		socket

 		Alarms/Thresholds

 		SNMP integration

 		Internal Routing integration

 		Request logging

 		Officially Registered Metrics

 		OID assigment for plugins

 		External tools

 		uWSGI asynchronous/non-blocking modes (updated to uWSGI 1.9)

 		Glossary

 		Suspend/Resume engines

 		I/O engines (or event systems)

 		Loop engines

 		Async switches

 		Running uWSGI in Async mode

 		Waiting for I/O

 		Sleeping

 		Suspend/Resume

 		Static files

 		The Gevent loop engine

 		Notes

 		Building the plugin (uWSGI >= 1.4)

 		Building the plugin (uWSGI < 1.4)

 		Running uWSGI in gevent mode

 		A crazy example

 		Monkey patching

 		Notes on clients and frontends

 		The Tornado loop engine

 		Why ?

 		Installation

 		Running it

 		Integrating WSGI with the tornado api

 		Welcome to Callback-Hell

 		WSGI generators (aka yield all over the place)

 		Binding and listening with Tornado

 		uGreen – uWSGI Green Threads

 		Security and performance

 		Async I/O

 		Stack size

 		Is this better than Greenlet or Stackless Python?

 		What about python-coev?

 		Can I use uGreen to write Comet apps?

 		Psycopg2 improvements

 		The asyncio loop engine (CPython >= 3.4, uWSGI >= 2.0.4)

 		Why not map the WSGI callable to a coroutine?

 		Callback vs. coroutines

 		Building uWSGI with asyncio support

 		The first example: a simple callback

 		Another example: Futures and coroutines

 		Status

 		Apache support

 		mod_uwsgi

 		Options

 		mod_proxy_uwsgi

 		mod_Ruwsgi

 		Cherokee support

 		Dynamic apps

 		Native HTTP support

 		HTTPS support (from 1.3)

 		Setting SSL/TLS ciphers

 		Client certificate authentication

 		HTTP sockets

 		The uWSGI HTTP/HTTPS router

 		HTTPS support

 		HTTP Keep-Alive

 		Can I use uWSGI's HTTP capabilities in production?

 		HTTPS support (from 1.3)

 		Setting SSL/TLS ciphers

 		Client certificate authentication

 		The SPDY router (uWSGI 1.9)

 		Notes

 		TODO

 		Lighttpd support

 		Building the module

 		Configuring Lighttpd

 		Attaching uWSGI to Mongrel2

 		Requirements

 		Configuring Mongrel2

 		Configuring uWSGI for Mongrel2

 		Test them all

 		Async mode

 		Chroot

 		Performance

 		uWSGI clustering + ZeroMQ

 		Mixing standard sockets with ZeroMQ

 		Logging via ZeroMQ

 		Nginx support

 		Building the module (Nginx 0.8.39 and older)

 		Configuring Nginx

 		What is the uwsgi_params file?

 		Clustering

 		Dynamic apps

 		Static files

 		Virtual Hosting

 		Python support

 		The uwsgi Python module

 		Module-level globals

 		Cache functions

 		Queue functions

 		SNMP functions

 		Spooler functions

 		Advanced methods

 		Async functions

 		SharedArea functions

 		Erlang functions

 		uWSGI API - Python decorators

 		Notes

 		Example: a Django session cleaner and video encoder

 		Example: web2py + spooler + timer

 		uwsgidecorators API reference

 		Pump support

 		Python Tracebacker

 		An example

 		Combining the tracebacker with Harakiri

 		Aliasing Python modules

 		Case 1 - Mapping a simple file to a virtual module

 		Case 2 - mapping a packages to directories

 		Case 3 - override specific submodules

 		Application dictionary

 		Virtualenv support

 		Quickstart

 		Python 3

 		Paste support

 		Pecan support

 		Using the uwsgi_admin Django app

 		The PyPy plugin

 		Introduction

 		Install uWSGI with PyPy support

 		The PyPy home

 		The PyPy setup file

 		WSGI support

 		RPC support

 		IPython trick

 		uWSGI API status

 		Options

 		Notes

 		Running PHP scripts in uWSGI

 		Building

 		Ubuntu 10.04 (newer versions include official libphp-embed sapi)

 		Multiple PHP versions

 		Running PHP apps with nginx

 		Advanced configuration

 		Run PHP apps without a frontend server

 		uWSGI API support

 		Sessions over uWSGI caches (uWSGI >=2.0.4)

 		Zend Opcode Cache (uWSGI >= 2.0.6)

 		ForkServer (uWSGI >= 2.1)

 		uWSGI Perl support (PSGI)

 		Compiling the PSGI plugin

 		Usage

 		Tested PSGI frameworks/applications

 		Multi-app support

 		The auto reloader (from uWSGI 1.9.18)

 		Notes

 		Real world example, HTML::Mason

 		Ruby support

 		Ruby API support

 		Status

 		uWSGI DSL

 		timer(n, block)

 		rbtimer(n, block)

 		filemon(path, block)

 		cron(hours, mins, dom, mon, dow, block)

 		signal(signum, block)

 		postfork(block)

 		rpc(name, block)

 		mule(id?, block)

 		muleloop(id?, block)

 		SpoolProc

 		MuleFunc

 		Real world usage

 		Building uWSGI for Ruby support

 		A note regarding memory consumption

 		A note regarding threads and fibers

 		Running Rack applications on uWSGI

 		Running Ruby on Rails applications on uWSGI

 		Running Typo

 		Running Radiant

 		Rails and SSL

 		Using Lua/WSAPI with uWSGI

 		Building the plugin

 		Why Lua ?

 		Your first WSAPI application

 		Concurrency

 		Abusing coroutines

 		Threading example

 		A note on memory

 		RPC and signals

 		The Lua shell

 		Using Lua as 'configurator'

 		uWSGI api status

 		JVM in the uWSGI server (updated to 1.9)

 		The JWSGI interface

 		Example

 		The Clojure/Ring JVM request handler

 		Our first Ring app

 		Using Leiningen

 		Concurrency

 		Accessing the uWSGI api

 		Notes and status

 		Introduction

 		Building the JVM support

 		Exposing functions via the RPC subsystem

 		Registering signal handlers

 		The fork() problem and multithreading

 		How does it work?

 		Passing options to the JVM

 		Loading classes (without main method)

 		Request handlers

 		Notes

 		The Mono ASP.NET plugin

 		Building uWSGI + Mono

 		Starting the server

 		Under the hood: the mono key

 		Concurrency and fork() unfriendliness

 		API access

 		Tricks

 		Running CGI scripts on uWSGI

 		Enabling the plugin

 		Configuring CGI mode

 		Notes

 		Examples

 		Example 1: Dumb CGI-enabled directory

 		Example 2: old-style cgi-bin directory

 		Example 3: restricting usage to certain extensions

 		Example 4: mapping scripts to interpreters using their extension

 		Example 5: running PHP scripts as CGI via Nginx

 		Example 6: Concurrency

 		Example 7: Mailman web interface behind Nginx

 		Example 8: Viewvc as CGI in a subdir

 		Example 9: using the uWSGI HTTP router and the check-static option

 		Example 10: optimizing CGIs (advanced)

 		The GCCGO plugin

 		How it works

 		Why not use plain Go?

 		Building the plugin

 		The first app

 		uwsgi.gox

 		Shared libraries VS monolithic binaries

 		Goroutines

 		Options

 		uWSGI API

 		Notes

 		The Symcall plugin

 		Step 1: preparing the environment

 		Step 2: our first request handler:

 		Step 3: building our code as a shared library

 		Final step: map the symcall plugin to the mysym_function symbol

 		Hooks and symcall unleashed: a TCL handler

 		Considerations

 		The XSLT plugin

 		The request handler

 		The routing instruction

 		SSI (Server Side Includes) plugin

 		Using it as a request handler

 		Using SSI as a routing action

 		Supported SSI commands

 		echo

 		printenv

 		include

 		cache

 		Status

 		uWSGI V8 support

 		Building

 		RPC

 		Signal handlers

 		Multitheading and multiprocess

 		Mules

 		The uWSGI API

 		JSGI 3.0

 		CommonJS

 		The GridFS plugin

 		Requirements and install

 		Standalone quickstart

 		The initial slash problem

 		Multiple mountpoints (and servers)

 		Replica sets

 		Prefixes

 		MIME types and filenames

 		Timeouts

 		MD5 and ETag headers

 		Multithreading

 		Combining with Nginx

 		The 'gridfs' internal routing action

 		Notes

 		The GlusterFS plugin

 		Step1: glusterfs installation

 		Step2: the first cluster

 		Step3: uWSGI

 		High availability

 		Multiple mountpoints

 		Multiprocess VS multithread

 		Internal routing

 		Using capabilities (on Linux)

 		Notes:

 		The RADOS plugin

 		Step1: Ceph cluster and content

 		Step2: uWSGI

 		High availability

 		Multiple mountpoints

 		HTTP methods

 		Features

 		Caching example

 		Security note

 		Notes

 		The Pty plugin

 		Building it

 		Example 1: Rack application shared debugging

 		Example 2: IPython control thread

 		SPNEGO authentication

 		Configuring uWSGI with LDAP

 		Importing the uWSGIConfig schema

 		An example LDIF dump

 		Usage

 		Integrating uWSGI with Erlang

 		Building

 		Activating Erlang support

 		A simple RPC hello world example

 		Python-Erlang mappings

 		Sending messages to Erlang nodes

 		Receiving erlang messages

 		RPC

 		Connection persistence

 		What about Mnesia?

 		Can I run EWGI applications on top of uWSGI?

 		Management Flags

 		myadmin tool

 		uWSGI Go support (1.4 only)

 		Building uWSGI with Go support

 		Writing the first Go application

 		Building your first app

 		Going in production

 		Goroutines (currently Linux/FreeBSD-only)

 		uWSGI api

 		Running from the Emperor

 		Notes

 		uWSGI 2.0.9

 		Bugfixes

 		New Features

 		Improved PyPy support for Linux

 		Fastrouter post-buffering

 		Perl uwsgi::opt

 		–pull-header

 		active-workers signal target

 		httpdumb routing action

 		Availability

 		uWSGI 2.0.8

 		Bugfixes

 		New Features

 		RTSP and chunked input backports from 2.1 for the HTTP router

 		–hook-post-fork

 		fallback to trollius for asyncio plugin

 		added sweep_on_full, clear_on_full and no_expire to –cache2

 		backported wait-for-fs/mountpoints from 2.1

 		improved the offload api (backport from 2.1)

 		Allows building plugins from remote sources as embedded

 		Automatically manage HTTP_X_FORWARDED_PROTO

 		Availability

 		uWSGI 2.0.7

 		Bugfixes

 		New Features and improvements

 		Allow calling the spooler from every CPython context

 		store_delete cache2 option

 		file logger rotation

 		Vassal plugin hooks

 		Broodlord improvements

 		Availability

 		uWSGI 2.0.6

 		Bugfixes

 		New features

 		The new Rados plugins

 		–if-hostname

 		Apache2 mod_proxy_uwsgi stabilization

 		uwsgi[rsize] routing var

 		the callint scheme

 		–fastrouter-fallback-on-no-key

 		PHP 5.5 opcode caching via –php-sapi-name

 		Improved chain-reloading

 		added 'chdir' keyval to –attach-daemon2

 		Availability

 		uWSGI 2.0.5

 		Bugfixes

 		New features

 		graceful reload of mule processes (Credits: Paul Egan)

 		return routing action (Credits: Yu Zhao)

 		–emperor-no-blacklist

 		Icecast2 protocol helpers

 		–metrics-no-cores, –stats-no-cores, –stats-no-metrics

 		sharedarea improvements

 		UWSGI_GO_CHEAP_CODE

 		PROXY1 support for the http router (Credits: bgglenn)

 		reset_after_push for metrics (Credits: Babacar Tall)

 		setremoteaddr

 		the resolve option

 		Availability

 		uWSGI 2.0.4

 		Bugfixes

 		New features

 		The experimental asyncio loop engine (CPython >= 3.4)

 		httprouter advanced timeout management

 		allow disabling cache warnings in –cache2

 		purge LRU cache feature by Yu Zhao (getcwd)

 		support embedded config on FreeBSD

 		RPC hook

 		setmodifier1 and setmodifier2 routing actions

 		no_headers option for static router

 		Availability

 		uWSGI 2.0.3

 		Bugfixes

 		New features

 		Emperor SIGWINCH and SIGURG

 		Building plugins on-the-fly from git repositories

 		uwsgi.add_var(key, value)

 		'disableheaders' routing action

 		Smarter Emperor on bad conditions

 		Availability

 		uWSGI 2.0.2

 		Bugfixes

 		New features and improvements

 		CGI plugin

 		PSGI loading improvements

 		Availability

 		uWSGI 2.0.1

 		Bugfixes and improvements

 		New features

 		Perl native Spooler support

 		–alarm-backlog

 		–close-on-exec2

 		simple notifications subsystem

 		pid namespace for daemons (Linux only)

 		Resubscriptions

 		filesystem monitor api

 		support for yajl 1.0

 		for-readline

 		%i and %j magic vars

 		–inject-before and –inject-after

 		–http-server-name-as-http-host

 		better Emperor's Ragnarok (shutdown procedure)

 		PyPy paste support

 		Availability

 		uWSGI 2.0

 		Important changes

 		Bugfixes and improvements

 		New features

 		–attach-daemon2

 		Linux setns() support

 		“private” hooks

 		Support for yajl library (JSON parser)

 		Perl spooler support

 		Gateways can drop privileges

 		Subscriptions-governed SNI contexts

 		Availability

 		uWSGI 1.9.21

 		Bugfixes

 		Optimizations

 		writev() for the first chunk

 		use a single buffer for websockets outgoing packets

 		New features

 		removed zeromq api

 		The new sharedarea

 		report request data in writers and readers

 		Modular logchunks management

 		tmsecs and tmicros, werr, rerr, ioerr, var.XXX

 		mountpoints and mules support for symcall

 		read2 and wait_milliseconds async hooks

 		websockets binary messages

 		the 'S' master fifo command

 		as-mule hook

 		accepting hook and improved chain reloading

 		–after-request-call

 		error pages

 		Simplified plugins builder

 		TODO for 2.0

 		Availability

 		uWSGI 1.9.20

 		First round of deprecations and removals for 2.0

 		Next scheduled deprecations and removals

 		Bugfixes

 		New features

 		64bit return values for the RPC subsystem

 		The new GCCGO plugin

 		Simple math in configuration files

 		New magic vars

 		Perl/PSGI improvements

 		New native protocols: –https-socket and –ssl-socket

 		PROXY (version1) protocol support

 		New metrics collectors

 		Availability

 		uWSGI 1.9.19

 		Bugfixes

 		New features

 		The Metrics subsystem

 		The Tornado loop engine

 		The 'puwsgi' protocol

 		–vassal-set

 		The 'template' transformation

 		Availability

 		uWSGI 1.9.18

 		License change

 		Bugfixes

 		New Features

 		Minimal build profiles

 		Auto-fix modifier1

 		Perl auto reloader

 		The “raw” mode (preview technology, only for CPython)

 		Optional NON-standard support for CPython buffer protocol for WSGI responses

 		Emperor and config improvements

 		Build system improvements

 		Pluginized the 'schemes' management

 		mountpoints checks

 		Preliminary libffi plugin

 		Official support for kFreeBSD

 		Availability

 		uWSGI 1.9.17

 		Bugfixes

 		New features

 		The Master FIFO

 		The asap hook

 		The TCC (libtcc) plugin

 		The forkptyrouter gateway

 		added a new magic var for ANSI escaping

 		Routable log encoders

 		–vassals-include

 		The Emperor heartbeat system is now mercyless...

 		logpipe

 		added “fd” logger to “logfile” plugin

 		Availability

 		uWSGI 1.9.16

 		Important change in the gevent plugin shutdown/reload procedure !!!

 		Bugfixes/Improvements

 		New features

 		FreeBSD jails native support

 		The Rados plugin

 		The TunTap router

 		Linux O_TMPFILE

 		Linux pivot-root

 		Cheaper memlimit

 		Log encoders

 		New “advanced” Hooks

 		New mount/umount hooks

 		Availability

 		uWSGI 1.9.15

 		Bugfixes

 		New features

 		The PTY plugin

 		strict mode

 		fallback configs

 		–perl-exec and –perl-exec-post-fork

 		uwsgi.cache_keys([cache])

 		added %(ftime) to logformat

 		protect destruction of UNIX sockets when another instance binds them

 		–worker-exec2

 		allow post_fork hook on general plugins

 		–call hooks

 		init_func support for plugins, and –need-plugin variant

 		added commodity loader for the pecan framework

 		UWSGI_REMOVE_INCLUDES

 		router_expires

 		announce Legion's death on reload/shutdown

 		The GlusterFS plugin (beta)

 		–force-gateway

 		preliminary python3 profiler (beta)

 		file monitor support for OpenBSD,NetBSD,DragonFlyBSD

 		–cwd

 		–add-gid

 		Emperor and Linux namespaces improvements

 		–wait-for-interface

 		Availability

 		uWSGI 1.9.14

 		Bugfixes

 		New features

 		Ruby 1.9.x/2.x native threads support

 		Filesystem monitoring interface (fsmon)

 		uClibc support

 		Lua 5.2 support

 		setscheme, setdocroot

 		sendfile, fastfile

 		–reload-on-fd and –brutal-reload-on-fd

 		Spooler improvements

 		–emperor-nofollow

 		daemontools envdir support

 		xmldir improvements

 		Breaking News !!!

 		Availability

 		uWSGI 1.9.13

 		Bugfixes

 		New features

 		PyPy performance and features improvents

 		Chunked input api

 		Toward better third-party plugins management: the –dot-h option

 		setmethod, seturi and setpathinfo routing action

 		UWSGI_INCLUDES

 		Improved set_user_harakiri api function

 		–add-cache-item [cache]KEY=VALUE

 		the router_xmldir plugin

 		Implement __call__ for @spool* decorators

 		the uwsgi[lq] routing var

 		–use-abort

 		Availability

 		uWSGI 1.9.12

 		Bugfixes

 		New Features

 		Offloading responses

 		JWSGI and JVM improvements

 		–touch-signal

 		The “pipe” offload engine

 		memcached router improvements

 		The new redis router

 		The “hash” router

 		Availability

 		uWSGI 1.9.11

 		Bugfixes

 		New features

 		The new high-performance PyPy plugin

 		Cron improvements

 		Support for GNU Hurd

 		The memory offload engine

 		New Websockets chat example

 		Error routes

 		Support for corner case usage in wsgi.file_wrapper

 		HTTP/HTTPS router keepalive improvements

 		The harakiri routing action

 		RPC wrappers

 		Availability

 		uWSGI 1.9.10

 		Bugfixes

 		New Features

 		Welcome to gccgo

 		Final routes

 		Availability

 		uWSGI 1.9.9

 		Special Warning !!!

 		Bugfixes

 		New Features

 		The WebDav plugin

 		Support for Go 1.1 (more or less, sad news for go users...)

 		Improved async modes

 		The radius plugin

 		The SPNEGO plugin

 		The ldap authenticator

 		New internal routing features

 		Gevent atexit hook

 		Streaming transformations

 		The xattr plugin

 		The airbrake plugin

 		Legion Daemons

 		–touch-exec

 		Math for cache

 		Availability

 		uWSGI 1.9.8

 		Bugfixes

 		Availability

 		uWSGI 1.9.7

 		Bugfixes

 		New features

 		Legion cron

 		Curl cron

 		The UWSGI_EMBED_PLUGINS build variable

 		Gzip caching

 		–skip-atexit

 		proxyhttp and proxyuwsgi

 		The transformation api

 		–alarm-fd

 		The spooler server plugin and the cheaper busyness algorithm compiled in by default

 		Availability

 		uWSGI 1.9.6

 		Bugfixes

 		New Features

 		Sqlite and LDAP pluginization

 		Configuring dynamic apps with internal routing

 		Carbon avg computation (Author: Łukasz Mierzwa)

 		Numeric checks for the internal routing

 		Math and time for the internal routing subsystem

 		Added non-standard seek() and tell() to wsgi.input (post-buffering required)

 		Pyshell improvements, AKA Welcome IPython (Idea: C Anthony Risinger)

 		The 'rpcraw' routing instruction

 		Preliminary support for the HTTP Range header

 		The 'lord' routing condition

 		GridFS authentication

 		The –for-times config logic

 		The 'uwsgi' routing var

 		The 'alarm' routing action

 		Welcome to the ruby shell

 		... and welcome to the Lua shell

 		Goodbye to the old (and useless) probe subsystem

 		Improvements in the Legion subsystem (Author: Łukasz Mierzwa)

 		More fine-tuning

 		V8 improvements and TeaJS integration

 		Availability

 		uWSGI 1.9.5

 		Bugfixes

 		New features

 		The GridFS plugin

 		V8 improvements

 		The 'cgi' routing instruction

 		Availability

 		uWSGI 1.9.4

 		Bugfixes

 		New features

 		SmartOS official support

 		V8 initial support

 		The rpcnext routing action

 		Legion improvements

 		Availability

 		uWSGI 1.9.3

 		Bugfixes

 		New features

 		Pluggable configuration system (with Lua support)

 		Immediate setuid and setgid

 		Honouring symlinks in tyrant mode

 		The “rpcret” routing action (or usa Lua to write advanced rules)

 		Availability

 		uWSGI 1.9.2

 		Bugfixes

 		New features

 		route-run and the cachestore routing action

 		routing access to cookie and query string

 		empty internal routing condition

 		The Geoip plugin

 		The SSI plugin (beta)

 		Availability

 		uWSGI 1.9.1

 		Bugfixes

 		The XSLT plugin

 		Legion scrolls api

 		On demand vassals

 		–emperor-on-demand-extension <ext>

 		–emperor-on-demand-directory <dir>

 		–emperor-on-demand-exec <cmd>

 		The –exec-post-app hook

 		The pyring build profile

 		The cache router plugin

 		The crypto logger

 		The rpc internal routing instruction

 		Preliminary support for name resolving in the carbon plugin

 		New routing conditions

 		The 'V' magic var

 		The 'mongodb' generic plugin

 		Build profiles over network

 		Get it

 		uWSGI 1.9

 		Non-blocking for all

 		Coro::AnyEvent

 		The JVM plugin

 		The Mono ASP.NET plugin

 		Language independent HTTP body management

 		Faster uwsgi/HTTP/FastCGI/SCGI native sockets

 		Request logging VS err logging

 		Chain reloading

 		Offloading improvements

 		Better static files management/serving

 		The New Generation Cache subsystem (cache2)

 		The Legion subsystem

 		Cygwin (windows) support

 		Advanced Exceptions subsystem

 		SPDY, SSL and SNI

 		HTTP router keepalive, auto-chunking, auto-gzip and transparent websockets

 		The SSL router (sslrouter)

 		Websockets api

 		New Internal Routing (tu